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Phase transition classes in triplet and quadruplet reaction-diffusion models
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Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that
requiresn=3,4 parents, whereas explicit diffusion of single partidl&s is present are investigated in low
dimensions by the mean-field approximation and simulations. The mean-field approximation of gexeral
—(n+k)A, mA—(m—1)A type of lattice models is solved and a different kind of critical behavior is pointed
out. Ind=2 dimensions, the 8—4A, 3A—2A model exhibits a continuous mean-field type of phase tran-
sition, that impliesd.<<2 upper critical dimension. For this model ih=1 extensive simulations support a
mean-field type of phase transition with logarithmic corrections unlike the recent study oePalKPhys.

Rev E66, 025101(2002]. On the other hand, theA—5A, 4A— 3A quadruplet model exhibits a mean-field
type of phase transition with logarithmic correctionsdr 2, while quadruplet models in one-dimensional
show robust, nontrivial transitions suggestidg=2. Furthermore, | show that a parity conserving model
3A—5A, 2A—0in d=1 has a continuous phase transition with different kinds of exponents. These results are
in contradiction with the recently suggested implications of a phenomenological, multiplicative noise Langevin
equation approach and with the simulations on suppressed bosonic systems by Kockelkoren afi@h@bate
Rev. Lett.90, 125701(2003].

DOI: 10.1103/PhysRevE.67.056114 PACS nuni$)er05.70.Ln, 82.20.Wt

[. INTRODUCTION sorbing state (without extra symmetry and inhomogeneity or
disorder), short ranged interactions can generate DP class
Phase transitions in genuine nonequilibrium systems havesansition only—because they exhibit multiple absorbing
been investigated often among reaction-diffusi®D) type  states that are not frozen, lonely partislemay diffuse in
of models exhibiting absorbing states-3]. In many cases, them.
mapping to surface growth, spin systems, or stochastic cel- A Phenomenologically introduced Langevin equation that
lular automata can be done. The classification of universalitgxhibits real, multiplicative noise was suggesfeéd] to de-
classes of second-order transitions is still one of the mosgcribe the critical behavior of reaction-diffusion models of
important uncompleted tasks. One hopes that symmetrid¥Pes
and spatial dimensions are the most significant ingredients as
in equilibrium cases, however, it turned out that in many NA—(n+1)A, nA—jA, (1)
cases there is a shortage of such factors to explain the emerg-
ing universality classes. An important example was beingWith j<n, number of interacting particlesn the form
investigated during the past two years which emerges at
phase transitions of binary production systems-16: the dp(x,t)=ap(x,t)"=p(x,H)" "1+ DVZp(x,t) + £(x,1),
diffusive pair contact proceg®CPD. In these systems, par- 2
ticle production competes with pair annihilation and single
particle diffusion. If the production wins, steady states withWith noise correlations
finite particle density appear isite restrictedl models with
hard-core repulsion, while in unrestrictédosoni¢ models (LD LX) =T pH S (x—x") 8(t—t"). 3)
the density diverges. By lowering the production per annihi-
lation rate, a doublet of absorbing states without symmetriehe classification of universality classes of nonequilibrium
emerges. One of such states is completely empty, the othsystems by the exponept of a multiplicative noise in the
possesses a single wandering particle. In case of site réangevin equation was suggested some time ago by Grin-
stricted systems, the transition to absorbing states is continsteinet al.[21]. However, it turned out that there may not be
ous. corresponding particle systems to real multiplicative noise
Although the nature of this transition has not completelycaseg4] and an imaginary part appears as well if one derives
been settled numerically and by field theory yet, anothethe Langevin equation of a RD system starting from the mas-
novel class appearing in triplet production systems was proter equation in a proper way. This observation led Howard
posed very recentlf17,18: the diffusive triplet contact pro- and Taiber to investigate systems with complex noise ap-
cess(TCPD). This reaction-diffusion model differs from the pearing in binary production models. Unfortunately, the
PCPD model in such a way that for a new particle generatioicases with and without occupation number restriction turned
at least three particles have to meet. It is important to noteut to be different id=1, although ind=2 this difference
that these models do not break the directed percoldéfdd  was found to disappear at and below critica[ityg].
hypothesiq 19,20—according to whichjn one component By rescaling Eq(2), one can get the corresponding mean-
systems exhibiting continuous phase transitions to single alfield critical exponents
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BMF=1, vf'F=n/2, vh"an. (4)  wherep denotes the site occupancy probability amdis a
dimension dependent coordination number. Each empty site
The authors of Ref[17] expect that the noise exponent has a probability (+p) in the mean-field approximation,
should be in the range hence the need fok empty sites at a creation brings in a
(1— p)¥ probability factor. By expanding (4 p)* and keep-
lsp=n, 5 ing the lowest-order contribution, one can see that for site
) ) N ) restricted lattice systems @' *th order term appears auto-
hence by simple power counting, the upper critical dimenmatically with negative coefficient that regulates ). The
sion should be steady state solution can be found analytically in many cases
and may result in different, continuous or discontinuous
d.=2+ 4_21“' (6) phase transitions. Here | split the discussion of the solutions
¢ to three parts(a) n=m, (b) n>m, and (c) n<m. In the
inactive phases, one expects a dynamical behavior described
This implies that for a triplet processes, #/8.<8/3 and for  py themA— 0 process, for whichpoct(M=1) is known[22].
a quadrupletif=4) processes: £d.<5/2.

