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This article reviews our present knowledge of universality classes in nonequilibrium systems defined
on regular lattices. The first section presents the most important critical exponents and relations, as
well as the field-theoretical formalism used in the text. The second section briefly addresses the
question of scaling behavior at first-order phase transitions. In Sec. III the author looks at dynamical
extensions of basic static classes, showing the effects of mixing dynamics and of percolation. The main
body of the review begins in Sec. IV, where genuine, dynamical universality classes specific to
nonequilibrium systems are introduced. Section V considers such nonequilibrium classes in coupled,
multicomponent systems. Most of the known nonequilibrium transition classes are explored in low
dimensions between active and absorbing states of reaction-diffusion-type systems. However, by
mapping they can be related to the universal behavior of interface growth models, which are treated
in Sec. VI. The review ends with a summary of the classes of absorbing-state and mean-field systems
and discusses some possible directions for future research.
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I. INTRODUCTION

Universal scaling behavior is an attractive feature in
statistical physics because a wide range of models can be
classified purely in terms of their collective behavior.
Scaling phenomena have been observed in many
branches of physics, chemistry, and biology, as well as in
economics and the social sciences, most frequently by
critical phase transitions. For example, nonequilibrium
phase transitions may appear in models of population
sAlbano, 1994d, epidemics sMollison, 1977; Ligget, 1985d,
catalysis sZiff et al., 1986d, cooperative transport sHavlin
and ben Avraham, 1987; Chowdhury et al., 2000d, en-
zyme biology sBerry, 2003d, and markets sBouchaud and
Georges, 1990d.

Dynamical extensions of static universality classes—
established in equilibrium—are the simplest nonequilib-
rium model systems, but beyond that critical phenom-
ena, with new classes, have also been explored

sGrassberger, 1996; Marro and Dickman, 1999; Hinrich-
sen, 2000ad. While the theory of phase transitions is
quite well understood in thermodynamic equilibrium, its
use in nonequilibrium systems is rather new. In these
systems most of the fundamental concepts of equilib-
rium models—phase transitions, scaling, and
universality—still apply. The basic ingredients affecting
universality classes are again the collective behavior of
systems, the symmetries, the conservation laws, and the
spatial dimensions, as described by renormalization-
group theory. But in addition several new factors have
been identified. Low-dimensional systems are of particu-
lar interest because in them fluctuation effects are rel-
evant, hence the mean-field type of description is not
valid. Over the past two decades this field of research
has grown very quickly and now we are faced with a
wide variety of models and universality classes, labeled
by strange notations and abbreviations. This article aims
to help newcomers as well as experienced researchers
navigate the literature by systematically reviewing most
of the explored universality classes. I define models by
their field theory swhen it is availabled, show their sym-
metries or other important features, and list the critical
exponents and scaling relations.

Nonequilibrium systems can be classified into two cat-
egories:

sad Systems that have a Hermitian Hamiltonian and
whose stationary states are given by the proper
Gibbs-Boltzmann distribution. These, however, are
prepared under initial conditions far from the sta-
tionary state. Sometimes, in the thermodynamic
limit, such systems may never reach true equilib-
rium. Examples include phase-ordering systems,
spin glasses, and glasses. I begin the review of
classes by showing the scaling behavior of the sim-
plest prototypes of such systems in Sec. III, defin-
ing them by adding simple dynamics to static mod-
els.

sbd Systems without a Hermitian Hamiltonian defined
by transition rates, which do not satisfy the detailed
balance condition sthe local time-reversal symme-
try is brokend. They may or may not have a steady
state, and even if they have one, it is not a Gibbs
state. Such models can be created by combining
different dynamics or by generating currents in
them externally. The critical phenomena of these
systems are referred to here as “out-of-equilibrium
classes” and discussed in Sec. III.

There are also systems that are not related to equi-
librium models. In the simplest case, these are lat-
tice Markov processes of interacting particle sys-
tems sLigget, 1985d, referred to here as “genuine
nonequilibrium systems.” These are discussed in
the rest of the work. The discussion of the latter
type of system is divided into three parts: In Sec.
IV phase-transition classes, the simplest of such
models, are presented. These are usually reaction-
diffusion models exhibiting a phase transition to an
absorbing state. In Sec. V, I list the known classes
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that occur as combinations of basic genuine class
processes. These models are coupled multicompo-
nent reaction-diffusion systems. While the former
two sections are related to critical phenomena near
extinction, in Sec. VI I discuss universality classes
in systems where site variables are nonvanishing, in
surface growth models. The bosonic field-
theoretical description is applicable to them as
well. I point out mapping between growth and
reaction-diffusion systems whenever possible. In
Sec. II, I briefly touch on the discontinuous non-
equilibrium phase transitions, especially because
dynamical scaling may occur at such points.

I define a critical universality class by the complete
set of exponents at the phase transition. Therefore
different dynamics split up the basic static classes
of homogeneous systems. I emphasize the role of
symmetries and boundary conditions that affect
these classes. I also point out very recent evidence
according to which in low-dimensional systems
symmetries are not necessarily the most relevant
factors of universality classes. Although the sys-
tems covered here might seem artificial to experi-
mentalists or to applications-oriented people, they
constitute the building blocks of our understanding
of nonequilibrium critical phenomena. Under-
standing even these simple models can often pose
tremendously difficult problems.

I shall not discuss the critical behavior of quantum
systems sRácz, 2002d or self-organized critical phenom-
ena sBak et al., 1987d, nor shall I consider experimental
realizations or applied methods, due to the lack of space,
although in Sec. I.E I give a brief introduction to the
field-theoretical approach. This section presents the for-
malism for defining nonequilibrium models, which is
necessary to express the symmetry relations affecting
critical behavior. Researchers from other branches of
science are provided a kind of catalog of classes in which
they can identify their models and find corresponding
theories. A list of the most common abbreviations is
given at the end of the text.

There are many interesting features of universality
classes that I do not discuss in this review—scaling func-
tions, fluctuation distributions, extremal statistics, finite-
size effects, statistics of fluctuations in surface growth
models, etc. Still I believe the material included provides
a useful framework for orientation in this huge field.
There is no general theory of nonequilibrium phase
transitions; hence a broad overview of known classes can
help theorists to identify the relevant factors in deter-
mining universality classes.

There are two recent, similar reviews available. One
of them is by Marro and Dickman s1999d, which gives a
pedagogical introduction to driven lattice-gas systems
and to fundamental-particle systems with absorbing
states. The other, by Hinrichsen s2000ad focuses more on
basic absorbing-state phase transitions, methods, and ex-
perimental realizations. However the field is evolving
rapidly, and since the publication of these two notewor-

thy introductory works a series of new developments
have come up. The present work aims to give a compre-
hensive overview of known nonequilibrium dynamical
classes, incorporating surface growth classes, classes of
spin models, percolation and multicomponent system
classes, and damage-spreading transitions. The relations
and mappings of the corresponding models are pointed
out. The effects of boundary conditions, long-range in-
teractions, and disorder are shown systematically for
each class when these are known. Since the debate on
the conditions of the parity-conserving class has not yet
been settled I discuss it, using some surface-catalytic
model examples. Naturally a review of this scope cannot
cover the literature completely, and I apologize for the
omitted references.

A. Critical exponents of equilibrium systems

In this section I offer brief definitions of well-known
critical exponents of homogeneous equilibrium systems
and show some scaling relations sFisher, 1967; Kadanoff
et al., 1967; Stanley, 1971; Ma, 1976; Amit, 1984d. The
basic exponents are defined via the following scaling
laws:

cH ~ aH
−1fsuT − Tcu/Tcd−aH − 1g , s1d

m ~ sTc − Tdb, s2d

x ~ uT − Tcu−g, s3d

m ~ H1/dH, s4d

Gc
s2dsrd ~ r2−d−ha, s5d

j ~ uT − Tcu−n'. s6d

Here cH denotes the specific heat, m the order param-
eter, x the susceptibility, and j the correlation length.
The presence of another degree of freedom besides the
temperature T, like a ssmalld external field slabeled by
Hd, leads to other interesting power laws when H→0.
The d present in the expression for the two-point corre-
lation function Gc

s2dsrd is the space dimension of the sys-
tem.

Some laws are valid both to the right and to the left of
the critical point; the values of the relative proportion-
ality constants, or amplitudes, are in general different for
the two branches of the functions, whereas the exponent
is the same. However, there are universal amplitude re-
lations among them. We can see that there are alto-
gether six basic exponents. Nevertheless, they are not
independent of each other, but related by some simple
scaling relations:

aH + 2b + g = 2, aH + bsdH + 1d = 2, s7d

s2 − hadn' = g, n'd = 2 − aH.

The last relation is a so-called hyperscaling law, which
depends on the spatial dimension d and, according to
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the Gaussian theory, is not valid above the upper critical
dimension dc. Therefore below dc there are only two
independent exponents in equilibrium. One of the most
interesting aspects of second-order phase transitions is
their so-called universality, i.e., the fact that systems very
different from each other can share the same set of criti-
cal indices sexponents and some amplitude ratiosd. One
can therefore hope to assign all systems to classes, each
of which is identified by a set of critical indices.

B. Static percolation cluster exponents

Universal behavior may occur as percolation sStauffer
and Aharony, 1994; Grimmett, 1999d, which can be con-
sidered a purely geometrical phenomenon describing
the occurrence of infinitely large connected clusters on
lattices. On the other hand, such clusters emerge at the
critical phase transitions of lattice models. The definition
of a connected cluster is not unambiguous. It may mean
a set of sites or bonds with variables in the same state,
or sites connected by bonds with probability b=1
−exps−2J /kTd.

When the system control parameter p, often the tem-
perature in equilibrium systems, is tuned to the critical
value pp, the coherence length between sites may di-
verge as

jspd ~ up − ppu−n'. s8d

Hence percolation at pp, as in standard critical phenom-
ena, exhibits renormalizibility and universality of critical
exponents. At pp the distribution of the cluster size s
follows the scaling law

ns ~ s−tfsup − ppussd , s9d

while moments of this distribution exhibit singular be-
havior with the exponents

o
s

snsspd ~ up − ppubp, s10d

o
s

s2nsspd ~ up − ppu−gp. s11d

Further critical exponents and the scaling relations
among them are shown by Stauffer and Aharony s1994d.
In the case of completely random placement of sites,
bonds, etc. swith probability pd on lattices we find ran-
dom isotropic (ordinary) percolation ssee Sec. IV.B.1d.
Percolating clusters may arise at critical, thermal transi-
tions or by nonequilibrium processes. If the critical point
spcd of the percolation order parameter does not coin-
cide with pp then at the percolation transition the coher-
ence length of the order parameter is finite and does not
influence the percolation properties. We observe ran-
dom percolation in that case. In contrast, if pp=pc per-
colation is influenced by the order parameter behavior
and we find correlated percolation universality sFortuin
and Kasteleyn, 1972; Coniglio and Klein, 1980; Stauffer
and Aharony, 1994d whose exponents may coincide with
those of the order parameter.

According to the Fortuin-Kasteleyn construction of
clusters sFortuin and Kasteleyn, 1972d, two nearest-
neighbor spins of the same state belong to the same clus-
ter with probability b=1−exps−2J /kTd. It was shown
that when one uses this prescription for Zn and Osnd and
symmetric models sConiglio and Klein, 1980; Bialas et
al., 2000; Blanchard et al., 2000; Fortunato and Satz,
2001d the thermal phase-transition point coincides with
the percolation limits of such clusters. On the other
hand, in the case of “pure-site clusters” sb=1d, different,
universal cluster exponents are reported in two-
dimensional models sFortunato and Satz, 2001; Fortu-
nato, 2002; see Secs. III.A.1, III.B.1, and III.Dd.

C. Dynamical critical exponents

Nonequilibrium systems were first introduced to study
relaxation in equilibrium states sHalperin and Hohen-
berg, 1977d and phase-ordering kinetics sBinder and
Stauffer, 1974; Marro et al., 1979d. Power-law time de-
pendences were investigated away from the critical
point, as well, for example, in the domain growth in a
quench to T=0. Later the combination of different heat
baths, different dynamics, and external currents became
popular tools for the investigation of fully nonequilib-
rium models. To describe the dynamical behavior of a
critical system additional exponents were introduced.
For example, the divergences of the relaxation time t
and correlation length j are related by the dynamical
exponent Z,

t ~ jZ. s12d

Systems out of equilibrium may show anisotropic scaling
of two sand nd point functions,

Gsbr,bztd = b−2xGsr,td , s13d

where r and t denote spatial and temporal coordinates, x
is the scaling dimension, and z is the anisotropy expo-
nent. As a consequence the temporal snid and spatial
sn'd correlation length exponents may be different, de-
scribed by z=Z:

Z = z =
ni

n'

. s14d

For some years it was believed that dynamical critical
phenomena are characterized by a set of three critical
exponents, comprising two independent static exponents
sother static exponents being related to these by scaling
lawsd and the dynamical exponent Z. Recently it was
discovered that there is another dynamical exponent,
the nonequilibrium or short-time exponent l, needed to
describe two-time correlations in a spin system hsij of
size L relaxing to the critical state from a disordered
initial condition sHuse, 1989; Janssen et al., 1989d:

Ast,0d =
1

LdKo
i

sis0dsistdL ~ t−l/Z. s15d

More recently the persistence exponents ul and ug were
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introduced by Derrida et al. s1994; see also Majumdar et
al., 1996d. These are associated with the probability pstd
that the local or global order parameter has not changed
sign in time t following a quench to the critical point. In
many systems of physical interest these exponents decay
algebraically as

pstd ~ t−u s16d

ssee, however, Sec. V.Ad. It turns out that in systems
where the scaling relation

ugZ = l − d + 1− ha/2 s17d

is satisfied the dynamics of the global order parameter is
a Markov process. In contrast, in systems with non-
Markovian global order parameter, ug is in general a
new, nontrivial critical exponent sMajumdar et al., 1996d.
For example, it was shown that while in the d=1
Glauber Ising model the magnetization is Markovian
and the scaling relation s17d is fulfilled, at the critical
point of the d=1 nonequilibrium kinetic Ising model
condition s17d is not satisfied and the persistence behav-
ior there is characterized by a different, nontrivial ug
exponent sMenyhárd and Ódor, 1997; see discussion in
Sec. IV.D.2d. As we can see, the universality classes of
static models are distinguished by their dynamical expo-
nents.

D. Critical exponents of spreading processes

In the previous section I defined quantities describing
dynamical properties of the bulk material. Alternatively
one may also consider cluster properties arising from an
ordered scorrelatedd state with a small cluster of activity.
Here I define a basic set of critical exponents that occur
in spreading processes and show the scaling relations
among them. In such processes there may be a phase
transition to an absorbing state where the density of the
spreading entity sparticle, agent, epidemic, etc.d goes to
zero. The order parameter is usually the density of ac-
tive sites hsij,

rstd =
1

LdKo
i

sistdL , s18d

which in the supercritical phase vanishes as

r` ~ up − pcub, s19d

as the control parameter p is varied. Another quantity is
the ultimate survival probability P` of an infinite cluster
of active sites that scales in the active phase as

P` ~ up − pcub8 s20d

with some critical exponent b8 sGrassberger and de la
Torre, 1979d. In field-theoretical descriptions of such
processes, b is associated with the particle annihilation
and b8 with the particle creation operator, and in the
case of time-reversal symmetry fsee Eq. s88dg they are
equal. The critical long-time behavior of these quantities
is described by

rstd ~ t−afsDt1/nid, Pstd ~ t−dgsDt1/nid , s21d

where a and d are the critical exponents for decay and
survival, D= up−pcu, f and g are universal scaling func-
tions sGrassberger and de la Torre, 1979; Muñoz et al.,
1997; Janssen, 2003d. The obvious scaling relations
among them are

a = b/ni, d = b8/ni . s22d

For finite systems sof size N=Ldd these quantities scale
as

rstd ~ t−b/nif8sDt1/ni,td/Z/Nd , s23d

Pstd ~ t− b8/nig8sDt1/ni,td/Z/Nd . s24d

For relatively short times or for initial conditions with a
single active seed, the number of active sites Nstd and its
mean square spreading distance R from the origin

R2std =
1

NstdKo
i

xi
2stdL s25d

follow the “initial slip” scaling laws sGrassberger and de
la Torre, 1979d

Nstd ~ th, s26d

R2std ~ tz, s27d

and usually the relation z=2/Z holds.
Phase transitions between chaotic and nonchaotic

states may be described as damage spreading sDSd.
While DS was first introduced in biology sKauffman,
1969d it has become an interesting topic in physics as
well sCreutz, 1986; Stanley et al., 1986; Derrida and
Weisbuch, 1987d. The main question is whether damage
introduced in a dynamical system survives or disappears.
To investigate this, the usual technique is to make one or
more replicas of the original system and let them evolve
with the same dynamics and external noise. This method
has been found to be very useful for accurate measure-
ments of the dynamical exponents of equilibrium sys-
tems sGrassberger, 1995ad. It has turned out, however,
that DS properties do depend on the applied dynamics.
An example is the case of the two-dimensional Ising
model with heat-bath algorithm or with Glauber dynam-
ics sMariz et al., 1990; Jan and de Arcangelis, 1994;
Grassberger, 1995bd.

To avoid dependency on the dynamics, a definition of
a “physical” family of DS dynamics was suggested by
Hinrichsen et al. s1997d in which the active phase may be
divided into three subphases: a subphase in which dam-
age occurs for every member of the family, another sub-
phase in which the damage heals for every member of
the family, and a third possible subphase in which dam-
age is possible for some members and disappears for
other members. The family of possible DS dynamics is
defined to be consistent with the physics of single repli-
cas ssymmetries, interaction ranges, etc.d.

