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Phase transition classes in triplet and quadruplet reaction-diffusion models

Géza Ódor
Research Institute for Technical Physics and Materials Science, P. O. Box 49, H-1525 Budapest, Hungary

~Received 11 November 2002; published 20 May 2003!

Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that
requiresn53,4 parents, whereas explicit diffusion of single particles~A! is present are investigated in low
dimensions by the mean-field approximation and simulations. The mean-field approximation of generalnA
→(n1k)A, mA→(m2 l )A type of lattice models is solved and a different kind of critical behavior is pointed
out. In d52 dimensions, the 3A→4A, 3A→2A model exhibits a continuous mean-field type of phase tran-
sition, that impliesdc,2 upper critical dimension. For this model ind51 extensive simulations support a
mean-field type of phase transition with logarithmic corrections unlike the recent study of Parket al. @Phys.
Rev E66, 025101~2002!#. On the other hand, the 4A→5A, 4A→3A quadruplet model exhibits a mean-field
type of phase transition with logarithmic corrections ind52, while quadruplet models in one-dimensional
show robust, nontrivial transitions suggestingdc52. Furthermore, I show that a parity conserving model
3A→5A, 2A→0” in d51 has a continuous phase transition with different kinds of exponents. These results are
in contradiction with the recently suggested implications of a phenomenological, multiplicative noise Langevin
equation approach and with the simulations on suppressed bosonic systems by Kockelkoren and Chate´ @Phys.
Rev. Lett.90, 125701~2003!#.

DOI: 10.1103/PhysRevE.67.056114 PACS number~s!: 05.70.Ln, 82.20.Wt
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I. INTRODUCTION

Phase transitions in genuine nonequilibrium systems h
been investigated often among reaction-diffusion~RD! type
of models exhibiting absorbing states@1–3#. In many cases
mapping to surface growth, spin systems, or stochastic
lular automata can be done. The classification of universa
classes of second-order transitions is still one of the m
important uncompleted tasks. One hopes that symme
and spatial dimensions are the most significant ingredient
in equilibrium cases, however, it turned out that in ma
cases there is a shortage of such factors to explain the em
ing universality classes. An important example was be
investigated during the past two years which emerges
phase transitions of binary production systems@4–16#: the
diffusive pair contact process~PCPD!. In these systems, par
ticle production competes with pair annihilation and sing
particle diffusion. If the production wins, steady states w
finite particle density appear in~site restricted! models with
hard-core repulsion, while in unrestricted~bosonic! models
the density diverges. By lowering the production per ann
lation rate, a doublet of absorbing states without symmet
emerges. One of such states is completely empty, the o
possesses a single wandering particle. In case of site
stricted systems, the transition to absorbing states is con
ous.

Although the nature of this transition has not complet
been settled numerically and by field theory yet, anot
novel class appearing in triplet production systems was p
posed very recently@17,18#: the diffusive triplet contact pro-
cess~TCPD!. This reaction-diffusion model differs from th
PCPD model in such a way that for a new particle genera
at least three particles have to meet. It is important to n
that these models do not break the directed percolation~DP!
hypothesis@19,20#—according to which,in one componen
systems exhibiting continuous phase transitions to single
1063-651X/2003/67~5!/056114~8!/$20.00 67 0561
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sorbing state (without extra symmetry and inhomogeneity
disorder), short ranged interactions can generate DP cla
transition only—because they exhibit multiple absorbin
states that are not frozen, lonely particle~s! may diffuse in
them.

A phenomenologically introduced Langevin equation th
exhibits real, multiplicative noise was suggested@17# to de-
scribe the critical behavior of reaction-diffusion models
types

nA→~n11!A, nA→ jA, ~1!

~with j ,n, number of interacting particles! in the form

] tr~x,t !5ar~x,t !n2r~x,t !n111D¹2r~x,t !1z~x,t !,
~2!

with noise correlations

^z~x,t !z~x8,t8!&5Grmdd~x2x8!d~ t2t8!. ~3!