Very recently, Kockelkoren and Chaitgroduced stochas-
tic cellular automata(SCA) versions of generahA—(n ST )
+K)A, mA—(m—1)A type of modelq18], where multiple T_he steady state solution in this case can be obtained by
particle creation on a given site is suppressed by an exp&olving
nentially decreasing creation probabilip)'’? of the particle
number. They claim that their simulation results in one-
dimension are in agreement with the fully occupation nUMy,pere the trivial p=0) solution has been factored out. For
ber restriction counterparts and set up a general table of UNihe active phase, one gets
versality classes, where as the functiomaind m only four '
non-mean-field classes exist, namely, the directed percolation
class[19,2(Q the parity conserving clag&2], the PCPD, and p=1-
the TCPD classes.

In any case, the heuristic Langevin equation with real, ;
noise assumption for RD mode47,18 should be proven l\évlm:rr?t;/amshes abe
for n>1. Furthermore, in low dimensions topological con-
straints may cause a different critical behavior with and with-
out occupation number restrictig23]. Note that in case of

binary production models, it had not been clear at all if theang order parameter exponeslfF=1. At the critical point,

d.=2, prediction of the bosonic field theory had also beene time dependent behavior is described by
true for site restricted systems until the numerical confirma-

tion of Ref.[13]. In this paper, | show simulation results for ap I s
lattice models with restricted site occupancydis 1,2 with o~ 2ak p" T +0(p" T, (12
the aim of locating the upper critical dimensions and check-

ing claims of Refs[17,18 about possible new universality phat gives a leading order power-law solution
classes.

A. The n=m symmetric case

ka(1—p)*=1(1-0), C)

, (10

=I/(k+1) with the leading order sin-

MF
pxlo—od|f, (12

poct*l/n’ (13)
1. MEAN-FIELD CONSIDERATIONS
) ) ] ) hence
In this Sec. I, discuss the mean-field equation that can be
set up for site restricted lattice models with general micro- aMF:,BMF/VhAF:l/n-
scopic processes of the form
. N This was obtained from bosonic, coarse grained formulation
nA—(n+k)A, mA—(m—1)A, (7)  inRef.[17] too.

with n>1, m>1, k>0, |>0, andm—1=0. Note that this B. The n>m case
formulation is different from that of Eq2), that is suggested

for coarse grained, continuous bosonic description of thes((-ga
reaction-diffusion systems. In this case the diffusion drops
out and one can neglect the noise, hence the competition of kop" M(1-p)=1(1—0) (14)
creation(with probability o) and annihilation or coagulation

(parametrized with probabilitx =1— o) is left behind: is satisfied. Both sides are linear functionssgfsuch that for
o—0 only thep=0 is a solution. The left-hand side is a
convex function ofp (from above with zeros atp=0 and
p=1.