Usually the order parameter of the damage is the
Hamming distance between replicas,
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Dstd =K 1

Lo
i=1

L

ussid − s8siduL , s28d

where ssid and s8sid denote variables of the replicas. At
continuous DS transitions D exhibits power-law singu-
larities as physical quantities at the critical point. For
example, one can follow the fate of a single difference
between two sor mored replicas and measure the spread-
ing exponents:

Dstd ~ thd. s29d

Similarly damage variables have the survival probability

PDstd ~ t− dd s30d

and similarly to Eq. s25d the average mean-square
spreading distance of a damage variable from the center
scales as

RD
2 std ~ tzd. s31d

Grassberger conjectured that all DS transitions should
belong to the directed percolation class ssee Sec. IV.Ad
unless they coincide with other transition points and that
the probability for a locally damaged state to become
healed is nonzero sGrassberger, 1995cd. This hypothesis
has been confirmed by simulations of many different
systems.

E. Field-theoretical approach to reaction-diffusion systems

In this review I define nonequilibrium systems for-
mally by their field-theoretical action wherever possible.
Therefore in this subsection I give a brief introduction to
the sbosonicd field-theoretical formalism. This will be
through the simplest example of reaction-diffusion sys-
tems, via the A+A→x annihilating random walk
sARW; see Sec. IV.C.1d. A similar stochastic differential
equation can also be set up for growth processes in most
cases. For a more complete introduction see Cardy
s1996, 1997d and Täuber s2003d.

A proper field-theoretical treatment should start from
the master equation for the microscopic time evolution
of probabilities psa ; td of states a,

dpsa ;td
dt

= o
b

Rb→apsb ;td − o
b

Ra→bpsa ;td , s32d

where Ra→b denotes the transition matrix from state a
to state b. In field theory this can be expressed in a
Fock-space formalism with annihilation said and creation
scid operators satisfying the commutation relation

fai,cjg = dij. s33d

The states are built up from the vacuum u0l as the linear
superposition

Cstd = o
a

psn1,n2, . . . ;tdc1
n1c2

n2
¯ u0l , s34d

with occupation number coefficients psn1 ,n2 , . . . ; td. The
evolution of states can be described by a Schrödinger-
like equation,

dCstd
dt

= − HCstd , s35d

with a generally non-Hermitian Hamiltonian, which in
case of the ARW process looks like

H = Do
ij

sci − cjdsai − ajd − lo
j

saj
2 − cj

2aj
2d . s36d

Here D denotes the diffusion strength and l the annihi-
lation rate. By going to the continuum limit this turns
into

H =E ddxfDs¹cds¹fd − lsf2 − c2f2dg , s37d

and in the path-integral formalism over fields fsx , td,
csx , td with weight e−Ssf,cd one can define an action, that
in case of an ARW is

S =E dtddxfc]tf + D ¹ c ¹ f − lsf2 − c2f2dg . s38d

The action is analyzed by renormalization-group sRGd
methods at criticality sMa, 1976; Amit, 1984d, usually by
perturbative epsilon expansion below the upper critical
dimension dc—that is, the lower limit of the validity of
the mean-field behavior of the system. The symmetries
of the model can be expressed in terms of the fsx , td
field and csx , td response field variables, and the corre-
sponding hyperscaling relations can be derived sMuñoz
et al., 1997; Janssen, 2003d.

By a Gaussian transformation one may set up an al-
ternative formalism—integrating out the response
field—the Langevin equation, which in the case of an
ARW is

]tf = D¹2f − 2lf2 + hsx,td , s39d

with a Gaussian noise, exhibiting the correlations

khsx,tdhsx8,t8dl = − lf2dsx − x8ddst − t8d . s40d

Here d denotes the Dirac delta function and l is the
noise amplitude. From the Langevin equation—if it
applies—one can deduce a naive upper critical dimen-
sion sdcd by power counting. However, this estimate may
be modified by fluctuations, which can be analyzed by
application of the RG method.

II. SCALING AT FIRST-ORDER PHASE TRANSITIONS

In nonequilibrium systems dynamical scaling of vari-
ables may occur even when the order parameter jumps
at the transition. We call such a transition first order,
although the free energy is not defined. First-order
phase transitions have rarely been seen in low dimen-
sions. This is due to the fact that in lower dimension
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fluctuations are relevant and may destabilize the or-
dered phase. Therefore fluctuation-induced second-
order phase transitions are likely to appear. Hinrichsen
advanced the hypothesis sHinrichsen, 2000bd that first-
order transitions do not exist in s1+1d-dimensional sys-
tems without extra symmetries, conservation laws, spe-
cial boundary conditions, or long-range interactions
swhich can be generated by macroscopic currents or
anomalous diffusion in nonequilibrium systems, for in-
stanced. Examples are the Glauber and the nonequilib-
rium kinetic Ising spin systems ssee Secs. III.A and
IV.D.2d possessing Z2 symmetry in one dimension
sGlauber, 1963; Menyhárd and Ódor, 1998d, where the
introduction of a “temperaturelike” flip inside of a do-
main or an external field shd causes a discontinuous
jump in the magnetization order parameter smd. Inter-
estingly enough the correlation length diverges at the
transition point: j~pT

−n' and static magnetization

m ~ j−bs/n'gshjD/n'd s41d

as well as cluster critical exponents can be defined:

Psst,hd ~ t−ds, s42d

Rs
2st,hd ~ tzs, s43d

umst,hd − ms0du ~ ths, s44d

lim
t→`

Psst,hd ~ hbs8. s45d

Here s refers to the spin variables. Table I summarizes
the results obtained for these transitions. Other ex-
amples of first-order transitions are known in driven dif-
fusive systems sJanssen and Schmittman, 1986d, in the
one-dimensional asymmetric exclusion process sDerrida,
1998d, in bosonic annihilation-fission models sSec. V.Fd,
in asymmetric triplet and quadruplet models sÓdor,
2003a; Sec. IV.Fd and diffusive conserved-field models
for DA.DB and d.1 sOerding et al., 2000; Sec. V.Hd. It
is quite difficult to decide by simulations whether a tran-
sition is really discontinuous. The order parameter of
weak first-order transitions—where the jump is small—
may look very similar to continuous transitions. Measur-
ing the hysteresis of the order parameter that is consid-
ered to be the indication of a first-order transition is a
demanding task. For examples of debates over the order
of the transition, see Tomé and de Oliveira s1989d; Dick-
man and Tomé s1991d; Lipowski s1999d; Lipowski and
Lopata s1999d; Hinrichsen s2000b, 2001ad; Szolnoki
s2000d. In some cases the mean-field solution results in a
first-order transition sÓdor et al., 1993; Menyhárd and

Ódor, 1995d. In two dimensions there are certain sto-
chastic cellular automata for which systematic cluster
mean-field techniques combined with simulations have
made it possible to prove first-order transitions firmly
sÓdor and Szolnoki, 1996; see Table IId.

III. OUT-OF-EQUILIBRIUM CLASSES

In this section I begin by introducing basic nonequi-
librium classes, starting with the simplest dynamical ex-
tensions of equilibrium models. These dynamical sys-
tems exhibit Hermitian Hamiltonians and, starting from
a nonequilibrium state, they evolve into a Gibbs state.
Such nonequilibrium models include, for example,
phase-ordering systems, spin glasses, glasses, etc. In
these cases one is usually interested in the nonequilib-
rium dynamics at the equilibrium critical point.

It is important to note that scaling behavior can be
observed far away from criticality, as well. In quenches
to zero temperature of model-A systems swhich do not
conserve the order parameterd, the characteristic length
in the late-time regime grows with a universal power law
j~ t1/2, while in the case of model-B systems swhich con-
serve the order parameterd, j~ t1/3. In model-C systems a
conserved secondary density is coupled to the noncon-
served order parameter. Such models may exhibit
model-A behavior or j~ t1/s2+aH/n'd depending on the
model parameters. The effects of such conservation laws
in critical systems without Hermitian Hamiltonians have
also been investigated and will be discussed in later sec-
tions.

Since percolation is a central topic in reaction-
diffusion systems, discussed in Secs. IV and V, for the
sake of completeness I show recent percolation results

TABLE I. Critical one-dimensional Ising spin exponents at the Glauber and nonequilibrium kinetic
Ising model sNEKIMd transition points. From Menyhárd and Ódor, 1998.

bs n' bs8 D hs ds zs

Glauber 0 1/2 0.99s2d 1/2 0.0006s4d 0.500s5d 1
NEKIM 0.00s2d 0.444 0.45s1d 0.49s1d 0.288s4d 0.287s3d 1.14

TABLE II. Convergence of the critical point estimates in vari-
ous sy=1,2 ,3d two-dimensional stochastic cellular automata
calculated by n-cluster mean-field approximation ssee Sec.
IV.A.2d. First-order transitions are denoted by boldface num-
bers. The gap sizes frspcdg of the order parameter shown for
y=2,3 increase with n, approximating the simulation value.
From Ódor and Szolnoki, 1996.

y=1 y=2 y=3
n pc pc rspcd pc rspcd

1 0.111 0.354 0.216 0.534 0.372
2 0.113 0.326 0.240 0.455 0.400
4 0.131 0.388 0.244 0.647 0.410

Simulation 0.163 0.404 0.245 0.661 0.418
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obtained for systems discussed in this section, too. An-
other novel feature of dynamic phase transitions is the
emergence of a chaotic state. Therefore I shall discuss
damage-spreading transitions and behavior in these sys-
tems.

Then I consider nonequilibrium models that have no
Hermitian Hamiltonian and no equilibrium Gibbs state.
I show cases when this is achieved by combining differ-
ent competing dynamics sfor example, by connecting
two reservoirs with different temperatures to the sys-
temd or by generating current from outside. Field-
theoretical investigations have revealed that model-A
systems are robust against the introduction of various
competing dynamics, which are local and do not con-
serve the order parameter sGrinstein et al., 1985d. Fur-
thermore it has been shown that this robustness of the
critical behavior persists if the competing dynamics
breaks the discrete symmetry of the system sBassler and
Schmittman, 1994d or if it comes from reversible mode
coupling to a noncritical conserved field sTäuber and
Rácz, 1997d. On the other hand, if competing dynamics
are coupled to model-B systems by an external drive
sSchmittman and Zia, 1996d or by a local, anisotropic
order-parameter-conserving process sSchmittman and
Zia, 1991; Schmittman, 1993; Bassler and Rácz, 1994,
1995d long-range interactions are generated in the steady
state with angular dependence. The universality class
will be the same as that of the kinetic version of the
equilibrium Ising model with dipolar long-range interac-
tions.

As the number of neighboring interaction sites de-
creases, which can happen when the spatial dimension-
ality of a system with short-ranged interactions is low-
ered, the importance of fluctuations increases. In
equilibrium models finite-range interactions cannot
maintain long-range order in d,2. This observation is
known as the Landau-Peierls argument sLandau and
Lifshitz, 1981d. According to the Mermin-Wagner theo-
rem sMermin and Wagner, 1996d, for systems with con-
tinuous symmetry, long-range order does not exist even
in d=2. Hence in equilibrium models phase-transition
universality classes exist for dù2 only. One of the main
open questions to be answered is whether there exists a
class of nonequilibrium systems with restricted dynami-
cal rules for which the Landau-Peierls or Mermin-
Wagner theorem can be applied.

A. Ising classes

The equilibrium Ising model was introduced by Ising
s1925d as the simplest model for a uniaxial magnet, but it
is used in different settings, for example, binary fluids or
alloys, as well. It is defined in terms of spin variables si
=±1 attached to sites i of some lattice with the Hamil-
tonian

H = − Jo
i,i8

sisi8 − Bo
i

si, s46d

where J is the coupling constant and B is the external
field. In one and two dimensions it is solved exactly sOn-

sager, 1944d, hence it plays a fundamental role as a test
ground for understanding phase transitions. The Hamil-
tonian of this model exhibits a global, so-called Z2 sup-
downd symmetry of the state variables. While in one di-
mension a first-order phase transition occurs at T=0
only ssee Sec. IId, in two dimensions there is a continu-
ous phase transition where the system exhibits confor-
mal symmetry sHenkel, 1999d. The critical dimension is
dc=4. Table III summarizes some of the known critical
exponents of the Ising model. The quantum version of
the Ising model, which in the simplest cases might take
the form sin one dimensiond

H = − Jo
i

stsi
x + si

zsi+1
z + hsi

zd , s47d

where sx,z are Pauli matrices and t and h are couplings—
for T.0 has been shown to exhibit the same critical
behavior as the classical version sin the same dimen-
siond. For T=0, however, quantum effects become im-
portant and the quantum Ising chain can be associated
with the two-dimensional classical Ising model, with the
transverse field t playing the role of the temperature. In
general a mapping can be constructed between classical
sd+1d-dimensional statistical systems and d-dimensional
quantum systems without changing the universal proper-
ties. This mapping has been widely utilized sSuzuki,
1971; Fradkin and Susskind, 1978d. The effects of disor-
der and boundary conditions are not discussed here sfor
recent reviews see Iglói et al., 1993; Alonso and Munoz,
2001d.

1. Correlated percolation clusters at Tc

If we generate clusters in such a way that we join
nearest-neighbor spins of the same sign we can observe
percolation at Tc in two dimensions. While the order-
parameter percolation exponents bp and gp of this per-
colation sdefined in Sec. IV.B.1d are different from the
exponents of the magnetization sb ,gd, the correlation
length exponent is the same: n=np. For two-dimensional
models with Z2 symmetry, the universal percolation ex-
ponents are sFortunato and Satz, 2001; Fortunato, 2002d

bp = 0.049s4d , gp = 1.908s16d . s48d

These exponents are clearly different from those of the
ordinary percolation classes sTable XVd or from Ising-
class magnetic exponents sTable IIId.

TABLE III. Static critical exponents of the Ising model.

Exponent d=2 d=3 d=4 sMFd

aH 0slnd 0.1097s6d 0
b 1/8 0.3265s7d 1/2
g 7/4 1.3272s3d 1

n' 1 0.6301s2d 1/2
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On the other hand, by Fortuin-Kasteleyn cluster con-
struction sFortuin and Kasteleyn, 1972d, the percolation
exponents of the Ising model at Tc coincide with those
of the magnetization of the model.

2. Dynamical Ising classes

Kinetic Ising models such as the spin-flip Glauber
Ising model sGlauber, 1963d and the spin-exchange Ka-
wasaki Ising model sKawasaki, 1966d were originally in-
tended to study relaxational processes near equilibrium
states. In order to assure arrival at an equilibrium state,
the detailed balance condition for transition rates swi→jd
and probability distributions fPssdg must satisfy

wi→jPfssidg = wj→iPfssjdg . s49d

Knowing that Peqssd~expf−Hssd / skBTdg, this entails the
condition

wi→j

wj→i
= expf− DHssd/skBTdg , s50d

which can be satisfied in many different ways. Assuming
spin-flips fwhich do not conserve the magnetization
smodel Adg Glauber formulated the most general form
in a magnetic field shd,

wi
h = wis1 − tanh hsid < wis1 − hsid , s51d

wi =
G

2
s1 + d̃si−1si+1dS1 −

g

2
sissi−1 + si+1dD , s52d

where g=tanh 2J /kT, G and d̃ are further parameters.
The d=1 Ising model with Glauber kinetics is exactly
solvable. In this case the critical temperature is at T=0
and the transition is of first order. We recall that pT
=e−4J/kT plays the role of sT−Tcd /Tc in one dimension
and, in the vicinity of T=0, critical exponents can be
defined as powers of pT. For example, the coherence
length j satisfies j~pT

−n' ssee Sec. IId. In the presence
of a magnetic field B, the magnetization is known ex-
actly. At T=0

msT = 0,Bd = sgnsBd . s53d

Moreover, for j@1 and B /kT!1 the exact solution re-
duces to

m , 2hj; h = B/kBT . s54d

In scaling form one writes

m , j−bs/n'gshjD/n'd , s55d

where D is the static magnetic critical exponent. Com-
parison of Eqs. s54d and s55d results in bs=0 and D=n'.
These values are well known for the one–dimensional

Ising model. The d̃=0, G=1 case is usually referred to as
the Glauber-Ising model. The dynamical exponents are
sGlauber, 1963; Majumdar et al., 1996d

Z1d Glauber = 2, ug,1d Glauber = 1/4. s56d

Applying spin-exchange Kawasaki dynamics, which
conserves the magnetization smodel Bd,

wi =
1

2t
F1 −

g2

2
ssi−1si + si+1si + 2dG , s57d

where g2=tanhs2J /kBTd, we find that the dynamical ex-
ponent is different. According to linear response theory
sZwerger, 1981d in one dimension, at the critical point
sTc=0d it is

Z1d Kaw = 5. s58d

Note, however, that in the case of a fast quench to T
=0, coarsening with scaling exponent 1/3 is reported
sCornell et al., 1991d. Hence another dynamic Ising uni-
versality class appears with the same static but different
dynamical exponents.

Interestingly, while the two-dimensional equilibrium
Ising model can be solved, the exact values of the dy-
namical exponents are not known. Table IV summarizes
the known dynamical exponents of the Ising model in
d=1,2 ,3 ,4. The d=4 results are mean-field values. In
Sec. IV.D.2, I shall discuss another fully nonequilibrium
critical point of the d=1 Ising model with competing
dynamics sthe nonequilibrium kinetic Ising modeld, in
which the dynamical exponents break the scaling rela-
tion s17d and therefore the magnetization is a non-
Markovian process. For d.3 there is no non-Markovian
effect shence u is not independentd, but for d=2,3 the
situation is still not completely clear sZheng, 1998d.