The classification of universality classes of nonequilibriu
systems by the exponentm of a multiplicative noise in the
Langevin equation was suggested some time ago by G
steinet al. @21#. However, it turned out that there may not b
corresponding particle systems to real multiplicative no
cases@4# and an imaginary part appears as well if one deriv
the Langevin equation of a RD system starting from the m
ter equation in a proper way. This observation led Howa
and Täuber to investigate systems with complex noise a
pearing in binary production models. Unfortunately, t
cases with and without occupation number restriction turn
out to be different ind51, although ind52 this difference
was found to disappear at and below criticality@13#.

By rescaling Eq.~2!, one can get the corresponding mea
field critical exponents
©2003 The American Physical Society14-1
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bMF51, n'
MF5n/2, n uu

MF5n. ~4!

The authors of Ref.@17# expect that the noise expone
should be in the range

1<m<n, ~5!

hence by simple power counting, the upper critical dime
sion should be

dc521
422m

n
. ~6!

This implies that for a triplet processes, 4/3<dc<8/3 and for
a quadruplet (n54) processes: 1<dc<5/2.

Very recently, Kockelkoren and Chate´ introduced stochas
tic cellular automata~SCA! versions of generalnA→(n
1k)A, mA→(m2 l )A type of models@18#, where multiple
particle creation on a given site is suppressed by an ex
nentially decreasing creation probabilitypN/2 of the particle
number. They claim that their simulation results in on
dimension are in agreement with the fully occupation nu
ber restriction counterparts and set up a general table of
versality classes, where as the function ofn andm only four
non-mean-field classes exist, namely, the directed percola
class@19,20# the parity conserving class@22#, the PCPD, and
the TCPD classes.

In any case, the heuristic Langevin equation with r
noise assumption for RD models@17,18# should be proven
for n.1. Furthermore, in low dimensions topological co
straints may cause a different critical behavior with and wi
out occupation number restriction@23#. Note that in case of
binary production models, it had not been clear at all if t
dc52, prediction of the bosonic field theory had also be
true for site restricted systems until the numerical confirm
tion of Ref. @13#. In this paper, I show simulation results fo
lattice models with restricted site occupancy ind51,2 with
the aim of locating the upper critical dimensions and che
ing claims of Refs.@17,18# about possible new universalit
classes.

II. MEAN-FIELD CONSIDERATIONS

In this Sec. I, discuss the mean-field equation that can
set up for site restricted lattice models with general mic
scopic processes of the form

nA→
s

~n1k!A, mA→
l

~m2 l !A, ~7!

with n.1, m.1, k.0, l .0, andm2 l>0. Note that this
formulation is different from that of Eq.~2!, that is suggested
for coarse grained, continuous bosonic description of th
reaction-diffusion systems. In this case the diffusion dro
out and one can neglect the noise, hence the competitio
creation~with probabilitys) and annihilation or coagulation
~parametrized with probabilityl512s) is left behind:

]r

]t
5aksrn~12r!k2al~12s!rm, ~8!
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wherer denotes the site occupancy probability anda is a
dimension dependent coordination number. Each empty
has a probability (12r) in the mean-field approximation
hence the need fork empty sites at a creation brings in
(12r)k probability factor. By expanding (12r)k and keep-
ing the lowest-order contribution, one can see that for s
restricted lattice systems arn11th order term appears auto
matically with negative coefficient that regulates Eq.~8!. The
steady state solution can be found analytically in many ca
and may result in different, continuous or discontinuo
phase transitions. Here I split the discussion of the soluti
to three parts:~a! n5m, ~b! n.m, and ~c! n,m. In the
inactive phases, one expects a dynamical behavior descr
by themA→0” process, for whichr}t1/(m21) is known@22#.