In this case besides the=0 absorbing state solution we
n get an active state if

&p_ n k m
¢ ~akop'(1=p)i-al(l-a)p" (8

056114-2



PHASE TRANSITION CLASSES IN TRIPLET AND.. .. PHYSICAL REVIEW BE7, 056114 (2003

0.31 ' ]
0.33 b
= 0.35
m-n 3 0.37

W= 0.39 fw-v/

15| 04
: 0.000 0.010 0.020

0 1 0 1 e

(b)

Ty Tl = T

kop™™ (1-p)*

FIG. 1. Steady state mean-field solution fay n>m and (b) =
n<m cases.

Therefore by increasing from zero, the left-hand side
meets the right-hand side at , p.>0 [See Fig. 1a)]. If this
solution is stable, a first-order transition takes place in the
system. Note that in higher order cluster mean-field solu-
tions, where the diffusion can play a role, the transition may 5 . , ,
turn into a continuous on4—26; therefore it is important 10
to check the type of transition fal=d;. In Sec. IlIC, |
shall confirm the first orderedness of such transitions for two g 2. pensity timest'? in the two-dimensional B— 4A,

models in two-dimension. 3A—2A model for D=0.5 and p=0.496, 0.4965, 0.4967,
0.4968, 0.497, 0.498, 0.4985, and 0.4@8p to bottom curves
C. Then<m case The inset shows the corresponding local slopes.

By factoring out the trivialp=0 solution, we are faced

with the general condition for a steady state appearance of the mean-field behayigt) <t following

2x10° MCS. By decreasing, this scaling sets in later
ko(1—p)=1(1—a)p™ ". (15) times. As Fig. 2 shows folL=1000 systems withty,y
=10" MCS curves withp=<0.4965 veer up—corresponding
One can easily check that in this case, the critical point is ato the active phase—while curves with=0.497 veer
o.=0 [see Fig. )] and here the density decays with down—corresponding to the absorbing state. Frompifté
aMF=1/(m—1) as in case of the=1 branching andn  data, | determined the effective exponefitee local slopes
=| annihilating models, showed by Cardy andubar[22] defined as
branching and k-annihilating random walk (BKARW
classes However, the steady state solution for Qorf(t) = —Infp(1)/p(t/m)] (16)
n>1 gives different3 exponents than those of BKARW ¢ In(m)
classes, namelygMF=1/(m—n). This implies a different
kind of critical behavior in low dimensions which could be a
subject of further investigation.

(where | usedm=4). The critical point is estimated at
=0.4967(2) witha=0.33(1) (for local slopes, see inset of
Fig. 2. This value agrees with the mean-field vala&"
=1/3.
Density decays for severap’s in the active phase
Two-dimensional simulations were performed dn  (0.003<e=|p.—p|<0.3) were followed on logarithmic
=400- 1000 linear sized lattices with periodic boundary time scales, and averaging was done ovéi00 independent
conditions. One Monte Carlo stéMCS)—corresponding to  runs in a time window, which exceeds the level-off time by a
dt=1/P (whereP is the number of particles-is built up ~ decade. The steady state density in the active phase at a
from the following processes. A particle and a number critical phase transition is expected to scale as
€(0,1) are selected randomly; ¥<D, a site exchange is P
attempted with one of the randomly selected empty nearest p(,p)|p=pel”. (17

neighbors(nn); if x=D, k number of new particles are cre- Using the local slopes method, one can get a precise estimate

a.ted with _probability (p) at fa”do”."y selected empty nn for B as well as for the corrections to scaling
sites provided the number of nn particles was greater than or

equal ton; or if x=D, | number of particles are removed Inp(e,€&)—Inp(=,e_1)

with probability p (taking into account then—I1=0 condi- Beti( €)= In(e;)—In(e;_7)

. . . i i—1

tion as wel). The simulations were started from fully occu-

pied lattices, and the particle density decay was measured Wphere | used th@, value determined before. One can see in

to 16°-10' MCS. Fig. 3 that the effective exponent far>0.005 exhibits a
correction to scalinginclined ling and tends to Iirgﬂoﬂ

IIl. SIMULATIONS IN TWO DIMENSIONS

: (18

A. The 3A—4A, 3A—2A symmetric triplet model =1.0(1), which agrees with the mean-field value again. By

First, 1 checked the dynamic behavior in the inactiveneither thea nor the 8 exponent, one can observe logarith-
phase forD=0.5 diffusion rate. Ajp=0.9, one can see the mic corrections suggesting,<2.
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FIG. 5. Density decay in the two-dimensionah4:5A, 2A
—® model forD=0.5 andp=0.05, 0.119, 0.121, 0.122, 0.123,
0.124, 0.125, and 0.1@op to bottom curveswith system size
=400.