In one dimension the domain walls skinksd between
up and down regions can be considered as particles. The
spin-flip dynamics can be mapped onto particle move-
ment,

↑ ↓ ↓ 
 ↑ ↑ ↓ , Ps
sP s59d

or onto the creation or annihilation of neighboring par-
ticles,

TABLE IV. Critical dynamical exponents in the Ising model. Column headings sAd and sBd refer to
model-A and model-B dynamics. Data are from Grassberger s1995ad, Jaster et al. s1999d, Stauffer
s1996d, Zheng s1998, 2000, 2001d and Zwerger s1981d.

d=1 d=2 d=3 d=4
A B A B A A B

Z 2 5 2.165s10d 2.325s10d 2.032s4d 2 4
l 1 0.737s1d 0.667s8d 1.362s19d 4
ug 1/4 0.225s10d 0.41s2d 1/2
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↑ ↑ ↑ 
 ↑ ↓ ↑ , ss
PP . s60d

Therefore the T=0 Glauber dynamics is equivalent to
the diffusion-limited annihilating random walk sARWd
mentioned already in Sec. II. When we map the spin-
exchange dynamics in the same way, more complicated
particle dynamics emerge, for example,

↑ ↑ ↓ ↓ 
 ↑ ↓ ↑ ↓ , sPs
PPP . s61d

One particle may give birth to two others or three par-
ticles may coalesce to one. Therefore these models are
equivalent to branching and annihilating random walks,
as will be discussed in Sec. IV.D.1.

3. Competing dynamics added to spin flip

Competing dynamics in general break the detailed
balance symmetry s49d and cause the kinetic Ising model
to relax to a nonequilibrium steady state sif one existsd.
Generally these models become unsolvable sfor an over-
view, see Rácz, 1996d. It was argued by Grinstein et al.
s1985d that stochastic spin-flip models with two states
per site and updating rules of a short-range nature with
Z2 symmetry should belong to the skineticd Ising model
universality class. This argument is based on the stability
of the dynamic Ising fixed point in d=4−e dimensions
with respect to perturbations that retain both spin inver-
sion and lattice symmetries. The hypothesis of Grinstein
et al. has received extensive confirmation from Monte
Carlo simulations sBlote, Heringa, and Zia, 1990;
Oliveira et al., 1993; Santos and Teixeira, 1995; Tamayo
et al., 1995; Castro et al., 1998d as well as from analytic
calculations sMarques, 1989, 1990; Tomé, de Oliveira,
and Santos, 1991d. The models investigated include Ising
models with a competition of two for three sTamayo et
al., 1995dg Glauber-like rates at different temperatures
sGonzaléz-Miranda et al., 1987; Marques, 1989; Blote et
al., 1990; Tomé, de Oliveira, and Santos, 1991d, or a com-
bination of spin-flip and spin-exchange dynamics sGar-
rido et al., 1989d, majority vote models sSantos and Teix-
eira, 1995; Castro et al., 1998d, and other types of
transition rules with the restrictions mentioned above
sOliveira et al., 1993d.

Note that in all of the above cases the ordered state is
fluctuating and nonabsorbing. By relaxation processes
this allows fluctuations in the bulk of a domain. It is also
possible sand in one dimension it is the only choiced to
generate nonequilibrium two-state spin models with
short-ranged interactions in which the ordered states are
frozen sabsorbingd; hence by relaxation to the steady
state, fluctuations occur at the boundaries only. In this
case a non-Ising universality class appears, which is
called the voter model universality class ssee Sec. IV.Cd.

In two dimensions general Z2 symmetric update rules
were investigated by Oliveira et al. s1993d, Achahbar et
al. s1996d, Drouffe and Godreche s1999d, and Dornic et
al. s2001d. These rules are summarized below, following
Drouffe and Godreche s1999d. Let us consider a two-
dimensional lattice of spins si=±1, evolving with the fol-
lowing dynamical rule. At each evolution step, the spin

to be updated flips according to the heat-bath rule: the
probability that the spin si takes the value +1 is Pssi
=1d=pshid, where the local field hi is the sum over neigh-
boring sites ojsj and

pshd =
1
2

h1 + tanhfbshdhgj . s62d

The functions pshd and bshd are defined over integral
values of h. For a square lattice, h takes the values 4, 2,
0, −2, −4. We require that ps−hd=1−pshd, in order to
keep up-down symmetry, hence bs−hd=bshd and this
fixes ps0d=1/2. The dynamics therefore depend on two
parameters,

p1 = ps2d, p2 = ps4d , s63d

or equivalently on two effective temperatures,

T1 =
1

bs2d
, T2 =

1

bs4d
. s64d

Defining the coordinate system

t1 = tanh
2

T1
, t2 = tanh

2

T2
s65d

with 0ø t1 , t2ø1 this yields

p1 =
1
2

s1 + t1d, p2 =
1
2
S1 +

2t2

1 + t2
2D , s66d

with 1/2øp1 ,p2ø1. One can call T1 and T2 the tem-
peratures associated with interfacial noise and bulk
noise, respectively. Each point in the parameter plane
sp1 ,p2d, or alternatively in the temperature plane st1 , t2d,
corresponds to a particular model. The class of models
thus defined comprises as special cases the Ising model,
the voter and antivoter models sLigget, 1985d, and the
majority vote sLigget, 1985; Castro et al., 1998d model
ssee Fig. 1d. The p2=1 line corresponds to models with
no bulk noise sT2=0d, hence the dynamics is driven only
by interfacial noise, defined above. The p1=1 line corre-
sponds to models with no interfacial noise sT1=0d, hence
the dynamics is driven only by bulk noise. In both cases
effects due to the curvature of the interfaces are always
present. For these last models, the local spin aligns in
the direction of the majority of its neighbors with prob-
ability one, if the local field is h=2, i.e., if there is no
consensus amongst the neighbors. If there is consensus
amongst them, i.e., if h=4, the local spin aligns with its
neighbors with a probability p2,1.

Simulations sOliveira et al., 1993d revealed that the
transition line between the low- and high-temperature
regions is Ising-type except for the end point sp1=1,p2
=0.75d, which is first order and corresponds to the voter
model class. The local persistence exponent was also
found to be constant along the line ul,0.22 sDrouffe
and Godreche, 1999d in agreement with that of the A
model ssee Table IVd except for the voter model point.
The dynamics of this class of models may be described
formally in terms of reaction-diffusion processes for a
set of coalescing, annihilating, and branching random
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walkers sDrouffe and Godreche, 1999d. There are simu-
lation results for other models exhibiting absorbing or-
dered states, indicating voter model critical behavior
sHinrichsen, 1997; Lipowski and Droz, 2002ad.

It is important to note that nontrivial, nonequilibrium
phase transitions may occur even in one dimension if
spin exchange is added to spin-flip dynamics. The details
will be discussed in Sec. IV.D.2.

4. Competing dynamics added to spin exchange

As mentioned in Sec. III, model-B systems are more
sensitive to competing dynamics. Local and anisotropic
order-parameter-conserving processes generate critical
behavior that coincides with that of the kinetic dipolar-
interaction Ising model. In two dimensions both simula-
tions and field theory sPraestgaard et al., 1994, 2000d pre-
dict the critical exponents. The critical dimension is dc
=3. It is shown that the Langevin equation sand there-
fore the critical behaviord of an anisotropic diffusive sys-
tem coincides with that of a randomly driven lattice-gas
system as well ssee Table Vd. Other systems in this uni-
versality class are the two-temperature model sGarrido
et al., 1990d, the ALGA model sBinder, 1981d, and the
infinitely fast driven lattice-gas model sAchahbar et al.,
2001d. In the randomly driven lattice-gas model particle
current does not occur but an anisotropy can be found.

Therefore it was argued sAchahbar et al., 2001d that the
particle current is not a relevant feature for this class.
This argument offers an explanation for why some sets
of simulations of driven lattice systems sVallés and
Marro, 1987d lead to different critical behavior than that
of the canonical coarse-grained representative of this
class, in which an explicit particle current jx̂ is added to
the continuous, model-B Ising-model Hamiltonian
sMarro and Dickman, 1999d:

]fsr,td
]t

= − ¹ Fh
dH

df
+ jx̂G + ¹ z , s67d

where h is a parameter and z is the Gaussian noise. In
this model one obtains mean-field exponents for 2ùd
ù5 swith weak logarithmic corrections at d=2d with b
=1/2 exactly. To resolve contradictions between the
simulation results of Vallés and Marro s1987d and Leung
s1991d, Zia et al. s2000d suggested the possibility that an-
other, extraordinary, “stringy” ordered phase might exist
in Ising-type driven lattice gases, which might be stable
in square systems.

5. Long-range interactions and correlations

Universal behavior is due to the fact that, at criticality,
long-range correlations are generated that make the de-
tails of short-ranged interactions irrelevant. However,
one can also investigate scaling behavior in systems with
long-range interactions or with dynamically generated
long-range correlations. If the Glauber Ising model
swith nonconserving dynamicsd is changed to a nonequi-
librium model in such a way that one couples nonlocal
dynamics sDroz et al., 1990d to it, long-range isotropic
interactions are generated and mean-field critical behav-
ior emerges. For example, if the nonlocal dynamics is a
random Lévy flight with a spin-exchange probability dis-
tribution

Psrd ~
1

rd+s , s68d

then effective long-range interactions of the form Veff
~r−d−s are generated and the critical exponents change
continuously as a function of s and d sBergersen and
Rácz, 1991d. Similar conclusions for other nonequilib-
rium classes will be discussed later sSec. IV.A.6d.

The effect of power-law correlated initial conditions
kfs0dfsrdl,r−sd−sd in the case of a quench to the or-
dered phase in systems with nonconserved order param-
eter was investigated by Bray et al. s1991d. An important
example is the s2+1d-dimensional Glauber-Ising model
quenched to zero temperature. It was observed that
long-range correlations are relevant if s exceeds a criti-
cal value sc. Furthermore, it was shown that the relevant
regime is characterized by a continuously changing
exponent in the autocorrelation function, Astd
= ffsr , tdfsr ,0dg, t−sd−sd/4, whereas the usual short-range
scaling exponents could be recovered below the thresh-

TABLE V. Critical exponents of the d=2 randomly driven lat-
tice gas.

b g ha n'

0.33s2d 1.16s6d 0.13s4d 0.62s3d

FIG. 1. sColor in online editiond Phase diagram of two-
dimensional, Z2-symmetric nonequilibrium spin models.
Dashed lines correspond to the noisy voter model sVd, the
Ising model sId, and the majority vote model sMd. The low-
temperature phase is located in the upper right corner, above
the transition line ssolid lined. From Drouffe and Godreche,
1999.
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old. These features are in agreement with simulations of
the two-dimensional Ising model quenched from T
=Tc to T=0.

6. Damage-spreading behavior

The high-temperature phase of the Ising model is cha-
otic. When T is lowered a nonchaotic phase may emerge
at Td with different types of transitions depending on
the dynamics. The dynamics-dependent damage-
spreading sDSd critical behavior in different Ising mod-
els is in agreement with a conjecture by Grassberger
s1995cd. Dynamical simulations with the heat-bath algo-
rithm in two and three dimensions sGropengiesser, 1994;
Grassberger, 1995a; Wang and Suzuki, 1996d resulted in
Td=Tc with a DS dynamical exponent coinciding with
that of the Z’s of the replicas. In this case the DS tran-
sition picks up the Ising class universality of its replicas.
With Glauber dynamics in two dimensions Td,Tc, and
directed-percolation class DS exponents were found
sGrassberger, 1995bd. With Kawasaki dynamics in two
dimensions, on the other hand, the damage always
spreads sVojta, 1998d. With Swendsen-Wang dynamics in
two dimensions Td.Tc, and directed-percolation class
DS behavior was observed sHinrichsen et al., 1998d.

In one-dimensional, nonequilibrium Ising models it is
possible to design different dynamics showing either a
parity-conserving or a directed-percolation-class DS
transition as the function of some control parameter.
This depends on whether the DS transition coincides or
not with the critical point. In the parity-conserving class
DS case, damage variables exhibit the dynamics of a
two-offspring branching and annihilating random walk
sBARW2; see Secs. IV.D.1 and IV.D.2d, and Z2 symmet-
ric absorbing states occur sHinrichsen and Domany,
1997; Ódor and Menyhárd, 1998d.

B. Potts classes

The generalization of the two-state equilibrium Ising
model was introduced by Potts s1952d; for an overview
see Wu s1982d. In the q-state Potts model the state vari-
ables can take q different values siP s0,1 ,2 , . . . ,qd and
the Hamiltonian is a sum of Kronecker delta functions
of states over nearest neighbors,

H = − J o
ki,i8l

dssi − si8d . s69d

This Hamiltonian exhibits a global symmetry described
by the permutation group of q elements sSqd. The Ising
model is recovered in the q=2 case sdiscussed in Sec.
III.Ad. The q-state Potts model exhibits a disordered
high-temperature phase and an ordered low-
temperature phase. The transition is first order and
mean-field-like for q’s above the qcsdd curve sshown in
Fig. 2d and for q.2 in high dimensions. The q=1 limit
can be shown sFortuin and Kasteleyn, 1972d to be
equivalent to the isotropic percolation ssee Sec. IV.B.1d,
which is known to exhibit a continuous phase transition

with dc=6. The problem of finding the effective resis-
tance between two nodes of a network of linear resistors
was solved by Kirchhoff in 1847. Fortuin and Kasteleyn
s1972d showed that Kirchoff’s solution can be expressed
as a q=0 limit of the Potts partition function. Further
mappings were discovered between the spin glass sEd-
wards and Anderson, 1975d and the q=1/2 Potts model
and between the two-dimensional q=3,4 cases and ver-
tex models ssee Baxter, 1982d. From Fig. 2 we can see
that, for q.2 Potts models, continuous transitions occur
in two dimensions only sq=3,4d. Fortunately these mod-
els are exactly solvable ssee Baxter, 1982d and exhibit
conformal symmetry as well as topological Yang-Baxter
invariance. The static exponents in two dimensions are
known exactly sTable VId.

1. Correlated percolation at Tc

In two-dimensional models with Z3 symmetry, the
critical point coincides with the percolation of site con-
nected clusters, and the following percolation exponents
are reported sFortunato and Satz, 2001d:

bp = 0.075s14d, gp = 1.53s21d . s70d

In the case of Fortuin-Kasteleyn cluster construction
sFortuin and Kasteleyn, 1972d, the percolation expo-
nents of the q-state Potts model at Tc coincide with
those of the magnetization of the model.

TABLE VI. Static exponents of the q states Potts model in
two dimensions.

Exponent q=0 q=1 q=2 q=3 q=4

aH −` −2/3 0slnd 1/3 2/3
b 1/6 5/36 1/8 1/9 1/12
g ` 43/18 7/4 13/9 7/6

n' ` 4/3 1 5/6 2/3

FIG. 2. Schematic plot for qcsdd ssolid lined. Open symbols
correspond to continuous phase transition, filled symbol to a
known first-order transition. Below the dashed line the transi-
tion is continuous, too. From Wu, 1982.
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2. Dynamical Potts classes

The model-A dynamical exponents of the Potts
classes have been determined in two dimensions for q
=3,4 by short-time Monte Carlo simulations sde Silva et
al., 2002; Table VIId. The exponents were found to be
the same for heat-bath and Metropolis algorithms. For
the zero-temperature local persistence exponent in one
dimension, exact formulas have been determined. For
sequential dynamics sDerrida et al., 1995d

ul,s = −
1
8

+
2

p2Fcos−1S2 − q
Î2q

DG2

, s71d

while for parallel dynamics ul,p=2ul,s sMenon and Ray,
2001d. In a deterministic coarsening ul is again different
ssee Bray et al., 1994; Gopinathan, 1998d. As we can see
the dynamical universality class characterized by the
growth of the length as j~ t1/2 is divided into subclasses,
as reflected by the persistence exponent.

As in the Ising model in nonequilibrium systems, sym-
metry in the Potts model turned out to be a relevant
factor for determining the universal behavior of transi-
tions to fluctuating ordered states sCrisanti and Grass-
berger, 1994; Brunstein and Tomé, 1998; Szabó and
Czárán, 2001d. On the other hand, in the case of non-
equilibrium transitions to absorbing states, a simulation
study sLipowski and Droz, 2002ad suggests a first-order
transition for all q.2 Potts models in d.1 dimensions.
The q=2, d=2 case corresponds to the voter model class
sSec. IV.Cd and in one dimension either a parity-
conserving class transition sq=2d or N-BARW2 class
transition sq=3d sSec. V.Kd occurs.

The DS transition of a q=3,d=2 Potts model with
heat-bath dynamics was found to belong to the directed-
percolation class sSec. IV.Ad because Td.Tc sda Silva et
al., 1997d.

3. Long-range interactions

The effect of long-range interaction has also been in-
vestigated in the case of the one-dimensional q=3 Potts
model sGlumac and Uzelac, 1998d with the Hamiltonian

H = − o
i,j

J

ui − ju1+sdssi,sjd . s72d

For s,sc,0.65 a crossover from second-order to first-
order smean-fieldd transition was located by simulations.
As in the Ising model, here we can expect to see this
crossover if we generate the long-range interactions by
the addition of a Lévy-type Kawasaki dynamics.