A. The nÄm symmetric case

The steady state solution in this case can be obtained
solving

ks~12r!k5 l ~12s!, ~9!

where the trivial (r50) solution has been factored out. F
the active phase, one gets

r512F l

k

12s

s G1/k

, ~10!

which vanishes atsc5 l /(k1 l ) with the leading order sin-
gularity

r}us2scub
MF

, ~11!

and order parameter exponentbMF51. At the critical point,
the time dependent behavior is described by

]r

]t
522ak2rn111O~rn12!, ~12!

that gives a leading order power-law solution

r}t21/n, ~13!

hence

aMF5bMF/n uu
MF51/n.

This was obtained from bosonic, coarse grained formulat
in Ref. @17# too.

B. The nÌm case

In this case besides ther50 absorbing state solution w
can get an active state if

ksrn2m~12r!k5 l ~12s! ~14!

is satisfied. Both sides are linear functions ofs, such that for
s→0 only the r50 is a solution. The left-hand side is
convex function ofr ~from above! with zeros atr50 and
r51.
4-2
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Therefore by increasings from zero, the left-hand side
meets the right-hand side atsc , rc.0 @See Fig. 1~a!#. If this
solution is stable, a first-order transition takes place in
system. Note that in higher order cluster mean-field so
tions, where the diffusion can play a role, the transition m
turn into a continuous one@24–26#; therefore it is important
to check the type of transition ford>dc . In Sec. III C, I
shall confirm the first orderedness of such transitions for
models in two-dimension.

C. The nËm case

By factoring out the trivialr50 solution, we are faced
with the general condition for a steady state

ks~12r!k5 l ~12s!rm2n. ~15!

One can easily check that in this case, the critical point i
sc50 @see Fig. 1~b!# and here the density decays wi
aMF51/(m21) as in case of then51 branching andm
5 l annihilating models, showed by Cardy and Ta¨uber @22#
branching and k-annihilating random walk ~BkARW
classes!. However, the steady state solution f
n.1 gives differentb exponents than those of BkARW
classes, namely,bMF51/(m2n). This implies a different
kind of critical behavior in low dimensions which could be
subject of further investigation.

III. SIMULATIONS IN TWO DIMENSIONS

Two-dimensional simulations were performed onL
540021000 linear sized lattices with periodic bounda
conditions. One Monte Carlo step~MCS!—corresponding to
dt51/P ~where P is the number of particles!—is built up
from the following processes. A particle and a numberx
P(0,1) are selected randomly; ifx,D, a site exchange is
attempted with one of the randomly selected empty nea
neighbors~nn!; if x>D, k number of new particles are cre
ated with probability (12p) at randomly selected empty n
sites provided the number of nn particles was greater tha
equal ton; or if x>D, l number of particles are remove
with probability p ~taking into account them2 l>0 condi-
tion as well!. The simulations were started from fully occu
pied lattices, and the particle density decay was measure
to 106–107 MCS.

A. The 3A\4A, 3A\2A symmetric triplet model

First, I checked the dynamic behavior in the inacti
phase forD50.5 diffusion rate. Atp50.9, one can see th

FIG. 1. Steady state mean-field solution for~a! n.m and ~b!
n,m cases.
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appearance of the mean-field behaviorr(t)}t21/2 following
23106 MCS. By decreasingp, this scaling sets in late
times. As Fig. 2 shows forL51000 systems withtmax
5107 MCS curves withp<0.4965 veer up—correspondin
to the active phase—while curves withp>0.497 veer
down—corresponding to the absorbing state. From ther(t)
data, I determined the effective exponents~the local slopes!
defined as

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~16!

~where I usedm54). The critical point is estimated atp
50.4967(2) witha50.33(1) ~for local slopes, see inset o
Fig. 2!. This value agrees with the mean-field valueaMF

51/3.
Density decays for severalp’s in the active phase

(0.003,e5upc2pu,0.3) were followed on logarithmic
time scales, and averaging was done over;100 independent
runs in a time window, which exceeds the level-off time by
decade. The steady state density in the active phase
critical phase transition is expected to scale as

r~`,p!}up2pcub. ~17!