FIG. 3. Effective order parameter exponent results in two di-
mensions. Bullets correspond to thA-3:4A, 3A—2A model and
squares to the A—5A, 4A—3A model atD=0.5. The inset
shows the logarithmic fitting for theA—5A, 4A—3A model.

The density decay simulations were repeatedat0.2,  this graph, the separatricritical) curve exhibits a linear
where the critical point was found @ =0.4795(1) with a  shape on the(t)t*~In(t) scale suggesting logarithmic cor-

mean-field classr exponent again. rections to scaling. Similarly, the effective exponentsgof
seem to extrapolate t8=0.63(5) (Fig. 3), that is very far
B. The 4A—5A, 4A—3A symmetric quadruplet model from the mean-field valugMF=1. To check the possibility

ethat a logarithmic correction can result in the mean-field ex-

Here simulations are much slower than in case of th . . i
ponents, the fitting with the lowest-order correction

triplet model, hence systems with linear size=400 could
be investigated. First, | checked the dynamic behavior in the o n)= —o)a+bln(p.— B 19
inactive phase fob=0.5. At p=0.9, a mean-field type of p(=:P)={(Pe= Pl (Pe=pP)l} 19
decayp(t)octfl’3.can be observed following 8MCS. As  has been applied for the steady staer,p) data. | used the
one can see in Fig. 4, fqr<0.4705 the density decay curves nonlinear fitting of thexMGRr graphical package with a rela-
veer up, while forp=0.471 these curves veer down. The tive error in the sum of squares with at most 0.0001. This
estimated critical point ip.=0.470%2). The efective ex-  resulted in B=1.01 at p=0.471 @=-10.8, and b
ponent atp. extrapolates tar=0.21). As one can see in = —6.05) (see inset of Fig. 8 This result in agreement with

: the dynamical scaling conclusion may support that the upper

061: \ ' ] critical di_mension for quadruplet mod'els d§=2. To get
18 ls 02;2 | more solid results f_urther, very extensive S|mylat|ons would
sl be necessary that is beyond the scope of this study. In any
g=3 ; ] case, the clear mean-field behavior cannot be concluded.
0.26 '

0.00 0.02 0.04
L

C. 3A—5A, 2A—0 and 4A—5A, 2A—0 hybrid models

1/4

One can find two regions in the density decay behavior by
i varying p in both the models. Fop<p. steady state values
are reached quickly, while fop>p. a rapid (faster than
power law initial density decay crosses overpget L. This
is in agreement with the mean-field behavior of the—20
process in one dimensidi27], dominating in the inactive
phase. For the A—5A, 2A—0 quadruplet production
08 L . : : model, this threshold is gi.=0.119(1) (see Fig. % where
10 10 10 an abrupt jump is observable frop(=)=0.833 to p(x)
=0. In case of the B—5A, 2A—0 triplet production
FIG. 4. Density timest”* in the two-dimensional A—5A,  model, the threshold is gi.=0.220(1) with a jump from
4A—3A model forD=0.5 andp=0.469, 0.47, 0.4792, 0.4705, p(*)=0.45 to zero.
0.471, 0.4715, 0.4725, 0.473, 0.474, 0.476, 0.478, and(@p&0 In neither cases do we see dynamical scaling at the tran-
bottom curves The inset shows the corresponding local slopes. sition. These results are in agreement with the first-order

pt

13 -
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transition of the mean-field approximations, given in Sec. 0.18
II B for n>m. 02 |
IV. SIMULATIONS IN ONE DIMENSION Q:22