C. XY model classes

The classical XY model is defined by the Hamiltonian

H = − Jo
i,i8

cossUi − Ui8d , s73d

with continuous QiP f0,2pg state variables. This model
has a global Us1d symmetry. Alternatively the XY model
can be defined as a special N=2 case of OsNd symmetric
models such that the spin vectors Si are two dimensional
with absolute value Si

2=1,

H = − J o
ki,i8l

SiSi8. s74d

In this continuous model in two dimensions no local or-
der parameter can take zero value according to the
Mermin-Wagner theorem sMermin and Wagner, 1996d.
The appearance of free vortices swhich are nonlocald
causes an unusual transition mechanism that implies that
most of the thermodynamic quantities do not show
power-law singularities. The singular behavior of the
correlation length sjd and the susceptibility sxd is de-
scribed by the forms for T.Tc,

j ~ expfCsT − Tcd−1/2g, x ~ j2−ha, s75d

where C is a nonuniversal positive constant. Conven-
tional critical exponents cannot be used, but one can
define scaling dimensions. At Tc the two-point correla-
tion function has the following long-distance behavior:

Gsrd ~ r−1/4sln rd1/8, s76d

implying ha=1/4, and in the entire low-temperature
phase,

Gsrd ~ r−hasTd s77d

such that the exponent ha is a continuous function of the
temperature, i.e., the model has a line of critical points
starting from Tc and extending to T=0. This is the so-
called Kosterlitz-Thouless critical behavior sKosterlitz
and Thouless, 1973d and corresponds to the conformal
field theory with c=1 sItzykson and Drouffe, 1989d. This
kind of transition can be experimentally observed in
many effectively two-dimensional systems with Os2d
symmetry, such as thin films of superfluid helium, as well
as in roughening transitions of SOS models at crystal
interfaces. In three dimensions the critical exponents of
the OsNd sN=0,1 ,2 ,3 ,4d symmetric field theory have
been determined by perturbative expansions up to
seventh-loop order sGuida and Zinn-Justin, 1998d. Table
VIII summarizes these results for the XY case. For a
more detailed treatment see Pelissetto and Vicari s2002d.

TABLE VII. Model-A dynamical exponents of the q-state
Potts model in two dimensions.

Exponent q=3 q=4

Z 2.198s2d 2.290s3d
l 0.836s2d
ug 0.350s8d

TABLE VIII. Static exponents of the XY model in three di-
mensions.

aH b g n' ha

−0.011s4d 0.347s1d 1.317s2d 0.670s1d 0.035s2d
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Exponents with model-A dynamics in two dimensions
have been determined by short-time simulations, and
logarithmic corrections to scaling were found sYing et
al., 2001d. Table IX summarizes the known dynamical
exponents

1. Long-range correlations

Similarly to the Ising model, Bassler and Rácz s1995d
studied the validity of the Mermin-Wagner theorem by
transforming the two-dimensional XY model to a non-
equilibrium one using two-temperature, model-A dy-
namics. They found that the Mermin-Wagner theorem
does not apply for this case, since effective long-range
interactions are generated by the local nonequilibrium
dynamics. The universality class of the phase transition
of the model coincides with that of the two-temperature
driven Ising model ssee Table Vd.

2. Self-propelled particles

Another XY-like nonequilibrium model that exhibits
an ordered state for dø2 dimensions is motivated by the
description of the “flocking” behavior among living
things, such as birds, slime molds, and bacteria. In the
simplest version of the self-propelled particle model
sVicsek et al., 1995d, each particle’s velocity is set to a
fixed magnitude v0. Interaction with the neighboring
particles changes only the direction of motion: the par-
ticles tend to align their orientation to the local average
velocity. In one dimension the lattice dynamics are de-
fined as

xist + 1d = xistd + v0uistd ,

uist + 1d = Gfkustdlig + ji, s78d

where the particles are characterized by their coordinate
xi and dimensionless velocity ui. The function G incor-
porates both the propulsion and friction forces which set
the average velocity to a prescribed value v0: Gsud.u
for u,1 and Gsud,u for u.1. The distribution func-
tion Psx=jd of the noise ji is uniform in the interval
f−h /2 ,h /2g. When v0 is kept constant, the adjustable
control parameters of the model are the average density
of the particles, r, and the noise amplitude h. The order
parameter is the average velocity f;kul, which vanishes
as

fsh,rd , 5Shcsrd − h

hcsrd
Db

for h , hcsrd

0 for h . hcsrd ,
s79d

at a critical hcsrd value.

This model is similar to the XY model of classical
magnetic spins because the velocity of the particles, like
the local spin of the XY model, has fixed length and
continuous rotational Us1d symmetry. In the v0=0 and
low-noise limit the model reduces exactly to the Monte
Carlo dynamics of the XY model.

A field theory that included nonequilibrium effects in
a self-consistent way was proposed by Tu and Toner
s1995d. Their model is different from the XY model for
d,4. The essential difference between the self-
propelled-particle model and the equilibrium XY model
is that at different times, the “neighbors” of one particu-
lar “bird” will be different depending on the velocity
field itself. Therefore two originally distant birds can in-
teract with each other at some later time. Tu and Toner
found a critical dimension dc=4, below which linearized
hydrodynamics breaks down, but owing to Galilean in-
variance they could obtain exact scaling exponents in d
=2. For the dynamical exponent they got Z=6/5. Nu-
merical simulations sVicsek et al., 1995; Czirók et al.,
1997d indeed found a long-range-ordered state with a
continuous transition characterized by b=0.42s3d in two
dimensions.

In one dimension the field theory and simulations
sCzirók et al., 1999d have provided evidence for a con-
tinuous phase transition with b=0.60s5d, which is differ-
ent from the mean-field value 1/2 sStanley, 1971d.

D. OsNd symmetric model classes

As already mentioned in the previous section the
OsNd symmetric models are defined on spin vectors Si of
unit length Si

2=1 with the Hamiltonian

H = − J o
ki,i8l

SiSi8. s80d

The best known of these models is the classical Heisen-
berg model, which corresponds to N=3. This is the sim-
plest model for an isotropic ferromagnet. The N=4 case
corresponds to the Higgs sector of the Standard Model
at finite temperature. The N=0 case is related to poly-
mers, and the N=1 and N=2 cases are the Ising and XY
models, respectively. The critical dimension is dc=4 and,
by the Mermin-Wagner theorem, we cannot find a finite-
temperature phase transition in the short-range equilib-
rium models for N.2 below d=3. The static critical ex-
ponents have been determined by e=4−d expansions up
to five-loop order sGorishny et al., 1984d, by exact RG
methods ssee Berges et al., 2002 and references thereind,
by simulations sHasenbuch, 2001d and by series expan-
sions in three dimensions ssee Guida and Zinn-Justin,
1998, and references thereind. In Table X, I show the
latest estimates from Guida and Zinn-Justin s1998d in
three dimensions for N=0,3,4. The N→` limit is the
exactly solvable spherical model sBerlin and Kac, 1952;
Stanley, 1968d. For a detailed discussion of the static
critical behavior of the OsNd models see Pelissetto and
Vicari s2002d.

TABLE IX. Model-A dynamical exponents of the XY model
in two dimensions.

Z l h

2.04s1d 0.730s1d 0.250s2d
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The dynamical exponents for model A are known ex-
actly for the sN→ ` d spherical model sJanssen et al.,
1989; Majumdar et al., 1996; see Table XId. For other
cases e=4−d expansions up to two-loop order exist sMa-
jumdar et al., 1996; Oerding et al., 1997d. For a discussion
about the combination of different dynamics see the
general introduction, Sec. III, and Täuber, Santos, and
Rácz s1999d.

In three dimensions for Os2d, Os3d, and Os4d symmet-
ric models, the Fortuin-Kasteleyn cluster construction
sFortuin and Kasteleyn, 1972d results in percolation
points and percolation exponents that coincide with the
corresponding Tc’s and magnetization exponent values
sBlanchard et al., 2000d.

IV. GENUINE, BASIC NONEQUILIBRIUM CLASSES

In this section I introduce “genuine nonequilibrium”
universality classes that do not occur in dynamical gen-
eralizations of equilibrium systems. Naturally in these
models there is no Hermitian Hamiltonian, and they are
defined by transition rates not satisfying the detailed
balance condition s49d. They can be described by a mas-
ter equation and by the deduced stochastic action or
Langevin equation if it exists. The best-known cases are
reaction-diffusion systems with order-disorder transi-
tions in which the ordered state may exhibit only small
fluctuations, hence they trap or absorb a system falling
into them. Examples occur in models of population sAl-
bano, 1994d, epidemics sMollison, 1977; Ligget, 1985d,
catalysis sZiff et al., 1986d, or enzyme biology sBerry,
2003d. There are also other nonequilibrium phase tran-
sitions, for example, in lattice gases with currents sEvans
et al., 1995, 1998; Kolomeisky et al., 1998; Evans, 2000d
or in traffic models sChowdhury et al., 2000d, but in these
systems the critical universality classes have not yet been
explored.

Phase transitions in such models may occur in low
dimensions, in contrast with equilibrium models sMarro
and Dickman, 1999d. As was already shown in Sec.
III.A.2, reaction-diffusion particle systems may be

mapped onto spin-flip systems, stochastic cellular au-
tomata sChopard and Droz, 1998d, or interface growth
models ssee Sec. VId. The mapping, however, may lead
to nonlocal systems that have no physical relevance. The
universality classes of the simple models presented in
this section constitute the fundamental building blocks
of more complex systems.

For a long time, phase transitions with completely fro-
zen absorbing states were investigated. A few universal-
ity classes of this kind were known sGrassberger, 1996;
Hinrichsen, 2000ad, of which the most prominent and
the first to be discovered was that of directed percolation
sDP; Kinzel, 1983d. An early hypothesis sJanssen, 1981;
Grassberger, 1982a; Grinstein et al., 1989d has been con-
firmed by all models up to now. This conjecture, known
as the DP hypothesis, claims that in one-component sys-
tems exhibiting continuous phase transitions to a single
absorbing state (without extra symmetry, inhomogeneity,
or disorder) short-ranged interactions can generate DP-
class transitions only. Despite the robustness of this
class, experimental observation is still lacking sGrass-
berger, 1996; Hinrichsen, 2000cd, probably owing to the
sensitivity to disorder that cannot be avoided in real ma-
terials.

A major problem with the analyses of these models is
that they are usually far from the critical dimension, and
critical fluctuations prohibit mean-field-like behavior. A
further complication is that bosonic field-theoretical
methods cannot describe the particle exclusion that may
obviously happen in d=1. The success of the application
of bosonic field theory in many cases is the consequence
of the asymptotically low density of particles near the
critical point. However, in multicomponent systems,
where the exchange between different types is non-
trivial, bosonic field-theoretical descriptions may fail. In
the case of binary production models sSec. V.Fd the
bosonic renormalization group predicts diverging den-
sity in the active phase, in contrast to the lattice-model
version of hard-core particles sÓdor, 2000, 2001a; Carlon
et al., 2001; Hinrichsen, 2001b, 2001c; Park et al., 2001d.
Fermionic field theories, on the other hand, have the
disadvantage that they are nonlocal, hence results exist
for very simple reaction-diffusion systems only sBrunel
et al., 2000; Park et al., 2000; Wijland, 2001d. Other tech-
niques like independent interval approximation sKrapiv-
sky and Ben-Naim, 1997d, the empty-interval method
sben Avraham et al., 1990d, series expansion sEssam et
al., 1996d, or density matrix renormalization sDMRGd
are currently under development.

The universal scaling-law behavior in these models is
described by the critical exponents in the neighborhood
of a steady state, hence the generalization of dynamical
exponents slike Z, u, l, etc.d introduced for “out of equi-
librium classes” sSec. IIId. Besides these exponents,
there are genuinely nonequilibrium dynamical expo-
nents, as well, to characterize spreading behavior, de-
fined in Sec. I.D. For each class I discuss the damage-
spreading transitions, the effects of different boundary
conditions, disorder, and long-range correlations gener-
ated by anomalous diffusion or by special initial states.

TABLE X. Static exponents of the OsNd model in three di-
mensions.

N aH b g n' ha

0 0.235s3d 0.3024s1d 1.597s2d 0.588s1d 0.028s2d
3 −0.12s1d 0.366s2d 1.395s5d 0.707s3d 0.035s2d
4 −0.22s2d 0.383s4d 1.45s1d 0.741s6d 0.035s4d

TABLE XI. Model-A dynamical exponents of the OsNd model
in three dimensions.

N Z l ug

` 2 5/2 1/4
3 2.032s4d 2.789s6d 0.38
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A. Directed-percolation classes

The directed percolation introduced by Broadbent
and Hammersley s1957d is an anisotropic percolation
with a preferred direction t. This means that this prob-
lem should be dù2 dimensional. If there is an object
sbond, site, etc.d at sxi ,yj , . . . , tkd, it must have a nearest-
neighboring object at tk−1 unless tk=0 ssee Fig. 3d. If we
consider the preferred direction as the time, we recog-
nize a spreading process of an agent A that cannot have
a spontaneous source: xyA. This results in the possi-
bility of a completely frozen, so-called absorbing state
from which the system cannot escape if it has fallen into
it. As a consequence these kinds of models may have
phase transitions in d=1 spatial dimension already. By
increasing the branching probability p of the agent we
can have a phase transition between the absorbing state
and an active steady state with finite density of A’s. If
the transition is continuous, it is very likely that it be-
longs to a robust universality class, the directed-
percolation sDPd class.

For a long time all models of such absorbing phase
transitions were found to belong to the DP class, and the
DP hypothesis was advanced ssee Sec. IV aboved. This
hypothesis has been confirmed by all models up to now.
Moreover, DP class exponents were discovered in some
systems with multiple absorbing states. For example, in
systems with infinitely many frozen absorbing states
sJensen, 1993a; Jensen and Dickman, 1993a; Mendes et
al., 1994d the static exponents were found to coincide
with those of directed percolation. Furthermore DP be-
havior was reported by models without any special sym-
metry of the absorbing states sPark and Park, 1995;
Menyhárd and Ódor, 1996; Ódor and Menyhárd, 1998d.
So, although the necessary conditions for DP behavior
seem to be confirmed, the determination of sufficient
conditions is an open problem. There are many intro-
ductory works available now on directed percolation
sKinzel, 1983; Grassberger, 1996; Marro and Dickman,
1999; Hinrichsen, 2000ad. Therefore I shall not go very

deeply into a discussion of the details of various repre-
sentations.

In the reaction-diffusion language, directed percola-
tion is built up from the following processes:

A→
g

x , A x ↔
D

x A , A→
s

2A , 2A→
g

A . s81d

The mean-field equation for the coarse-grained particle
density rstd is

dr

dt
= ss − gdr − sl + sdr2. s82d

This has the stationary stable solution

rs`d = 5s − g

l + s
for s . g

0 for s ø g

s83d

exhibiting a continuous transition at s=g. A small varia-
tion of s or g near the critical point implies a linear
change of r. Therefore the order-parameter exponent in
the mean-field approximation is b=1. Near the critical
point the Osrd term is the dominant one, hence the den-
sity approaches the stationary value exponentially. For
s=g the remaining Osr2d term causes a power-law de-
cay: r~ t−1 indicating a=1. To get information about
other scaling exponents we have to take into account the
diffusion term D¹2 describing local density fluctuations.
Using rescaling invariance two more independent expo-
nents can be determined: n'=1/2 and Z=2 if dù4.
Therefore the upper critical dimension of directed per-
colation is dc=4.

Below the critical dimension, RG analysis of the
Langevin equation

]rsx,td
]t

= D¹2rsx,td + ss − gdrsx,td − sl + sdr2sx,td

+ Îrsx,tdhsx,td s84d

is necessary sJanssen, 1981d. Here hsx , td is the Gaussian
noise field, defined by the correlations

khsx,tdl = 0, s85d

khsx,tdhsx8,t8dl = Gddsx − x8ddst − t8d . s86d

The noise term is proportional to Îrsx , td, ensuring that
in the absorbing state frsx , td=0g it vanishes. The square-
root behavior stems from the definition of rsx , td as a
coarse-grained density of active sites averaged over
some mesoscopic box size. Note that DP universality oc-
curs in many other processes, such as odd-offspring,
branching and annihilating random walks sBARWo; see
Sec. IV.A.3d, and in models described by field theory
with higher-order terms like r3sx , td or ¹4rsx , td, which
are irrelevant under the RG transformation. This sto-
chastic process can, through standard techniques sJans-
sen, 1976d, be transformed into a Lagrangian formula-
tion with the action

FIG. 3. Directed site percolation in d=1+1 dimensions.
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S =E ddxdtFD

2
c2f + cs]tf − ¹2f − rf + uf2dG , s87d

where f is the density field and c is the response field
sappearing in response functionsd, and the action is in-
variant under the following time-reversal symmetry:

fsx,td → − csx,− td, csx,td → − fsx,− td . s88d

This symmetry yields sGrassberger and de la Torre,
1979; Muñoz et al., 1997d the scaling relations

b = b8 s89d

4d + 2h = dz . s90d

This field theory was found to be equivalent sCardy and
Sugar, 1980d to the Reggeon field theory sAbarbanel et
al., 1975; Brower et al., 1978d, a model of elementary
particles scattered at high energies and low-momentum
transfers.

Perturbative e=4−d renormalization-group analysis
sBronzan and Dash, 1974; Janssen, 1981d up to two-loop
order resulted in estimates for the critical exponents
shown in Table XII. The best results are obtained by
approximative techniques for the DP-like improved
mean-field approximation sBen-Naim and Krapivsky,
1994d, the coherent anomaly method sÓdor, 1995d,
Monte Carlo simulations sGrassberger and de la Torre,
1979; Grassberger, 1989a, 1992a; Dickman and Jensen,
1991d, series expansions sDe’Bell and Essam, 1983; Es-
sam et al., 1988; Jensen and Dickman, 1993b, 1993c;
Jensen and Guttmann, 1995, 1996; Jensen, 1996a, 1999ad,
DMRG sHieida, 1998; Carlon et al., 1999d, and numeri-
cal integration of Eq. s84d sDickman, 1994d.