Using the local slopes method, one can get a precise estim
for b as well as for the corrections to scaling

be f f~e i !5
ln r~`,e i !2 ln r~`,e i 21!

ln~e i !2 ln~e i 21!
, ~18!

where I used thepc value determined before. One can see
Fig. 3 that the effective exponent fore.0.005 exhibits a
correction to scaling~inclined line! and tends to lim

e→0
b

51.0(1), which agrees with the mean-field value again. B
neither thea nor theb exponent, one can observe logarit
mic corrections suggestingdc,2.

FIG. 2. Density timest1/3 in the two-dimensional 3A→4A,
3A→2A model for D50.5, and p50.496, 0.4965, 0.4967,
0.4968, 0.497, 0.498, 0.4985, and 0.499~top to bottom curves!.
The inset shows the corresponding local slopes.
4-3
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The density decay simulations were repeated atD50.2,
where the critical point was found atpc50.4795(1) with a
mean-field classa exponent again.

B. The 4A\5A, 4A\3A symmetric quadruplet model

Here simulations are much slower than in case of
triplet model, hence systems with linear sizeL5400 could
be investigated. First, I checked the dynamic behavior in
inactive phase forD50.5. At p50.9, a mean-field type o
decayr(t)}t21/3 can be observed following 106 MCS. As
one can see in Fig. 4, forp,0.4705 the density decay curve
veer up, while forp>0.471 these curves veer down. Th
estimated critical point ispc.0.4705(2). The effective ex-
ponent atpc extrapolates toa.0.22(1). As one can see in

FIG. 3. Effective order parameter exponent results in two
mensions. Bullets correspond to the 3A→4A, 3A→2A model and
squares to the 4A→5A, 4A→3A model at D50.5. The inset
shows the logarithmic fitting for the 4A→5A, 4A→3A model.

FIG. 4. Density timest1/4 in the two-dimensional 4A→5A,
4A→3A model for D50.5 andp50.469, 0.47, 0.4792, 0.4705
0.471, 0.4715, 0.4725, 0.473, 0.474, 0.476, 0.478, and 0.48~top to
bottom curves!. The inset shows the corresponding local slopes
05611
e

e

this graph, the separatrix~critical! curve exhibits a linear
shape on ther(t)t1/42 ln(t) scale suggesting logarithmic co
rections to scaling. Similarly, the effective exponents ofb
seem to extrapolate tob.0.63(5) ~Fig. 3!, that is very far
from the mean-field valuebMF51. To check the possibility
that a logarithmic correction can result in the mean-field
ponents, the fitting with the lowest-order correction

r~`,p!5$~pc2p!@a1b ln~pc2p!#%b ~19!

has been applied for the steady stater(`,p) data. I used the
nonlinear fitting of theXMGR graphical package with a rela
tive error in the sum of squares with at most 0.0001. T
resulted in b51.01 at p50.471 (a5210.8, and b
526.05) ~see inset of Fig. 3!. This result in agreement with
the dynamical scaling conclusion may support that the up
critical dimension for quadruplet models isdc52. To get
more solid results further, very extensive simulations wo
be necessary that is beyond the scope of this study. In
case, the clear mean-field behavior cannot be concluded

C. 3A\5A, 2A\0” and 4A\5A, 2A\0” hybrid models

One can find two regions in the density decay behavior
varying p in both the models. Forp,pc steady state value
are reached quickly, while forp.pc a rapid ~faster than
power law! initial density decay crosses over tor}t21. This
is in agreement with the mean-field behavior of the 2A→0”
process in one dimension@27#, dominating in the inactive
phase. For the 4A→5A, 2A→0” quadruplet production
model, this threshold is atpc50.119(1) ~see Fig. 5! where
an abrupt jump is observable fromr(`)50.833 to r(`)
50. In case of the 3A→5A, 2A→0” triplet production
model, the threshold is atpc50.220(1) with a jump from
r(`)50.45 to zero.