. . . . . . 0.24 |
The simulations in one dimension were carried outLon

=10° sized systems with periodic boundary conditions. The  0.26 |
initial states were again fully occupied lattices, and the den- 5 028
sity of particles is followed up to f8-10’ MCS. An el- &

ementary MCS consists of the following processés: 0.3
AD«+ DA with probability D, (b) mA—(m—1)A with prob-
ability p(1—D), (¢) nA—(n+k)A with probability (1
—p)(1—-D), such that the reactions were allowed on the left 034 -

0.32 -

or right side of the selected particle strings. 036 |
%%% 00 0.02 0.04 0.06 0.08 0.10
A. 3A—4A, 3A—2A and 3A—6A, 3A—0 symmetric ’ ’ ' t—1/3 ' ) )

triplet models

The 3A—4A, 3A—2A site restricted model in one di-
mension was simulated by Pagk al.[17] for small systems
up to 1¢ MCS. They concluded to find a kind of phase
transition with the order parameter exponents 0.32(1)
and 8=0.783). For therestricted bosonic version of this
model, large scale simulations gawe=0.27(1) and B
=0.90(5)[18]. Note that since reactive and diffusive sectors
arise in this model like in PCPD class model, diffusion de-
pendence or corrections to scaling may hamper to see re
asymptotic behaviof7,39,44. Here, | show extended simu-
lation results for the strictly site restricted lattice model
model witht,,,,=10" MCS at diffusion rateD=0.1. At the
critical point theaq¢4(t) curve exhibits a straight line shape
for t—oo, while in sub-critical(supercritical casesae;(t) B. The 3A—5A, 2A—0 model
curves veer dowfup), respectively. As one can see in Fig. 6, It has been established thatms=1, m=1=2, and even
following a long relaxationp=0.3032 curves veer up, while k—so called even number of offspringed branching and
p=0.3035 curves veer down in the-o limit. From this,  annihilating models(BARWe)—the parity conservingdPC)
one can estimatgp=p.=0.3033(1) with «=0.33(1) in

FIG. 6. Local slopes of the density decay in the one-dimensional
3A—4A, 3A—4A model atD=0.1. Different curves correspond
to p=0.3, 0.301, 0.3015, 0.302 0.3025, 0.3027, 0.303, 0.3035,
0.304, and 0.304%rom top to botton).

shifted the transition to the zero production limp=1)
where the 2—0 process in one dimension is known to
decay ag[In(t)/t]¥2 [22]. Off-critical simulations showed
at 3=0.33 1), meaning that this transition belongs to the
kKARW mean-field class. On the other hand there may be
other realizations of this model, where the transition reported
by Kockelkoren and Chatis accessible.

agreement with the results of R¢LL7]. 1 : : : :
By analyzing supercritical steady state densities with the |

local slopes method, one can read off;;;— 8=0.95(5) 0.9 i ]

(see Fig. 7, which is higher than the results of Reff$7] and 1

[18]. os | ]
However, one should be careful and check diffusion de- |

pendence and corrections to scaling, especially, becaus e

these critical exponent estimates are quite close to the meat 0T [ ]

field values @MF=1/3 andgMF=1) and as it was shown in = ?x -

Sec. lll, d,<2. Since thep=0.303 andp=0.3035 p(t) 0.6 23 e * 1

curves show clear curvature for large times, the 0303 = s -

<0.3035 conditions seem to be inevitable. 0.5 e — - Yo * = ]
| tried to fit the steady state data in the 0.393 -+

<0.3035 region by the logarithmic correction foit9) and 04T * ]

obtained 8=1.07(10) atp.=0.3032 that agrees with the

mean-field value and implied,=1. 03 . : . : . : . :
Just considering mean-field results, according to which 0 0.05 0.1 0.15 0.2

does not play a role fon=m models, one may expect that €

the 3A—6A, 3A—0 triplet creation model exhibits the FIG. 7. Effective order parameter exponent results in one di-
same kind of transition as theA3-4A, 3A—2A model.  mension. Stars correspond té3-4A, 3A—2A model; bullets to
Indeed, Kockelkoren and Ch&esimulations show thif18]. 4A—5A, 2A—0 model atD=0.2; squares to A—5A, 2A—0
However, doing lattice simulations with site restrictions, it model atD =0.8; and diamonds toA—5A, and 4A— 0 model at
turned out that the 8— 6A creation was so effective that it D=0.3.
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FIG. 9. Local slopes of the density decay in the one-dimensional
3A—5A, 2A—0 model forD=0.8. Different curves correspond to
p=0.46, 0.461, 0.462, 0.4625, 0.4627, 0.463, 0.46325, 0.464, and
0.465(from top to botton.