The local persistence probability may be defined as the
probability fplstdg that a particular site never becomes
active up to time t. Numerical simulations sHinrichsen
and Koduvely, 1998d for this in the s1+1d-dimensional
Domany-Kinzel stochastic cellular automaton ssee Sec.
IV.A.2d found a power-law behavior with the exponent

ul = 1.50s1d . s91d

The global persistence probability is defined here as the
probability fpgstdg that the deviation of the global den-

sity from its mean value does not change its sign up to
time t. The simulations of Hinrichsen and Koduvely
s1998d in 1+1 dimensions claim ugùul. This agrees with
the field-theoretical e=4−d expansions of Oerding and
van Wijland s1998d, who predict ug=2 for dù4 and for
d,4,

ug = 2 −
5e

24
+ Ose2d . s92d

The crossover from isotropic to directed percolation
was investigated by Frey et al. s1993d, using the pertur-
bative RG approach up to one-loop order. They found
that while for d.6 the percolation is isotropic, for d.5
the directed Gaussian fixed point is stable. For d,5 the
asymptotic behavior is governed by the directed-
percolation fixed point. On the other hand, in d=2, ex-
act calculations and simulations sFröjdh and den Nijs,
1997d found that the isotropic percolation is stable with
respect to directed percolation if we control the cross-
over by a spontaneous particle birth parameter. It is still
an open question what happens for 2,d,5. Crossovers
to mean-field behavior generated by long-range interac-
tions sSec. IV.A.7d and crossovers to compact directed
percolation sSec. IV.Cd will be discussed later.

It was conjectured sDeloubrière and van Wijland,
2002d that in one-dimensional “fermionic” ssingle site
occupancyd and bosonic smultiple site occupancyd mod-
els may exhibit different critical behavior. An attempt at
a fermionic field-theoretical treatment of directed perco-
lation in s1+1d dimension was made by Brunel et al.
s2000; see also Wijland, 2001d. This ran into severe con-
vergence problems and did not result in precise quanti-
tative estimates for the critical exponents. Although the
bosonic field theory is expected to describe the fermi-
onic case, owing to the asymptotically low density at
criticality it has never been proven rigorously. Since ana-
lytic results are known only for bosonic field theory,
which gives rather inaccurate critical exponent esti-
mates, Ódor and Menyhárd s2002d performed simula-
tions of a BARW reaction-diffusion process fsee Eq.
s101dg with unrestricted site occupancy to investigate the
density frstdg decay of a DP process from a random ini-

TABLE XII. Estimates for the critical exponents of directed percolation. One-dimensional data are
from Jensen s1999ad; two-dimensional data are from Voigt and Ziff s1997d; three-dimensional data
are from Jensen s1992d; four-dimensional-e data are from Bronzan and Dash s1974d and Janssen
s1981d.

Critical exponent d=1 d=2 d=3 d=4−e

b=b8 0.276486s8d 0.584s4d 0.81s1d 1−e /6−0.01128e2

n' 1.096854s4d 0.734s4d 0.581s5d 1/2+e /16+0.02110e2

ni 1.733847s6d 1.295s6d 1.105s5d 1+e /12+0.02238e2

Z=2/z 1.580745s10d 1.76s3d 1.90s1d 2−e /12−0.02921e2

d=a 0.159464s6d 0.451 0.73 1−e /4−0.01283e2

h 0.313686s8d 0.230 0.12 e /12+0.03751e2

gp 2.277730s5d 1.60 1.25 1+e /6+0.06683e2
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tial state. Figure 4 shows the local slopes of the density
decay defined as

aeff = −
d ln rstd

d ln t
s93d

around the critical point for several annihilation rates
sld. The critical point is estimated at lc=0.128 82s1d scor-
responding to a straight lined, with the extrapolated de-
cay exponent a=0.165s5d, which agrees well with fermi-
onic model simulation and series-expansion results of
lc=0.1595s1d sDe’Bell and Essam, 1983d.

Note that in site-restricted models the processes

A→
g

x , A x ↔
D

x A , A→
s

2A s94d

generate a DP-class phase transition, while in the

bosonic version the 2A→
l

A process is also necessary to
ensure an active steady state swithout it the density di-
verges for s.gd.

Models exhibiting DP transitions have been reviewed
in great detail by Marro and Dickman s1999d and Hin-
richsen s2000ad. In the next subsections I discuss only
three important examples.

1. The contact process

The contact process is one of the earliest and simplest
lattice models for directed percolation, with asynchro-
nous updates introduced by Harris s1974bd and Grass-
berger and de la Torre s1979d to model epidemic spread-
ing without immunization. Its dynamics is defined by
nearest-neighbor processes that occur spontaneously
due to specific rates srather than probabilitiesd. In nu-
merical simulations, models of this type are usually real-
ized by random sequential updates. In one dimension
this means that a pair of sites hsi ,si+1j is chosen at ran-
dom and an update is attempted according to specific

transition rates wssi,t+dt ,si+1,t+dt usi,t ,si+1,td. Each attempt
to update a pair of sites increases the time t by dt
=1/N, where N is the total number of sites. One time
step ssweepd therefore consists of N such attempts. The
contact process is defined by the rates

wsA,IuA,Ad = wsI,AuA,Ad = m , s95d

wsI,IuA,Id = wsI,IuI,Ad = l , s96d

wsA,AuA,Id = wsA,AuI,Ad = 1, s97d

where l.0 and m.0 are two parameters sall other
rates are zerod. Equation s95d describes the creation of
inactive sId spots within active sAd islands. Equations
s96d and s97d describe the shrinkage and growth of active
islands. In order to fix the time scale, we chose the rate
in Eq. s97d to be equal to one. The active phase is re-
stricted to the region l,1, where active islands are
likely to grow. In one dimension, series expansions and
numerical simulations have determined the critical point
and critical exponents precisely.1 In two dimensions, the
order-parameter moments and the cumulant ratios were
determined by Dickman and de Silva s1998a, 1998bd.

2. Directed-percolation-class stochastic cellular
automata

Cellular automata as the simplest systems exhibiting
synchronous dynamics have been extensively studied
sWolfram, 1983d. When the update rules are made
probabilistic, phase transitions as a function of some
control parameter may emerge. There are many stochas-
tic cellular automata sSCAd that exhibit DP transitions
sBoccara and Roger, 1993d, perhaps the first and sim-
plest being the s1+1d-dimensional Domany-Kinzel
model sDomany and Kinzel, 1984d. In this model the
state at a given time t is specified by binary variables hsij,
which can have the values A sactived and I sinactived. At
odd times the odd-indexed states are updated, whereas
at even times the rest of the sites are updated according
to specific conditional probabilities. This model defines a
cellular automaton with parallel updates sdiscrete time
evolutiond acting on two independent triangular sublat-
tices sFig. 5d. The conditional probabilities in the

1See, for example, De’Bell and Essam, 1983; Essam et al.,
1988; Dickman and Jensen, 1991; Jensen and Dickman, 1993b,
1993c; Jensen and Guttmann, 1995, 1996; Jensen, 1996a; Dick-
man and de Silva, 1998a, 1998b.

FIG. 4. sColor in online editiond Local slopes of the density
decay in a Bosonic BARW1 model sSec. IV.A.3d. Different
curves correspond to l=0.12883,0.12882,0.12881,0.1288,
0.12879 sfrom bottom to topd. From Ódor and Menyhárd,
2002.

FIG. 5. Schematic of the update rule for the Domany-Kinzel
model.
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Domany-Kinzel model Pssi,t+1 usi−1,t ,si+1,td are given by

PsIuI,Id = 1, s98d

PsAuA,Ad = p2, s99d

PsAuI,Ad = PsAuA,Id = p1, s100d

and PsI usi−1 ,si+1d+PsA usi−1 ,si+1d=1, where 0øp1ø1
and 0øp2ø1 are two parameters. Equation s98d ensures
that the configuration . . . ,I ,I ,I , . . . is the absorbing state.
The process in Eq. s99d describes the creation of inactive
spots within active islands with probability 1−p2. The
random walk of boundaries between active and inactive
domains is realized by the processes in Eq. s100d. A DP
transition can be observed only if p1.

1
2 , when active

islands are biased to grow sWolfram, 1983d. The phase
diagram of the one-dimensional Domany-Kinzel model
is shown in Fig. 6. It comprises an active and an inactive
phase, separated by a phase transition line ssolid lined
belonging to the DP class. The dashed lines corresponds
to directed-bond-percolation fp2=ps2−p1dg and directed-
site-percolation sp1=p2d models. At the special symmetry
end point sp1= 1

2 ,p2=1d compact domain growth scom-
pact directed percolationd occurs and the transition be-
comes first order ssee Sec. IV.Cd. The transition on the
p2=0 axis corresponds to the transition of the stochastic
version of Wolfram’s rule-18 cellular automaton sWol-
fram, 1983d. This range-1 SCA generates A at time t
only when the right or left neighbor is A at t−1:

t − 1: AII IIA,

t : A A,

with probability p1 sBoccara and Roger, 1993d. The criti-
cal point was determined by precise simulations fp1

*

=0.809 48s1d; Vesztergombï et al., 1997g. In the t→`
limit the steady state is built up from II and IA blocks
sEloranta and Nummelin, 1992d. This finding permits us
to map this model onto an even simpler one, the rule-
6/16 SCA with new variables: IA→A and II→I:

t − 1: I I I A A I A A,

t : I A A I.

By solving the generalized mean-field approximations
and applying Padé approximations sSzabó and Ódor,
1994d or the CAM method sÓdor, 1995d, very precise
order-parameter exponent estimates were found: b
=0.2796s2d. The damage-spreading phase structure of
the one-dimensional Domany-Kinzel model was ex-
plored by Hinrichsen et al. s1997d and DP-class transi-
tions were found.

Another SCA example is the family of range-4 SCA
with an acceptance rule

sst + 1,jd = 5X if y ø o
j−4

j+4

sst,jd ø 6

0 otherwise,

where XP h0,1j is a two-valued random variable such
that ProbsX=1d=p sÓdor and Szolnoki, 1996d. The y
=3 case was introduced and investigated by Bidaux et al.
s1989d in d=1,2 ,3. The very first simulations in one di-
mension sBidaux et al., 1989d suggested a counterexam-
ple to the DP conjecture. More precise spreading simu-
lations of this model sJensen, 1991d, generalized mean-
field+coherent-anomaly calculations and simulations of
the y,6 family in one and two dimensions, have proven
that this does not happen for any case sÓdor and Szol-
noki, 1996d. The transitions either belong to the DP class
or are first order.

3. Branching and annihilating random walks with odd
number of offspring

Branching and annihilating random walks sBARW’sd,
introduced by Takayasu and Tretyakov s1992d, can be
regarded as generalizations of the DP process. They are
defined by the following reaction-diffusion processes:

A→
s

sm + 1dA , kA→
l

x , A x ↔
D

x A . s101d

The 2A→A and 2A→x reactions dominating in the
inactive phase have been shown to be equivalent sPeliti,
1986; see Sec. IV.C.1d. Therefore the k=2 and m=1
sBARW1d model differs from the DP process s81d in that
spontaneous annihilation of particles is not allowed. The
action of the BARW process was established by Cardy
and Täuber s1996, 1998d as

S =E ddxdtfcs]t − D¹2df − ls1 − ckdfk

+ ss1 − cmdcfg . s102d

A bosonic RG analysis of BARW systems sCardy and
Täuber, 1996d proved that for k=2 all the lower branch-
ing reactions with m−2,m−4, . . . are generated via fluc-
tuations involving combinations of branching and anni-
hilation processes. As a consequence, for odd m the A
→x reaction appears svia A→2A→xd. Therefore after
the first coarse-graining step in the BARW1 fand in gen-

FIG. 6. Phase diagram of the one-dimensional Domany-Kinzel
stochastic cellular automation. From Hinrichsen, 1997.
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eral in odd-m BARW sBARWod casesg, the action be-
comes the same as that of the DP process. This predic-
tion was confirmed by simulations ssee, for example,
Jensen, 1993bd.

For even m sBARWed, when the parity of the number
of particles is conserved, the spontaneous decay A→x
is not generated. Hence there is an absorbing state with
a lone wandering particle. This systems exhibits a non-
DP-class critical transition, which will be discussed in
Sec. IV.D.1.

4. Directed percolation with spatial boundary conditions

For a review of critical behavior at the surfaces of
equilibrium models, see Iglói et al. s1993d. Cardy s1983ad
suggested that surface critical phenomena may be de-
scribed by introducing an additional surface exponent
for the order-parameter field, which is generally inde-
pendent of the other bulk exponents. In nonequilibrium
statistical physics one can introduce spatial, temporal
ssee Sec. IV.A.7d, or mixed ssee Sec. IV.A.5d boundary
conditions.

In directed percolation, an absorbing wall may be in-
troduced by cutting all bonds sthe inactive boundary
conditiond crossing a given sd−1d-dimensional hyper-
plane in space. In the case of reflecting boundary condi-
tions, the wall acts like a mirror, so that the sites within
the wall are always a mirror image of those next to the
wall. A third type of boundary condition is the active
boundary condition, in which sites within the wall are
forced to be active. The density at the wall is found to
scale as

rs
s , sp − pcdb1 s103d

with a surface critical exponent b1.b. Owing to the
time-reversal symmetry of directed percolation fsee Eq.
s88dg, only one extra exponent is needed to describe sur-
face effects, hence the cluster survival exponent is the
same,

b18 = b1. s104d

The mean lifetime of finite clusters at the wall is defined
as

ktl , uDsu−t1, s105d

where Ds= sp−pcd, and is related to b1 by the scaling
relation

t1 = ni − b1. s106d

The average size of finite clusters grown from seeds on
the wall is

ksl , uDsu−g1. s107d

Series expansions sEssam et al., 1996d and numerical
simulations sLauritsen et al., 1997d in 1+1 dimensions
indicate that the presence of the wall alters several ex-
ponents. However, the scaling properties of the correla-
tion lengths sas given by ni and n'd are not altered.

The field theory for directed percolation in a semi-
infinite geometry was first analyzed by Janssen et al.

s1988d. They showed that the appropriate action for di-
rected percolation with a wall at x'=0 is given by S
=Sbulk+Ssurface, where

Ssurface =E dd−1xE dtDscsfs, s108d

with the definitions fs=fsxi ,x'=0, td and cs=csxi ,x'

=0, td. The surface term Ssurface corresponds to the most
relevant interaction consistent with the symmetries of
the problem and the one that also respects the
absorbing-state condition. The appropriate surface ex-
ponents were computed to first order in e=4−d using
renormalization-group techniques:

b1 =
3
2

−
7e

48
+ Ose2d . s109d

These calculations also showed that the corresponding
hyperscaling relation is

ni + dn' = b1 + b + g1, s110d

relating b1 to

g1 =
1
2

+
7e

48
+ Ose2d . s111d

The schematic phase diagram for directed percolation at
the boundary is shown in Fig. 7, where D and Ds repre-
sent the deviations of the bulk and surface, respectively,
from criticality. For D.0 and for Ds sufficiently negative
the boundary is ordered even while the bulk is disor-
dered, and there is a surface transition. For Ds,0 and
D→0, the bulk is ordered in the presence of an already
ordered boundary, and there is an extraordinary transi-
tion of the boundary. Finally at D=Ds=0, where all the
critical lines meet, and where both the bulk and isolated
surface are critical, we find a multicritical point, i.e., a
special transition.

For Ds.0 and D→0 there is an ordinary transition,
since the bulk orders in a situation in which the bound-
ary, if isolated, would be disordered. At the ordinary

FIG. 7. Schematic mean-field phase diagram for boundary di-
rected percolation. The transitions are labeled by O
=ordinary, E=extraordinary, S=surface, and Sp=special.
From Fröjdh et al., 2001.
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transition, one finds just one extra independent expo-
nent related to the boundary. This can be the surface
density exponent b1,dens. In one dimension the two cases
of inactive and reflecting boundaries belong to the same
universality class sLauritsen et al., 1998d as was identified
as the ordinary transition. There are numerical data for
the exponents of the extraordinary and special transi-
tions showever, see Janssen et al., 1988 for an RG analy-
sisd.

The best exponent estimates currently available were
summarized by Fröjdh et al. s2001d. Some of them are
shown in Table XIII. In d=1 the best results are from
series expansions sEssam et al., 1996; Jensen, 1999bd; in
all other cases the best results are from Monte Carlo
data sLauritsen et al., 1997, 1998; Fröjdh et al., 1998;
Howard et al., 2000d. The exponent t1 was conjectured
to equal unity sEssam et al., 1996d, although this has now
been challenged by the estimate t1=1.000 14s2d sJensen,
1999bd.

It has been known for some time that the presence of
an edge introduces new exponents, independent of those
associated with the bulk or with a surface ssee Cardy,
1983ad. For an investigation showing numerical esti-
mates in two-dimensional and mean-field values, see
Fröjdh et al. s1998d. Table XIV summarizes results for
the ordinary edge exponents. A closely related applica-
tion is the study of spreading processes in narrow chan-
nels sAlbano, 1997d.