In neither cases do we see dynamical scaling at the t
sition. These results are in agreement with the first-or

-
FIG. 5. Density decay in the two-dimensional 4A→5A, 2A

→0” model for D50.5 andp50.05, 0.119, 0.121, 0.122, 0.123
0.124, 0.125, and 0.13~top to bottom curves! with system sizesL
5400.
4-4
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PHASE TRANSITION CLASSES IN TRIPLET AND . . . PHYSICAL REVIEW E67, 056114 ~2003!
transition of the mean-field approximations, given in S
II B for n.m.

IV. SIMULATIONS IN ONE DIMENSION

The simulations in one dimension were carried out onL
5105 sized systems with periodic boundary conditions. T
initial states were again fully occupied lattices, and the d
sity of particles is followed up to 106– 107 MCS. An el-
ementary MCS consists of the following processes:~a!
A0”↔0”A with probability D, ~b! mA→(m2 l )A with prob-
ability p(12D), ~c! nA→(n1k)A with probability (1
2p)(12D), such that the reactions were allowed on the l
or right side of the selected particle strings.

A. 3A\4A, 3A\2A and 3A\6A, 3A\0” symmetric
triplet models

The 3A→4A, 3A→2A site restricted model in one di
mension was simulated by Parket al. @17# for small systems
up to 106 MCS. They concluded to find a kind of phas
transition with the order parameter exponentsa50.32(1)
and b50.78(3). For therestricted bosonic version of thi
model, large scale simulations gavea50.27(1) and b
50.90(5) @18#. Note that since reactive and diffusive secto
arise in this model like in PCPD class model, diffusion d
pendence or corrections to scaling may hamper to see
asymptotic behavior@7,39,40#. Here, I show extended simu
lation results for the strictly site restricted lattice mod
model with tmax5107 MCS at diffusion rateD50.1. At the
critical point theae f f(t) curve exhibits a straight line shap
for t→`, while in sub-critical~supercritical! casesae f f(t)
curves veer down~up!, respectively. As one can see in Fig.
following a long relaxation,p<0.3032 curves veer up, whil
p>0.3035 curves veer down in thet→` limit. From this,
one can estimatep5pc.0.3033(1) with a50.33(1) in
agreement with the results of Ref.@17#.

By analyzing supercritical steady state densities with
local slopes method, one can read off:be f f→b.0.95(5)
~see Fig. 7!, which is higher than the results of Refs.@17# and
@18#.

However, one should be careful and check diffusion
pendence and corrections to scaling, especially, bec
these critical exponent estimates are quite close to the m
field values (aMF51/3 andbMF51) and as it was shown in
Sec. III, dc,2. Since thep50.303 andp50.3035 r(t)
curves show clear curvature for large times, the 0.303,pc
,0.3035 conditions seem to be inevitable.

I tried to fit the steady state data in the 0.303<p
<0.3035 region by the logarithmic correction form~19! and
obtainedb51.07(10) atpc50.3032 that agrees with th
mean-field value and impliesdc51.

Just considering mean-field results, according to whick
does not play a role forn5m models, one may expect tha
the 3A→6A, 3A→0” triplet creation model exhibits the
same kind of transition as the 3A→4A, 3A→2A model.
Indeed, Kockelkoren and Chate´’s simulations show this@18#.
However, doing lattice simulations with site restrictions,
turned out that the 3A→6A creation was so effective that
05611
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shifted the transition to the zero production limit (p51)
where the 3A→0” process in one dimension is known
decay asr}@ ln(t)/t#1/2 @22#. Off-critical simulations showed
that b50.33(1), meaning that this transition belongs to th
BkARW mean-field class. On the other hand there may
other realizations of this model, where the transition repor
by Kockelkoren and Chate´ is accessible.

B. The 3A\5A, 2A\0” model

It has been established that inn51, m5 l 52, and even
k—so called even number of offspringed branching a
annihilating models~BARWe!–the parity conserving~PC!

FIG. 6. Local slopes of the density decay in the one-dimensio
3A→4A, 3A→4A model atD50.1. Different curves correspon
to p50.3, 0.301, 0.3015, 0.302 0.3025, 0.3027, 0.303, 0.30
0.304, and 0.3045~from top to bottom!.