FIG. 8. Spatiotemporal evolution of the critical,+1)-D diffu-
sive 3A—5A, 2A—0 model (0 =0.8).

class continuous phase transition emerfigz,29,3Q. This
class has also been observed in models exhibifingym-

metric absorbing states, where the domain walls separatingent estimates are far from the {1)-D DP values(«
ordered phases follow BARWe dynamif31-34,37. This  _g 159 4646), B=0.276 486(8)[41]), hence the claim of

class was originally called parity conserving, owing to theyocyelkoren and Chatéor the critical behavior ofn>m
conservation law that made it different from the robust DPmodels is questionable.

class. However, it turned out that &y symmetric models On the other hand, the diffusion dependence of the critical

this conservation is not enou¢B5—-38. Furthermore, in bi- oy nonents is a challenge and has been observed in the binary

nary spreading models, this conservation was found to bgyqqyction PCPD moddl]. In Ref.[40], it was shown that

irrelevant [10,13. Therefore, it is still an open question 5s5yming logarithmic corrections to scaling—that is quite

yvhether parity conservation is relevant in other models thanymmon in the one-dimensional models—a single universal-

in BARW types. L _ _ ity class can be supported numerically. Therefore, here again
| investigated the phase transition of the triplet production; 1,5ye investigated the possibility of the collapse of the high

3A—5A, 2A—0 model (with explicit particle diffusion 54 |owD exponents. Assuming the same kind of logarith-
possessing parity conservation. As | showed in Sec. lll C, iNyic correction forms as in Ref40]

two dimensions this system exhibits a first-order transition in

agreement with the mean-field results. This first-order mean- [[a+bin(t)]/t]«. (20
field behavior does not give a direct hint on the type of phase
transition in one dimension. Kockelkoren and Crstgmu- | have found a consistent set of exponents both Bor

lations on the o_ne-dime_nsional, suppres_sed bosonic cellulat g » 3ndD=0.8 (see Table | and inset of Fig).9For the

automaton version of this model show simple DP class dengaia analysis, | used the nonlinear fitting of the program

sity decay[18]. However, if we consider the space-time evo- y\cr package, with a relative error in the sum of squares

Iu't|on, we see very non-DP like spatiotemporal pattes®e  \yith at most 0.001,

Fig. 8. This pattern resembles much more to those of the

PCPD class models, where compact domains separated by

clouds of lonely wandering particles occur. Of course, such

qualitative judgment on the universal behavior is not enough,

but has been found to be quite successful in case of binadyith the critical thresholds: pf=0.4627(1) and p;

production systemgs, 11]. =0.224q1). These exponents suggest a distinct universality
The density decay simulationsBt=0.8 andD=0.2 have class from the known ond$].

been analyzed by the local slopes method, see Fig. @ At

=0.8, the critical point is estimated ﬂC:0-4629(3) and TABLE |. Logarithmic fitting results by the forni20) for the

the corresponding effective exponent tends ! ~ one-dimensional 8—5A, 2A—0 model.

=0.241). At D=0.2, the critical point is atps

a=0.221), B=0.601), (21)

=0.2240(3) and the local exponent seems to extrapolate to Pe a b ¢
a-=0.291). Such small difference between the high and (.2 0.4627 0.115 3:610°° 0.217
low D results can also be observed by analyzing the steady g g 0.22405 14.12 ~1.001 0.224