5. Directed percolation with mixed (parabolic ) boundary
condition scaling

Boundary conditions, which act in both space and
time have also been investigated in dynamical systems.
These turn out to be related to the hard-core repulsion
effects of one-dimensional systems sSec. V.Bd. Kaiser
and Turban s1994, 1995d investigated the s1+1d-
dimensional DP process confined in a parabola-shaped
geometry. Assuming an absorbing boundary of the form

x=±Cts they proposed a general scaling theory. It is
based on the observation that the coefficient of the pa-
rabola sCd scales as C→LZs−1C under rescaling,

x → Lx, t → LZt, D → L−1/n'D, r → L−b/n'r ,

s112d

where D= up−pcu and Z is the dynamical exponent of DP.
By a conformal mapping of the parabola to straight lines
and using the mean-field approximation, they claimed
that this boundary is a relevant perturbation for s.1/Z,
irrelevant for s,1/Z, and marginal for s=1/Z ssee Fig.
8d. The marginal case results in C-dependent nonuniver-
sal power-law decay, while for the relevant case
stretched exponential functions have been obtained.
Kaiser and Turban have given support to these claims by
numerical simulations.

6. Lévy-flight anomalous diffusion in directed
percolation

Lévy-flight anomalous diffusion generating long-range
correlations has already been mentioned in Sec. III.A.5
and III.B.3 in the case of equilibrium models. In non-
equilibrium systems, Grassberger s1986d, following the
suggestion of Mollison s1977d, introduced a variation of
the epidemic process with infection probability distribu-
tion PsRd, which decays with the distance R as a power-
law,

TABLE XIII. Critical exponents for directed percolation in
d=1 and d=2 for the ordinary transition at the boundary.

d=1 d=2 Mean field

b1 0.733 71s2d 1.07s5d 3/2
d1=a1 0.423 17s2d 0.82s4d 3/2
t1 1.000 14s2d 0.26s2d 0
g1 1.820 51s1d 1.05s2d 1/2

TABLE XIV. Numerical estimates for the ordinary b2
O expo-

nents for edge directed percolation together with the mean-
field values. Note that b2

Ospd=b1
O.

Angle sad p /2 3p /4 p 5p /4

b2
O sd=2d 1.6s1d 1.23s7d 1.07s5d 0.98s5d

b2
O sMFd 2 5/3 3/2 7/5

FIG. 8. The space-time evolution of the critical,
s1+1d-dimensional directed site percolation process confined
by a parabola sad s,1/Z, sbd s=1/Z, scd s.1/Z. From Kaiser
and Turban, 1994.
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PsRd ~
1

Rd+s . s113d

This formalism can model long-range epidemics medi-
ated by flies, wind, etc. Grassberger claimed that the
critical exponents should depend continuously on s.
This result was confirmed in one dimension by Marques
and Ferreira s1994d, who estimated b based on coherent
anomaly calculations. The study of anomalous diffusion
was extended for generalized epidemic processes ssee
Sec. IV.Bd and for annihilating random walks, too ssee
Sec. IV.C.4d. The effective action of the Lévy-flight DP
model is

Sfc,fg =E ddxdtScs]t − t − DN¹2 − DA¹sdf

+
g

2
scf2 − c2fdD , s114d

where DN denotes the normal diffusion constant, DA the
anomalous diffusion constant, and g the interaction cou-
pling constant. The field-theoretical RG method up to
first order in an e=2s−d expansion sJanssen et al., 1999d
gives

b = 1 −
2e

7s
+ Ose2d ,

n' =
1

s
+

2e

7s2 + Ose2d ,

ni = 1 +
e

7s
+ Ose2d ,

Z =
ni

n'

= s− e/7 + Ose2d . s115d

Moreover, Marques and Ferreira showed that the hyper-
scaling relation

h + 2d = d/Z sd = b/nid , s116d

for the so-called critical initial slip exponent h and the
relation

ni − n'ss − dd − 2b = 0, s117d

hold exactly for arbitrary values of s. Numerical simu-
lations on s1+1d-dimensional bond percolation con-
firmed these results except in the neighborhood of s
=2 sHinrichsen and Howard, 1999; see Fig. 9d.

7. Long-range correlated initial conditions in directed
percolation

It is well known that initial conditions influence the
temporal evolution of nonequilibrium systems. The
“memory” of systems for the initial state usually de-
pends on the dynamical rules. For example, stochastic
processes with a finite temporal correlation length relax
to their stationary state in an exponentially short time.
An interesting situation emerges when a system under-

goes a nonequilibrium phase transition in which the
temporal correlation length diverges. This setup raises
the question whether it is possible to construct initial
states that affect the entire temporal evolution of such
systems.

Monte Carlo simulations of critical models with ab-
sorbing states usually employ two different types of ini-
tial conditions. On the one hand, uncorrelated random
initial conditions sPoisson distributionsd are used to
study the relaxation of an initial state with a finite par-
ticle density towards an absorbing state. In this case the
particle density rstd decreases on the infinite lattice as-
ymptotically as

rstd , t−b/ni . s118d

On the other hand, in spreading simulations sGrass-
berger and de la Torre, 1979d, each run starts with a
single particle as a localized active seed from which a
cluster originates sthis is a long-range correlated stated.
Although many of these clusters survive for only a short
time, the number of particles nstd averaged over many
independent runs increases as

knstdl , t+h. s119d

These two cases seem to represent extremal situations in
which the average particle number either decreases or
increases.

A crossover between these two extremal cases takes
place in a critical spreading process that starts from a
random initial condition of very low density. Here the
particles are initially separated by empty intervals of a
certain typical size, so that the average particle number
first increases according to Eq. s119d. Later, when the
growing clusters begin to interact with each other, the
system crosses over to the algebraic decay of Eq.
s118d—a phenomenon referred to as the “critical initial
slip” of a nonequilibrium system sJanssen et al., 1989d.

FIG. 9. Estimates for the exponent b and the derived expo-
nents n' and ni in comparison with the field-theoretic results
ssolid linesd and the DP exponents sdotted linesd. The quanti-
ties D1 and D2 represent deviations from the scaling relations
s116d and s117d, respectively. The vertical, dashed lines distin-
guish between regions of constant and continuously changing
exponents. From Hinrichsen and Howard, 1999.
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Hinrichsen and Ódor s1998d and Menyhárd and Ódor
s2000d investigated whether it is possible to interpolate
continuously between the two extremal cases in
s1+1d-dimensional DP and parity-conserving processes.
It was shown that one can in fact generate certain initial
states in such a way that the particle density on the infi-
nite lattice varies as

rstd , tk s120d

with a continuously adjustable exponent k in the range

− b/ni ø k ø + h . s121d

To this end artificial initial configurations with algebraic
long-range correlations of the form

Csrd = ksisi+rl , r−sd−sd s122d

were constructed, where k l denotes the average over
many independent realizations, d the spatial dimension,
and si=0,1 inactive and active sites. The exponent s is a
free parameter and can be varied continuously between
0 and 1. This initial condition can be taken into account
by adding the term

Sic = mE ddxcsx,0df0sxd s123d

to the action, where f0sxd represents the initial particle
distribution. The long-range correlations limit s→d cor-
responds to a constant particle density, and thus we ex-
pect Eq. s118d to hold ff0sxd=const is irrelevant under
rescalingg. On the other hand, the short-range limit s
→0 represents an initial state in which active sites are
separated by infinitely large intervals ff0sxd=ddsxdg so
that the particle density should increase according to Eq.
s119d. In between we expect rstd to vary algebraically
according to Eq. s120d with an exponent k depending
continuously on s.

In case of the s1+1d-dimensional Domany-Kinzel
SCA ssee Sec. IV.A.2d, field-theoretical renormalization-
group calculation and simulations have proved sHinrich-
sen and Ódor, 1998d the exact functional dependence,

kssd = Hh for s , sc
1
z sd − s − b/n'd for s . sc,

s124d

with the critical threshold sc=b /n'.

8. Quench-disordered directed percolation systems

Perhaps the lack of experimental observation of a ro-
bust DP class is owing to the fact that even weak disor-
der changes the critical behavior of such models. There-
fore this section provides a view onto interesting
generalizations of DP processes that may be observable
in physical systems. First, Noest s1986, 1988d showed us-
ing the Harris criterion sHarris, 1974ad that spatially
quenched disorder sfrozen in spaced changes the critical
behavior of DP systems for d,4. Then Janssen s1997ad
studied the problem by field theory, taking into account
the disorder in the action by adding the term

S → S + gE ddxFE dtcfG2

. s125d

This additional term causes marginal perturbation, and
the stable fixed point is shifted to an unphysical region,
leading to runaway solutions of the flow equations in the
physical region of interest, meaning that spatially
quenched disorder changes the critical behavior of di-
rected percolation. This conclusion is supported by the
simulation results of Moreira and Dickman s1996d, who
reported logarithmic spreading behavior in the two-
dimensional contact process at criticality. In the subcriti-
cal region they found Griffiths phase, in which the time
dependence is governed by nonuniversal power laws,
while in the active phase the relaxation of Pstd is alge-
braic.

In 1+1 dimension, Noest s1986, 1988d predicted ge-
neric scale invariance. Webman et al. s1998d reported a
glassy phase with nonuniversal exponents in a
s1+1d-dimensional DP process with quenched disorder.
Cafiero et al. s1998d showed that directed percolation
with spatially quenched randomness in the large-time
limit can be mapped onto a non-Markovian spreading
process with memory, in agreement with previous re-
sults. They also showed that the time-reversal symmetry
of the DP process fEq. s88dg is not broken. Therefore

d = d , , s126d

and they were able to derive a hyperscaling law for the
inactive phase,

h = dz/2, s127d

and for the absorbing phase,

h + d = dz/2. s128d

Webman et al. confirmed these relations by simulations
and found that the dynamical exponents changed con-
tinuously as a function of the disorder probability. An
RG study by Hooyberghs et al. s2003d showed that in the
case of strong enough disorder the critical behavior is
controlled by an infinite-randomness fixed point, the
static exponents of which in one dimension are

b = s3 − Î5d/2, n' = 2, s129d

and j1/2~ ln t. For disorder strengths outside the attrac-
tive region of the fixed point disorder strength depen-
dent critical exponents were found.

Temporally quenched disorder can be taken into the
action by adding the term

S → S + gE dtFE ddxcfG2

. s130d

This is a relevant perturbation for the DP processes.
Jensen s1996bd investigated the s1+1d-dimensional di-
rected bond percolation ssee Sec. IV.A.2d with temporal
disorder via series expansions and Monte Carlo simula-
tions. The temporal disorder was introduced by allowing
time slices to become fully deterministic sp1=p2=1d,
with probability a. Jensen found a-dependent, continu-
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ously changing critical point and critical exponent values
between those of the s1+1d-dimensional DP class and
those of the deterministic percolation. This latter class is
defined by the exponents

b = 0, d = 0, h = 1, Z = 1, ni = 2, n' = 2. s131d

For small values of the disorder parameter, violation of
the Harris criterion was reported.

If quenched disorder takes place in both space and
time, the corresponding term added to the action is

S → S + gE dtddxfcfg2, s132d

which is an irrelevant perturbation to the Reggeon field
theory. This has the same properties as the intrinsic
noise in the system and can be considered as being an-
nealed.

B. Dynamical percolation classes

If we allow memory in the unary DP spreading pro-
cess sSec. IV.Ad such that the infected sites may have a
different reinfection probability spd from the virgin ones
sqd, we obtain different percolation behavior sGrass-
berger et al., 1997d. The model in which the reinfection
probability is zero is called the general epidemic process
sMollison, 1977d. In this case the epidemic stops in finite
systems but an infinite epidemic is possible in the form
of a single wave of activity. When starting from a single
seed this leads to annular growth patterns. The transi-
tion between survival and extinction is a critical phe-
nomenon called dynamical percolation sDYP; Grass-
berger, 1982bd. Clusters generated at criticality are the
ordinary percolation clusters of the lattice in question.
Field-theoretical treatments have been given by Cardy
s1983bd; Cardy and Grassberger s1985d; Janssen s1985d;
Muñoz et al. s1998d; Jimenez-Dalmaroni and Hinrichsen
s2003d. The action of the model is

S =E ddxdt
D

2
c2f − cS]tf − ¹2f − rf

+ wfE
0

t

dsfssdD . s133d

This action is invariant under the nonlocal symmetry
transformation

fsx,td ↔ − ]tcsx,− td , s134d

which results in the hyperscaling relation sMuñoz et al.,
1997d:

h + 2d + 1 =
dz

2
. s135d

As in case of directed percolation, the relations b=b8
and d=a again hold. The upper critical dimension is dc
=6. The dynamical critical exponents, as well as spread-
ing and avalanche exponents, are summarized by Muñoz
et al. s1999d. The dynamical exponents are Z=1.1295 for

d=2, Z=1.336 for d=3, and Z=2 for d=6. Dynamical
percolation has been observed in forest fire models
sDrossel and Schwabl, 1993; Albano, 1994d and in some
Lotka-Volterra-type lattice prey-predator models sAntal
et al., 2001d.

1. Isotropic percolation universality classes

Ordinary percolation sStauffer and Aharony, 1994;
Grimmett, 1999d is a geometrical phenomenon that de-
scribes the occurrence of infinitely large connected clus-
ters by completely random displacement of some vari-
ables ssites, bonds, etc., with probability pd on lattices
ssee Fig. 10d.

The dynamical percolation process is known to gener-
ate such percolating clusters ssee Sec. IV.Bd. At the tran-
sition point, moments of the s cluster size distribution
nsspd show singular behavior. Ordinary percolation cor-
responds to the q=1 limit of the Potts model. That
means its generating functions can be expressed in terms
of the free energy of the q→1 Potts model. In the low-
temperature dilute Ising model, the occupation prob-
ability spd driven magnetization transition is an ordinary
percolation transition, as well. As a consequence the
critical exponents of the magnetization can be related to
the cluster-size exponents. For example, the susceptibil-
ity obeys simple homogeneity form with p−pc replacing
T−Tc,

x ~ up − pcu−g. s136d

Table XV summarizes the known critical exponents of
ordinary percolation. The exponents are from the over-
view of Bunde and Havlin s1991d. A field-theoretical
treatment by Benzoni and Cardy s1984d provided an up-
per critical dimension dc=6. The d=1 case is special:
pc=1 and the order parameter jumps sb=0d. Further-
more, here some exponents exhibit nonuniversal behav-
ior by increasing the interaction length unless we rede-
fine the scaling variable ssee Stauffer and Aharony,
1994d.

FIG. 10. Isotropic site percolation in d=2 dimensions.
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2. Dynamical percolation with spatial boundary
conditions

There are very few numerical results for surface criti-
cal exponents of dynamical percolation. The generalized
epidemic process in three dimensions was investigated
numerically by Grassberger s1992bd. The surface and
edge exponents sfor angle p /2d were determined in the
case of inactive boundary conditions. Different measure-
ments sdensity and cluster simulationsd resulted in a
single surface b1=0.848s6d and a single edge be
=1.36s1d exponent.

3. Lévy-flight anomalous diffusion in dynamic
percolation

To model long-range epidemic spreading in a system
with immunization, the effect of Lévy-flight diffusion
fEq. s113dg was investigated by Janssen et al. s1999d. The
renormalization-group analysis of the generalized epi-
demic process with anomalous diffusion resulted in the
following four e=3s−d expansion results: sad for the
critical initial slip exponent,

h =
3e

16s
+ Ose2d; s137d

sbd for the order-parameter fdensity of removed sim-
muned individualsg exponent,

b = 1 −
e

4s
+ Ose2d; s138d

scd for the spatial correlation exponent,

n' =
1

s
+

e

4s2 + Os«̄2d; s139d

and sdd for the temporal correlation length exponent,

ni = 1 +
e

16s
+ Ose2d . s140d

C. Voter model classes

Now we turn to models that can describe the spread-
ing of voter opinion, arranged on regular lattices. These
models exhibit first-order transitions but dynamical scal-
ing can still be observed in them. The voter model sLig-
get, 1985; Durret, 1988d is defined by the following spin-

flip dynamics. A site is selected randomly which takes
the “opinion” sor spind of one of its nearest neighbors
swith probability pd. This rule ensures that the model has
two homogeneous absorbing states sall spin up or downd
and is invariant under the Z2 symmetry. A general fea-
ture of these models is that dynamics takes place only at
the boundaries. The action that describes this behavior,
proposed by Dickman and Tretyakov s1995d and Peliti
s1986d,

S =E ddxdtFD

2
fs1 − fdc2 − cs]tf − l¹2fdG , s141d

is invariant under the symmetry transformation

f ↔ 1 − f , c ↔ − c . s142d

This results in the “hyperscaling” relation sMuñoz et al.,
1997d

d + h = dz/2, s143d

which is valid for all first-order transitions sb=0d with
dø2, hence dc=2 is the upper critical dimension. It is
also valid for all compact growth processes swhere “com-
pact” means that the density in surviving colonies re-
mains finite as t→`d.

In one dimension at the upper terminal point of the
Domany-Kinzel SCA sFig. 6, p1= 1

2 , p2=1d, an extra Z2
symmetry exists between 1’s and 0’s, hence the scaling
behavior is not DP-class-like but corresponds to the
fixed point of the inactive phase of parity-conserving
class models sSec. IV.Dd. As a consequence compact do-
mains of 0’s and 1’s grow such that the domain walls
follow annihilating random walks sARWd ssee Sec.
IV.C.1d and belong to the one-dimensional voter model
class. In one dimension compact directed percolation is
also equivalent to the T=0 Glauber Ising model ssee
Secs. II and III.Ad. When nonzero temperature is ap-
plied scorresponding to spin flips in domainsd or symme-
try is broken sby changing p2 or adding an external mag-
netic fieldd, a first-order transition takes place sb=0d.