FIG. 7. Effective order parameter exponent results in one
mension. Stars correspond to 3A→4A, 3A→2A model; bullets to
4A→5A, 2A→0” model atD50.2; squares to 4A→5A, 2A→0”
model atD50.8; and diamonds to 4A→5A, and 4A→0” model at
D50.3.
4-5
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class continuous phase transition emerges@22,29,30#. This
class has also been observed in models exhibitingZ2 sym-
metric absorbing states, where the domain walls separa
ordered phases follow BARWe dynamics@31–34,37#. This
class was originally called parity conserving, owing to t
conservation law that made it different from the robust
class. However, it turned out that inZ2 symmetric models
this conservation is not enough@35–38#. Furthermore, in bi-
nary spreading models, this conservation was found to
irrelevant @10,13#. Therefore, it is still an open questio
whether parity conservation is relevant in other models t
in BARW types.

I investigated the phase transition of the triplet product
3A→5A, 2A→0” model ~with explicit particle diffusion!
possessing parity conservation. As I showed in Sec. III C
two dimensions this system exhibits a first-order transition
agreement with the mean-field results. This first-order me
field behavior does not give a direct hint on the type of ph
transition in one dimension. Kockelkoren and Chate´’s simu-
lations on the one-dimensional, suppressed bosonic cel
automaton version of this model show simple DP class d
sity decay@18#. However, if we consider the space-time ev
lution, we see very non-DP like spatiotemporal pattern~see
Fig. 8!. This pattern resembles much more to those of
PCPD class models, where compact domains separate
clouds of lonely wandering particles occur. Of course, su
qualitative judgment on the universal behavior is not enou
but has been found to be quite successful in case of bin
production systems@8,11#.

The density decay simulations atD50.8 andD50.2 have
been analyzed by the local slopes method, see Fig. 9. AD
50.8, the critical point is estimated atpc

H50.4629(3) and
the corresponding effective exponent tends toaH

50.24(1). At D50.2, the critical point is at pc
L

50.2240(3) and the local exponent seems to extrapolat
aL50.28(1). Such small difference between the high a
low D results can also be observed by analyzing the ste
state results:bH50.43(3) versusbL50.63(3). These expo-

FIG. 8. Spatiotemporal evolution of the critical,~111!-D diffu-
sive 3A→5A, 2A→0” model (D50.8).
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nent estimates are far from the (111)-D DP values„a
50.159 464(6), b50.276 486(8)@41#…, hence the claim of
Kockelkoren and Chate´ for the critical behavior ofn.m
models is questionable.

On the other hand, the diffusion dependence of the crit
exponents is a challenge and has been observed in the b
production PCPD model@7#. In Ref. @40#, it was shown that
assuming logarithmic corrections to scaling—that is qu
common in the one-dimensional models—a single univer
ity class can be supported numerically. Therefore, here a
I have investigated the possibility of the collapse of the h
and low D exponents. Assuming the same kind of logarit
mic correction forms as in Ref.@40#,

†@a1b ln~ t !#/t‡a. ~20!

I have found a consistent set of exponents both forD
50.2 andD50.8 ~see Table I and inset of Fig. 9!. For the
data analysis, I used the nonlinear fitting of the progr
XMGR package, with a relative error in the sum of squa
with at most 0.001,

a50.22~1!, b50.60~1!, ~21!

with the critical thresholds: pc
H50.4627(1) and pc

L

50.2240(1). These exponents suggest a distinct universa
class from the known ones@3#.

FIG. 9. Local slopes of the density decay in the one-dimensio
3A→5A, 2A→0” model forD50.8. Different curves correspond t
p50.46, 0.461, 0.462, 0.4625, 0.4627, 0.463, 0.46325, 0.464,
0.465~from top to bottom!.

TABLE I. Logarithmic fitting results by the form~20! for the
one-dimensional 3A→5A, 2A→0” model.