state resultsgt=0.43(3) versug"=0.633). These expo-
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0.23 with explicit single particle diffusion on occupation number
0.24 restricted lattices in one and two dimensions. | showed that
the mean-field solution fon=m symmetric cases results in
0.25 universality classes characterized by the exponentsl/n
0.26 andB=1. | determined the upper critical dimensions for the
triplet and quadruplet cases by simulations. Rer3, high
0.27 precision simulations show the mean-field type of criticality
% 0.08 with logarithmic corrections meanirdy=1. This result is in
S contradiction with the simulations of Refd.7] and[18] and
0.29 with the analytical form ford.(n) derived from a phenom-
03 enological Langevin equation. In case of my site restricted
realization of the one-dimensionaA3-6A, 3A— 0 model,
0.91 the phase transition point is shifted to zero production rate
0.32 and is continuous, BKARW mean-field type. This is in con-
55 . tradiction with the findings of Ref.18] for another stochas-
'0.00000 0.010/%05 0.00010 tic cellular automaton realization of this model. For 4 the

upper critical dimension was located &{=2, opening up

FIG. 10. Local slopes of the density decay in the one_the possibility for nontrivial critical behavior i=1. In-
dimens.ionai A—5A 4A—0 model forD=0.3. Different curves d€€d, two versions of such quadruplet models were shown to
correspond tp=0.904, 0.9037, 0.9033, 0.903 0.9027, and 09026Xh|b|t rObUSt, novel type of critical transition in one dimen-

(from bottom to top. sion. _ o _ _
For n>m, the mean-field approximation gives first-order

transition that was observed by simulations for two (

=3,4) models ind=2. On the other hand, numerical evi-
dence was given that the parity conserving modél 3

—b5A, 2A—0 in one dimension exhibits a non-PC type of
critical behavior with logarithmic corrections by varying the
diffusion rate. This transition does not fit in the universality
class scheme suggested by HéaB].

Finally, | showed that fon<m models, the mean-field
approximations result in classes that featur¥™=1/(m
—1) andMF=1/(m—n). Such kinds of models should be
fhe subject of further studies.

The presented mean-field and simulation results show that
the universal behavior of such low-dimensional reaction-
diffusion models is rich and the table of universality classes
given by Ref[18] is not valid for one-dimensional, fully site
restricted systems. Perhaps, the strict site restriction plays an
important role that causes the differences. Field theoretical
(possibly fermioni¢ treatment that starts from the master
equation should be set up to determine at least the analytical
form of d.(n) for n=m>2 models.

C. 4A—5A, 4A—0 and 4A—5A, 2A—0
quadruplet models

Two-dimensional simulationgSec. 1)), showed that for
n=m=4 symmetric quadruplet modeld,=2. Simulations
in the corresponding suppressed bosonic €& with n
=4 and l=m=4 located the phase transition at zero pro-
duction rate. Here, | show that in the one-dimensional 4
—5A, 4A—0 and 4A—5A, 2A— 0 site restricted models,
continuous phase transitions wifh<1 and with nontrivial
exponents can be found. The density decay was followed u
to t=10° MCS and the critical point was located by the
local-slopes methodsee Fig. 10 at p=0.9028(1) forD
=0.3. The corresponding exponent can be estimated as
=0.271). For D=0.05, one get.=0.9605(3) with «
=0.281), so onecannot see diffusion dependence here
Analyzing off-critical data with the local slopes meth@®),
one getsB=0.48(2) (see Fig. 7.

In accordance with these results, simulations for tiée 4
—5A, 2A—0 model atD=0.2 andD = 0.8 diffusion rates,
resulted inp.(0.2)=0.53185(5) andp.(0.8)=0.5742(1)
with «=0.27(1) and8=0.48(2) exponenttsee Fig. 7. As
we can see, critical exponent data for quadruplet models are i o .
robust and no diffusion dependence has been found. Further- | thank H. ChateH. Hinrichsen, and U. Tiber for useful

more, critical space-time plots are very similar to that of thecommunications and N. Menyteafor her comments on the
PCPD model. manuscript. Support from Hungarian research funds OTKA

(Grant No. T-2528§ Bolyai (Grant No. BO/00142/99 and
IKTA (Project No. 00111/2000s acknowledged. The simu-
lations were performed on the parallel cluster of SZTAKI

In this paper, | investigated the phase transitions of genand on the supercomputer of NIIF Hungary within the scope
eralnA—(n+k)A, mA—(m—1)A reaction type of models of the DEMOGRID project.
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