In two and higher dimensions the p=1 situation cor-
responds to the p1=3/4, p2=1 point in the phase dia-
gram of Z2-symmetric models ssee Fig. 1d. This model
has a “duality” symmetry with coalescing random walks:
going backward in time, the successive ancestors of a
given spin follow the trail of a simple random walk; com-
paring the values of several spins shows that their asso-
ciated random walks necessarily merge when they meet
sLigget, 1985d. This correspondence permits us to solve
many aspects of the kinetics. In particular, the calcula-
tion of the density of interfaces rmstd si.e., the fraction of
12 nearest-neighbor pairsd starting from random initial
conditions of magnetization m, is ultimately given by the
probability that a random walk initially at unit distance
from the origin has not yet reached it at time t. There-
fore, owing to the recurrence properties of random
walks, the voter model shows coarsening for dø2 fi.e.,
rmstd→0 when t→`g. For the “marginal” d=2 case one

TABLE XV. Critical exponents of ordinary percolation.

d b=b8 gp n' s t

1 0 1 1 1 2
2 5/36 43/18 4/3 36/91 187/91
3 0.418s1d 1.793s4d 0.8765s17d 0.452s1d 2.189s1d
4 0.64 1.44 0.68 0.48 2.31
5 0.84 1.18 0.57 0.49 2.41
6 1 1 1/2 1/2 3/2
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finds a slow logarithmic decay sScheucher and Spohn,
1988; Krapivsky, 1992; Frachebourg and Krapivsky,
1996d:

rmstd = s1 − m2dF2pD

ln t
+ OS 1

ln2 t
DG , s144d

with D being the diffusion constant of the underlying
random walk sD=1/4 for the standard case of nearest-
neighbor, square lattice walks, when each spin is up-
dated on average once per unit of timed.

Simulating general, Z2-symmetric spin-flip rules in
two dimensions, Dornic et al. s2001d conjectured that all
critical Z2-symmetric rules without bulk noise form a
codimension-1 “voterlike” manifold separating order
from disorder, characterized by the logarithmic decay of
both r and m. The critical exponents for this class are
summarized in Table XVI. Furthermore Dornic et al.
s2001d found that this Z2 symmetry is not a necessary
condition; voter model behavior can also be observed in
systems without bulk fluctuations, where the total mag-
netization is conserved. A field-theoretical understand-
ing of these results is still lacking.

1. The 2A\X and the 2 A\A models

As mentioned in Sec. IV.C, in one dimension the an-
nihilating random walk sARWd and voter models are
equivalent. In higher dimensions this is not the case ssee
Sec. IV.Ed. The simplest reaction-diffusion model—in
which identical particles follow a random walk and an-
nihilate on contact of a pair—is adequately described by
mean-field-type equations in dc.2 dimensions,

rstd ~ t−1, s145d

but in lower dimensions fluctuations become relevant.
Omitting boundary and initial condition terms, the field-
theoretical action is

S =E ddxdtfcs]tf − D¹2fd − ls1 − c2df2g , s146d

where D denotes the diffusion coefficient and l is the
annihilation rate.

For d=dc=2 the leading-order decay of the ARW was
derived exactly by Lee using the field-theoretical RG
method sLee, 1994d:

rstd =
1

8pD
lnstd/t + Os1/td . s147d

For d=1, Rácz s1985d and Lushnikov s1987d predicted
that the particle density decays as

rstd = A2sDtd−1/2. s148d

This scaling law was confirmed by e expansion and the
universal amplitude A2 was found to be

1

4pe
+

2 ln 8p − 5

16p
+ Osed . s149d

The universal scaling behavior of the ARW was
shown to be equivalent to that of the A+A→A coagu-
lation random-walk process by Peliti s1986d. The
renormalization-group approach provided universal de-
cay amplitudes sdifferent from those of the ARWd to all
orders in the epsilon expansion. It was also shown
sDomany and Kinzel, 1984d that the motion of kinks in
the compact version of directed percolation sEssam,
1989d and the Glauber-Ising model sGlauber, 1963d at
the T=0 transition point are also described exactly by
Eq. s148d. These reactions also have an intimate rela-
tionship to the Edwards-Wilkinson interface growth
model ssee Sec. VI.Bd.

2. Compact directed percolation with spatial boundary
conditions

By introducing a wall in compact directed percolation,
one alters the survival probability and obtains surface
critical exponents just as for DP. With inactive boundary
conditions, the cluster is free to approach and leave the
wall, but not to cross it. For d=1, this gives rise to b18
=2. On the other hand, for active boundary conditions,
the cluster is stuck to the wall and therefore described
by a single random walker for d=1. By reflection in the
wall, this may be viewed as symmetric compact directed
percolation, which has the same b8 as normal compact
DP, giving b18=1 sEssam and TanlaKishani, 1994; Essam
and Guttmann, 1995d.

3. Compact directed percolation with parabolic
boundary conditions

Space-time boundaries are also of interest in compact
directed percolation. Cluster simulations in 1+1 dimen-
sion and mean-field approximations sÓdor and Meny-
hárd, 2000; Dickman and ben Avraham, 2001d for perco-
lation confined by repulsive parabolic boundary
condition of the form x=±Cts resulted in C-dependent d
and h exponents ssee Fig. 11d similarly to the DP case
ssee Sec. IV.A.5d with the marginal condition: s=1/2. In
the mean-field approximation sÓdor and Menyhárd,
2000d results similar to those for directed percolation
were obtained sKaiser and Turban, 1995d. Analytical re-
sults can be obtained only in limiting cases. For narrow
systems ssmall Cd one obtains the following asymptotic
behavior for the connectedness function to the origin:

Pst,xd , t−p2/8C2
cosS px

2CÎt
D . s150d

Recently an analytical solution was derived for a related
problem sDickman and ben Avraham, 2001d. For a one-
dimensional lattice random walk with an absorbing

TABLE XVI. Critical exponents of voter model classes.

d b b8 g ni n' Z d h

1 0.0 1 2 2 1 2 1/2 0
2 0.0 1 1 1 1/2 2 1 0
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boundary at the origin and a movable partial reflector
swith probability rd d varies continuously between 1/2
and 1 as r varies between 0 and 1.

4. Lévy-flight anomalous diffusion in annihilating
random walks

Long-range interactions generated by nonlocal diffu-
sion in annihilating random walks result in the recovery
of mean-field behavior. This has been studied by differ-
ent approaches. Particles performing simple random
walks subject to the reactions A+B→x sSec. IV.C.1d
and A+A→x sSec. IV.Ad in the presence of a quenched
velocity field were investigated by Zumofen and Klafter
s1994d. The quenched velocity field enhances the diffu-
sion in such a way that the effective action of the veloc-
ity field is reproduced if Lévy flights are substituted for
the simple random-walk motion. In the above-
mentioned reactions, particle density decay is algebraic
with an exponent related to the step length distribution
of the Lévy flights defined in Eq. s113d. These results
have been confirmed by several renormalization-group
calculations sOerding, 1996; Deem and Park, 1998a,
1998bd.

The A+A→x process with anomalous diffusion was
investigated by field theory sHinrichsen and Howard,
1999d. The action of this model is

Sfc̄,cg =E ddxdthc̄s]t − DN¹2 − DA¹sdc + 2lc̄c2

+ lc̄2c2 − n0c̄dstdj , s151d

where n0 is the initial shomogeneousd density at t=0.
The density decays for s,2 as

nstd , 5t−d/s for d , s ,

t−1 ln t for d = dc = s ,

t−1 for d . s .

s152d

The simulation results of the corresponding s1+1d-
dimensional lattice model sHinrichsen and Howard,
1999d can be seen in Fig. 12. It was also shown by Hin-
richsen and Howard s1999d that Lévy-flight annihilation
and coagulation processes sA+A→Ad are in the same
universality class.

D. Parity-conserving classes

In an attempt to generalize DP and compact-DP-like
systems, we turn to new models, in which a conservation
law is relevant. A new universality class appears among
s1+1d-dimensional, single-component, reaction-diffusion
models. Although it is usually named the parity-
conserving class, examples have proved that parity con-
servation alone is not a sufficient condition for the be-
havior of this class. For example, Inui et al. s1995d
showed that a one-dimensional stochastic cellular au-
tomaton with global parity conservation exhibited a DP-
class transition. The binary spreading process ssee Sec.
V.Fd in one sPark et al., 2001d and two dimensions sÓdor
et al., 2002d were also found to be insensitive to the pres-
ence of parity conservation. Multicomponent BARW2
models in one dimension ssee Sec. V.Kd generate differ-
ent, robust classes again sCardy and Täuber, 1996;
Hooyberghs et al., 2001; Ódor, 2001bd. Today it is known
that the BARW2 dynamics in single-component, single-
absorbing-state systems swithout inhomogeneities, long-
range interactions, or other symmetriesd provide suffi-
cient conditions for the parity-conserving class sCardy
and Täuber, 1996d. In single-component, multiabsorbing
state systems, Z2 symmetry is a necessary but not suffi-
cient condition—the BARW2 dynamics sSec. IV.D.1d of
domain walls is also a necessary condition. Some studies
have shown sPark and Park, 1995; Menyhárd and Ódor,
1996; Hwang et al., 1998d that an external field that de-

FIG. 11. sColor in online editiond Parabola boundary confine-
ment cluster simulations for compact directed percolation.
Middle curves: number of active sites sC=2,1.5,1.2,1, top to
bottomd; lower curves: survival probability sC=2,1.5,1.2,1, top
to bottomd; upper curves: R2std sC=2,1.5,1.2,1, top to bottomd.
From Ódor and Menyhárd, 2000.

FIG. 12. The anomalous annihilation process: the graph from
Hinrichsen and Howard s1999d shows direct estimates and ex-
trapolations for the decay exponent a, as a function of s. The
solid line represents the exact result sneglecting log corrections
at s=1d.
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stroys the Z2 symmetry of absorbing states sbut pre-
serves the BARW2 dynamicsd yields a DP-class instead
of a parity-conserving-class transition in the system.
Some other names for this class are also used, like the
directed Ising sDId class, or the BARW class.

1. Branching and annihilating random walks with even
number of offspring

Generic models of the parity-conserving class for
which field-theoretical treatments exist are the branch-
ing and annihilating random-walk models—introduced
in Sec. IV.A.3—with k=2 and even number smd of off-
spring sBARWe; Jensen, 1993c, 1994; ben Avraham et
al., 1994; Zhong and Avraham, 1995; Lipowski, 1996;
Janssen, 1997bd. These conserve the particle number
mod 2 and hence have two distinct sectors, an odd- and
an even-parity one. In the even sector, particles finally
die out sdÞ0,h=0d, while in the odd sector at least one
particle always remain alive sd=0,hÞ0d. BARWe dy-
namics may also appear in multicomponent models ex-
hibiting Z2-symmetric absorbing states in terms of the
kinks between ordered domains. Examples of such sys-
tems are the nonequilibrium kinetic Ising model sSec.
IV.D.2d and generalized Domany-Kinzel model sSec.
IV.D.3d. It has been conjectured sMenyhárd and Ódor,
2000d that in all models with Z2-symmetric absorbing
states an underlying BARWe process is a necessary con-
dition for phase transitions with parity-conserving criti-
cality. Sometimes it is not so easy to find the underlying
BARWe process, which can be seen on the coarse-
grained level only sin the generalized Domany-Kinzel
model, for instance, the kinks are spatially extended ob-
jectsd. This might have led some studies to the conjec-
ture that Z2 symmetry is a sufficient condition for the
parity-conserving class sHwang and Park, 1999d. How-
ever, the example of compact directed percolation ssee
Sec. IV.Cd shows that this cannot be true. The field
theory of BARWe models was investigated by Cardy
and Täuber s1996, 1998d. For this case the action

S =E ddxdtfcs]t − D¹2df − ls1 − c2df2

+ ss1 − c2dcfg s153d

is invariant under the simultaneous transformation of
fields,

c ↔ − c, f ↔ − f . s154d

Owing to the nonrecurrence of random walks in dù2,
the system is in the active phase for s.0 and a mean-

field transition occurs with b=1. However, the survival
probability of a particle cluster is finite for any s.0,
implying b8=0. Hence in contrast to the DP class b
Þb8 for dù2. At d=2 random walks are barely recur-
rent, and logarithmic corrections can be found. In this
case the generalized hyperscaling law sMendes et al.,
1994d is valid among the exponents

2S1 +
b

b8
Dd8 + 2h8 = dz . s155d

In d=1, however, b=b8 holds owing to an exact duality
mapping sMussawisade et al., 1998d and the hyperscaling
is the same as that of the DP class fEq. s90dg.

The RG analysis of BARWe processes for d,2 runs
into difficulties. These stem from the presence of an-
other critical dimension dc8=4/3 sabove which the
branching reaction is relevant at s=0, and irrelevant for
d,dc8d. Hence the d=1 dimension cannot be accessed by
controlled expansions from dc=2. Truncated one-loop
expansions sCardy and Täuber, 1996d for d=1 resulted in
the exponents

b = 4/7, ni = 3/7, n' = 7/17, Z = 2, s156d

which are quite far from the numerical values deter-
mined by Jensen’s simulations sJensen, 1994; Table
XVIId. Here the cluster exponents d and h correspond-
ing to a sector with an even number of initial particles
are shown. In the case of an odd number of initial par-
ticles they exchange values.

It has been conjectured sDeloubrière and van Wij-
land, 2002d that in one-dimensional fermionic ssingle-
occupancyd and bosonic smultiple-occupancyd models
may have different critical behaviors. Since only bosonic
field theory exists, which gives rather inaccurate critical
exponent estimates, Ódor and Menyhárd s2002d per-
formed bosonic simulations to investigate the density
decay of BARW2 from a random initial state. Figure 13
shows the local slopes of the density decay faeff s93dg
around the critical point for several branching rates ssd.
The critical point is estimated at sc=0.046 85s5d, with
the corresponding decay exponent a=0.290s3d. This
value agrees with that of the parity-conserving class.

If there is no explicit diffusion of particles besides the
AA→x, A→3A processes scalled DBAP by Sudbury,
1990d, an implicit diffusion can still be generated by spa-
tially asymmetric branching: Ax x →AAA and xxA
→AAA from which a diffusion may go on by two lattice
steps: Ax x →AAA→ x xA. As a consequence the
decay process slows down, and a single particle cannot
join a domain, hence domain sizes exhibit parity conser-

TABLE XVII. Critical exponents of branching and annihilating random walks with even offspring
sBARWed.

d b b8 g d Z ni h

1 0.92s3d 0.92s3d 0.00s5d 0.285s2d 1.75 3.25s10d 0.000s1d
2 1 0 1 0 2 1 −1/2
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vation. This results in additional new sectors sbesides the
existing two BARW2 sectorsd that depend on the initial
conditions. For example, in the case of random initial
distribution d,0.13s1d was measured by simulations
sHinrichsen and Ódor, 1999ad. Similar sector decompo-
sition has been observed in the diffusion of k-mer mod-
els fsee, for example, Barma et al. s1993d and Barma and
Dhar s1994dg.

2. The nonequilibrium kinetic Ising model

Another important representative of the parity-
conserving class appears among nonequilibrium Ising
models, in which the steady state is generated by kinetic
processes in connection with heat baths at different tem-
peratures sDeMasi et al., 1985, 1986; Gonzaléz-Miranda
et al., 1987; Wang and Lebowitz, 1988; Droz et al., 1989d.
This research has shown that phase transitions are pos-
sible even in one dimension under nonequilibrium con-
ditions sfor a review, see Rácz, 1996d. In short-ranged
interaction models any nonzero-temperature spin-flip
dynamics cause a disordered steady state. Menyhárd
proposed a class of general nonequilibrium kinetic Ising
models sNEKIMd with combined spin-flip dynamics at
T=0 and Kawasaki spin-exchange dynamics at T=`, in
which, for a range of parameters of the model, a parity-
conserving transition takes place sMenyhárd, 1994d.

A general form sGlauber, 1963d of the Glauber spin-
flip transition rate in one dimension for spin si= ±1 sit-
ting at site i is

wi =
G

2
s1 + d̃si−1si+1dS1 −

g̃

2
sissi−1 + si+1dD . s157d

Here g̃=tanhs2J /kTd, J denotes the coupling constant in

the ferromagnetic Ising Hamiltonian, and G and d̃ are
further parameters, which can in general also depend on
temperature. The Glauber model is a special case corre-

sponding to d̃=0,G=1. There are three independent
rates:

w↑↑↑ =
G

2
s1 + d̃ds1 − g̃d, w↓↑↓ =

G

2
s1 + d̃ds1 + g̃d ,

w↑↑↓ =
G

2
s1 − d̃d . s158d

In the NEKIM T=0 is taken, thus g̃=1, w↑↑↑=0, and G, d̃
are the control parameters to be varied.

The Kawasaki spin-exchange rate of neighboring
spins is

wii+1ssi,si+1d =
pex

2
s1 − sisi+1dS1 −

g̃

2
ssi−1si + si+1si+2dD .

s159d

At T= ` sg̃=0d the above exchange is simply an uncon-
ditional nearest-neighbor exchange:

wii+1 =
1
2

pexf1 − sisi+1g , s160d

where pex is the probability of spin exchange. The tran-
sition probabilities in Eqs. s157d and s160d are respon-
sible for the basic elementary processes of kinks sKd.
Kinks separating two ferromagnetically ordered do-
mains can carry out random walks with probability

prw ~ 2w↑↑↓ = Gs1 − d̃d , s161d

while two kinks getting into neighboring positions will
annihilate with probability

pan ~ w↓↑↓ = Gs1 − d̃d . s162d

Here w↑↑↑ is responsible for the creation of kink pairs
inside of ordered domains at TÞ0. In the case of spin
exchanges, which act only at domain boundaries, the
process of main importance here is that a kink can pro-
duce two offspring at the next time step with probability

pK→3K ~ pex. s163d

The above-mentioned three processes compete, and it

depends on the values of the parameters G, d̃, and pex
what the result of this competition will be. It is impor-
tant to realize that the process K→3K can develop into
propagation of offspring only if prw.pan, i.e., the new
kinks are able to travel to some lattice points away from
their place of birth and can thus avoid immediate anni-

hilation. It is seen from the above definitions that d̃,0 is
necessary for this to happen. In the opposite case the
only effect of the K→3K process on the usual Ising ki-
netics is to soften the domain walls. In the development
of the NEKIM the normalization condition prw+pan
+pk→3k=1 was set.