D pc a b a

0.2 0.4627 0.115 3.531025 0.217
0.8 0.22405 14.12 21.001 0.224
4-6
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C. 4A\5A, 4A\0” and 4A\5A, 2A\0”
quadruplet models

Two-dimensional simulations~Sec. III!, showed that for
n5m54 symmetric quadruplet models,dc52. Simulations
in the corresponding suppressed bosonic SCA@18# with n
54 and 1<m<4 located the phase transition at zero p
duction rate. Here, I show that in the one-dimensionalA
→5A, 4A→0” and 4A→5A, 2A→0” site restricted models
continuous phase transitions withp,1 and with nontrivial
exponents can be found. The density decay was followed
to t5106 MCS and the critical point was located by th
local-slopes method~see Fig. 10! at p50.9028(1) forD
50.3. The corresponding exponent can be estimated aa
50.27(1). For D50.05, one getspc50.9605(3) witha
50.28(1), so onecannot see diffusion dependence he
Analyzing off-critical data with the local slopes method~18!,
one getsb50.48(2) ~see Fig. 7!.

In accordance with these results, simulations for theA
→5A, 2A→0” model atD50.2 andD50.8 diffusion rates,
resulted in pc(0.2)50.531 85(5) andpc(0.8)50.5742(1)
with a50.27(1) andb50.48(2) exponents~see Fig. 7!. As
we can see, critical exponent data for quadruplet models
robust and no diffusion dependence has been found. Fur
more, critical space-time plots are very similar to that of t
PCPD model.

V. CONCLUSIONS

In this paper, I investigated the phase transitions of g
eral nA→(n1k)A, mA→(m2 l )A reaction type of models

FIG. 10. Local slopes of the density decay in the on
dimensional 4A→5A, 4A→0” model forD50.3. Different curves
correspond top50.904, 0.9037, 0.9033, 0.903 0.9027, and 0.9
~from bottom to top!.
05611
-
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.
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e
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with explicit single particle diffusion on occupation numb
restricted lattices in one and two dimensions. I showed t
the mean-field solution forn5m symmetric cases results i
universality classes characterized by the exponentsa51/n
andb51. I determined the upper critical dimensions for t
triplet and quadruplet cases by simulations. Forn53, high
precision simulations show the mean-field type of critical
with logarithmic corrections meaningdc51. This result is in
contradiction with the simulations of Refs.@17# and@18# and
with the analytical form fordc(n) derived from a phenom-
enological Langevin equation. In case of my site restric
realization of the one-dimensional 3A→6A, 3A→0” model,
the phase transition point is shifted to zero production r
and is continuous, BkARW mean-field type. This is in co
tradiction with the findings of Ref.@18# for another stochas
tic cellular automaton realization of this model. Forn54 the
upper critical dimension was located atdc52, opening up
the possibility for nontrivial critical behavior ind51. In-
deed, two versions of such quadruplet models were show
exhibit robust, novel type of critical transition in one dime
sion.

For n.m, the mean-field approximation gives first-ord
transition that was observed by simulations for twon
53,4) models ind52. On the other hand, numerical ev
dence was given that the parity conserving modelA
→5A, 2A→0” in one dimension exhibits a non-PC type
critical behavior with logarithmic corrections by varying th
diffusion rate. This transition does not fit in the universal
class scheme suggested by Ref.@18#.

Finally, I showed that forn,m models, the mean-field
approximations result in classes that featureaMF51/(m
21) andbMF51/(m2n). Such kinds of models should b
the subject of further studies.

The presented mean-field and simulation results show
the universal behavior of such low-dimensional reactio
diffusion models is rich and the table of universality class
given by Ref.@18# is not valid for one-dimensional, fully site
restricted systems. Perhaps, the strict site restriction play
important role that causes the differences. Field theoret
~possibly fermionic! treatment that starts from the mast
equation should be set up to determine at least the analy
form of dc(n) for n5m.2 models.
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