The phase diagram determined by simulations and
generalized mean-field calculations sMenyhárd and
Ódor, 1995, 2000d is shown in Fig. 14. The line of phase
transitions separates two kinds of steady states reach-

FIG. 13. sColor in online editiond Local slopes fEq. s93dg of the
density decay in a bosonic BARW2 model. Different curves
correspond to s=0.466,0.468,0.469,0.47 sfrom bottom to topd.
From Ódor and Menyhárd, 2002.
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able by the system for large times: in the Ising phase,
supposing that an even number of kinks are present in
the initial states, the system orders in one of the possible
ferromagnetic states of all spins up or all spins down,
while the active phase is disordered from the point of
view of the underlying spins. The cause of disorder is the
steadily growing number of kinks with time. While the
low-level, N=1,2 mean-field solutions for the stochastic
cellular automaton version of NEKIM exhibit first-order
transitions, for N.2 this becomes continuous. General-
ized mean-field approximations sup to N=6d with
coherent-anomaly-method extrapolation found b.1
sMenyhárd and Ódor, 1995d. Recent high-precision
Monte Carlo simulations sMenyhárd and Ódor, 2000d re-
sulted in critical exponents b=0.95s2d ssee Fig. 15d and
d=0.280s5d at the dotted line of the phase diagram.

Mussawisade et al. s1998d have shown that an exact
duality mapping exists in the phase diagram of the
NEKIM:

pan8 = pan,

prw8 = pan + 2pex,

2pex8 = prw − pan. s164d

The regions mapped onto each other have the same
physical properties. In particular, the line pex=0 maps
onto the line prw=pan and the fast-diffusion limit onto
the limit pex→`. There is a self-dual line at

d̃ =
− 2pex

1 − pex
. s165d

By various static and dynamical simulations, spin and
kink density critical exponents have been determined by
Menyhárd and Ódor s1996d and as a consequence of the
generalized hyperscaling law for the structure factor

Ss0,td = LfkM2l − kMl2g ~ tx, s166d

and kink density

nstd =
1

LKo
i

1
2

s1 − sisi+1dL ~ t−y s167d

the exponent relation

2y = x s168d

is established. Spins clusters at the parity-conserving
point grow by compact domains as in the Glauber point,
albeit with different exponents sMenyhárd and Ódor,
1998d. The spin-cluster critical exponents in the mag-
netic field are summarized in Table I. The global persis-
tence sugd and time autocorrelation exponents sld were
determined both at the Glauber and at the parity-
conserving critical points sMenyhárd and Ódor, 1997d
and are shown in Table XVIII. While at the Glauber
point the scaling relation s17d is satisfied by these expo-
nents, this is not the case at parity-conserving criticality.
Therefore the magnetization is a non-Markovian pro-
cess here. By applying an external magnetic field h that
breaks the Z2 symmetry, one causes the transition type
of the model to change to the DP type ssee Table XIX;
Menyhárd and Ódor, 1996d.

Menyhárd and Ódor s2002d introduced a related
model in which the symmetry of the spin updates was
broken in such a way that two different types of domain
walls emerged. The following changes to the Glauber

spin-slip rates fEq. s158dg with G=1,d̃=0 were intro-
duced:

w↑↓↑ = 0, s169d

FIG. 14. sColor in online editiond Phase diagram of the two-
parameter model. The transversal dotted line indicates the
critical point that was investigated in more detail. From Meny-
hárd and Ódor, 2000.

FIG. 15. sColor in online editiond beff=d ln r` /d ln e of kinks
scirclesd near the critical point se= ud̃− d̃8ud and linear extrapo-
lation slined to the asymptotic value fb=0.95s2dg. Simulations
were performed on a one-dimensional NEKIM ring of size L
=24 000. From Menyhárd and Ódor, 2000.
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w↑↑↓ = w↓↑↑ = p+ , 1/2, s170d

while the spin-exchange part remained the same. In the
terminology of domain walls as particles, the following
reaction-diffusion picture arises. Owing to the symmetry
breaking there are two kinds of domain walls ↓↑ ;A
and ↑↓ ;B, which can only occur alternately
s. . .B . .A . .B . .A . .B . . .A . . . d owing to the spin back-
ground. When the two types meet, AB→x happens,
while in the opposite sequence, BA, the two domain-
walls are repulsive due to Eq. s169d. The spin exchange
leads to the A↔ABA and B↔BAB type of kink reac-
tions, which together with the diffusion of A’s and B’s
leads to a kind of two-component, coupled branching
and annihilating random walk ssee Sec. V.Kd. There are
two control parameters in this model: pex, which regu-
lates the kink production-annihilation, and p+, which is
responsible for local symmetry breaking fEq. s170dg.
Simulations show that for pex→0, p+,0.5 an absorbing
phase emerges with exponents belonging to the
N-BARW2 class, a class of even-offspring, N-component
BARW, while the transition on the pex.0 line belongs
to the s1+1d-dimensional DP class. sOwing to the pair-
wise order of kinks, hard-core effects cannot play a
role.d Since the AB→x reaction breaks the parity con-
servation of the species, but preserves the global parity
conservation, the necessary conditions for the
N-BARW2 class can be eased. On the other hand, the
occurrence of the DP transition introduces a zero-
branching-rate condition for N-BARW2 universal be-
havior. This study and the results for the generalized
contact process sSec. V.Kd emphasize that the conditions
for the N-BARW2 class should be further investigated.

A generalization is the probabilistic cellular automa-
ton version of NEKIM, sometimes known as NEKIM-
CA, which consists in keeping the spin-flip rates given in
Eqs. s158d and prescribing synchronous updating. In this
case the K→3K branching is generated without the
need of an additional, explicit spin-exchange process,

and for certain values of parameter pairs sG , d̃d with

d̃,0 a parity-conserving transition takes place. The

phase boundary of NEKIM-CA in the sG ,−d̃d plane is
similar to that in Fig. 14 except that the highest value of

G=1,d̃c=0 cannot be reached; the limiting value is d̃c
=−0.065.

Another possible variant of NEKIM was introduced
by Menyhárd and Ódor s2000d in which the Kawasaki
rate equation s159d is considered at some finite tempera-
ture, instead of T=`, but keeping T=0 in the Glauber
part of the rule. When the temperature is lowered the
spin-exchange process acts against the kink production
and a parity-conserving class transition occurs. In this
case the active phase part of the phase diagram shrinks.
For more details see Ódor et al. s1999d.

The damage-spreading transition of this model coin-
cides with the critical point, and the scaling behavior of
spin and kink damage is the same as that of the corre-
sponding NEKIM variables sÓdor and Menyhárd, 1998d.

3. Parity-conserving stochastic cellular automata

The first models in which a non-DP-class transition to
an absorbing state was firmly established were one-
dimensional stochastic cellular automata defined by
Grassberger et al. s1984d. In these models the 00 and 11
pairs follow BARW2 dynamics and their density is the
order parameter that vanishes at some critical point. The
parity-conserving-class critical exponents were esti-
mated by simulations for these models by Grassberger
s1989bd. While in the “A” model the critical point coin-
cides with the damage-spreading transition point and
both of them are parity-conserving type, in the “B”
model the damage-spreading transition occurs in the ac-
tive phase—where the symmetry of replicas is broken—
and therefore the damage-spreading exponents belong
to the DP class sÓdor and Menyhárd, 1998d.

Another stochastic cellular automaton, which may ex-
hibit a parity-conserving-class transition and which is
studied later from different directions, is also introduced
here. It points out that the underlying BARW2 dynamics
of domain walls inZ2-symmetric systems can sometimes
be seen on the coarse-grained level only. This generali-
zation of the Domany-Kinzel stochastic cellular automa-

TABLE XVIII. Simulation data for static and dynamic critical spin exponents for the nonequilibrium
kinetic ising model sNEKIMd.

bs gs n',s Z ug ls

Glauber-Ising 0 1/2 1/2 2 1/4 1
Parity-conserving 0.00s1d 0.444s2d 0.444s2d 1.75s1d 0.67s1d 1.50s2d

TABLE XIX. Coherent-anomaly-method estimates for the kink density and its fluctuation expo-
nents.

h 0.0 0.01 0.05 0.08 0.1 DP

b 1.0 0.281 0.270 0.258 0.285 0.2767s4d
g 0.674 0.428 0.622 0.551 0.5438s13d
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ton sDomany and Kinzel, 1984; see Sec. IV.A.2d was in-
troduced by Hinrichsen s1997d. The model has n+1
states per site: one active state Ac and n different inac-
tive states I1 ,I2 , . . . ,In. The conditional updating prob-
abilities are given by sk , l=1, . . . ,n ; kÞ ld

PsIkuIk,Ikd = 1, s171d

PsAcuAc,Acd = 1 − nPsIkuAc,Acd = q , s172d

PsAcuIk,Acd = PsAcuAc,Ikd = pk, s173d

PsIkuIk,Acd = PsIkuAc,Ikd = 1 − pk,

PsAcuIk,Ild = 1, s174d

and the symmetric case p1 , . . . ,pn=p was explored.
Equations s171d–s173d are straightforward generaliza-
tions of Eqs. s98d–s100d. The only different process is the
creation of active sites between two inactive domains of
different colors in Eq. s174d. For simplicity the probabil-
ity of this process was chosen to be equal to 1.

For n=1 the model defined above reduces to the origi-
nal Domany-Kinzel model. For n=2 it has two
Z2-symmetrical absorbing states. The phase diagram of
this model is very similar to that of the Domany-Kinzel
model sFig. 6d except the transition line is of the parity-
conserving type. If we call the regions separating inac-
tive domains I1 and I2 domain walls sdenoted by Kd, they
follow a BARW2 process,

K → 3K, 2K → x , Kx ↔ xK , s175d

but for 1.q.0 the size of the active regions and hence
the domain walls remains finite. Therefore observation
of the BARW2 process is not so easy and can be done
on a coarse-grained level only sexcept at the end point at
q=0, where active sites really look like kinks of the
NEKIMd. Series expansions for the transition point and
for the order-parameter critical exponent resulted in b
=1.00s5d sJensen, 1997d, which is slightly higher than the
most precise simulation results sMenyhárd and Ódor,
2000d but agrees with estimates by the mean-field
+coherent-anomaly method sMenyhárd and Ódor,
1995d. Similarly to the NEKIM the application of an ex-
ternal symmetry-breaking field changes the transition
from the parity-conserving class to the DP class sHin-
richsen, 1997d. The other symmetrical end point sq
=1,p= 1

2
d in the phase diagram again shows different

scaling behavior shere three types of compact domains
grow in competition, while the boundaries perform an-
nihilating random walks with exclusions ssee. Sec. V.Bd.

Models with n.3 symmetric absorbing states in one
dimension do not show phase transitions sthey are al-
ways actived. In terms of domain walls as particles they
are related to sN.1d-component N-BARW2 processes,
which exhibit a phase transition only for zero branching
rate ssee Sec. V.K; Cardy and Täuber, 1996; Hooyberghs
et al., 2001d.

Generalized Domany-Kinzel-type models—exhibiting
n symmetric absorbing states—can be generalized to

higher dimensions. In two dimensions Hinrichsen’s
spreading simulations for the n=2 case yielded mean-
field-like behavior with d=1, h=0, and z=1, leading to
the conjecture that 1,dc,2. A similar model exhibiting
Potts-like Zn-symmetric absorbing states in d=2 yielded
similar spreading exponents, but a first-order transition
sb=a=0d for n=2 sLipowski and Droz, 2002ad. In three
dimensions the same model seems to exhibit a mean-
field-like transition with b=1. The verification of these
findings would require further research.

4. Parity-conserving-class surface-catalytic models

In this subsection I discuss some one-dimensional,
surface-catalytic-type reaction-diffusion models exhibit-
ing parity-conserving-class transitions. Strictly speaking
they are multicomponent models, but I show that the
symmetries among species enable us to interpret the
domain-wall dynamics as a simple BARW2 process.

The two-species monomer-monomer sMMd model was
first introduced by Zhuo et al. s1993d. Two monomers,
called A and B, adsorb at the vacant sites of a one-
dimensional lattice with probabilities p and q, respec-
tively, where p+q=1. The adsorption of a monomer at a
vacant site is affected by monomers present on neigh-
boring sites. If either neighboring site is occupied by the
same species as that trying to adsorb, the adsorption
probability is reduced by a factor r,1, mimicking the
effect of a nearest-neighbor repulsive interaction. Un-
like monomers on adjacent sites react immediately and
leave the lattice, leading to a process limited by adsorp-
tion only. The basic reactions are

x → A, x → B, AB → x . s176d

The phase diagram, displayed in Fig. 16 with p plotted vs
r, shows a reactive steady state containing vacancies bor-
dered by two equivalent saturated phases slabeled A
and Bd. The transitions from the reactive phase to either
of the saturated phases are continuous, while the transi-
tion between the saturated phases is first-order discon-
tinuous. The two saturated phases meet the reactive
phase at a bicritical point at a critical value of r=rc. In

FIG. 16. Phase diagram of the monomer-monomer model.
Here p denotes the adsorption probability of A-s, r the re-
duced adsorption probability of A-s as the consequence of
nearest-neighbor repulsion. From Brown et al., 1997.
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the case of r=1, the reactive region no longer exists and
the only transition is a first-order discontinuous line be-
tween the saturated phases. Considering the density of
vacancies between unlike species as the order parameter
swhich can also be called a species “C”d, the model is the
so-called “three-species monomer-monomer model.”
Simulations and cluster mean-field approximations were
applied to investigate the phase transitions of these
models sBassler and Browne, 1996, 1997, 1998; Brown et
al., 1997d. As Fig. 17 shows, if we consider the extended
objects filled with vacancies between different species to
be domain walls sCd, we can observe C→3C and 2C
→x BARW2 processes in terms of them. These C
parity-conserving processes arise as a combination of the
elementary reaction steps s176d. The reactions always
take place at domain boundaries, hence the
Z2-symmetric A and B saturated phases are absorbing.

The interacting monomer-dimer model sKim and
Park, 1994d is a generalization of the simple monomer-
dimer model sZiff et al., 1986d, in which particles of the
same species have nearest-neighbor repulsive interac-
tions. This model is parametrized by specifying that a
monomer sAd can adsorb at a nearest-neighbor site of an
already-adsorbed monomer srestricted vacancyd at a rate
rAkA with 0ørAø1, where kA is the adsorption rate of a
monomer at a free vacant site with no adjacent
monomer-occupied sites. Similarly, a dimer sB2d can ad-
sorb at a pair of restricted vacancies sB in nearest-
neighbor sitesd at a rate rBkB with 0ørBø1, where kB is
the adsorption rate of a dimer at a pair of free vacancies.
There are no nearest-neighbor restrictions in adsorbing
particles of different species, and the AB→x desorp-
tion reaction happens with probability 1. The case rA
=rB=1 corresponds to the ordinary noninteracting
monomer-dimer model, which exhibits a first-order
phase transition between two saturated phases in one
dimension. In the other limiting case, rA=rB=0, there
exists no fully saturated phase of monomers or dimers.
However, this does not mean that this model no longer
has any absorbing states. In fact, there are two equiva-
lent sZ2-symmetricd absorbing states in this model.
These states comprise only the monomers at the odd- or
even-numbered lattice sites. A pair of adjacent vacan-
cies is required for a dimer to adsorb, so a state with
alternating sites occupied by monomers can be identified

with an absorbing state. The parity-conserving-class
phase transition of the rA=rB=0 infinite repulsive case
has been thoroughly investigated sKim and Park, 1994;
Kwon and Park, 1995; Park and Park, 1995; Park et al.,
1995; Hwang et al., 1998d. As one can see, the basic re-
actions are similar to those of the MM model fEq. s176dg
but the order parameter here is the density of dimers
sKd that may appear between ordered domains of alter-
nating sequences: 0A0. .A0A and A0A . .0A0, where
monomers are on even or odd sites only. The recogni-
tion of an underlying BARW2 process s175d is not so
easy in this case. Still, considering regions between odd
and even filled ordered domains, one can identify
domain-wall random-walk, annihilation, and branching
processes through the reactions with dimers, as one can
see from the examples below. The introduction of a
Z2-symmetry-breaking field, which makes the system
prefer one absorbing state to another, was shown to
change that transition type from parity-conserving to DP
sPark and Park, 1995d:

t A 0 A 0 A 0 A 0 A 0 0 A 0 A 0 A K

t + 1 A 0 A 0 A 0 A 0 A B B A 0 A 0 A K

t + 2 A 0 A 0 A 0 A 0 0 0 B A 0 A 0 A K K K

t A 0 A 0 A 0 A 0 A 0 0 0 A 0 A 0 K K

t + 1 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0

5. Nonequilibrium kinetic Ising model with long-range
correlated initial conditions

The effect of initially long-range correlations has al-
ready been discussed for two-dimensional Ising models
sSec. III.A.5d and for one-dimensional bond percolating
systems sSec. IV.A.7d. In both cases continuously chang-
ing decay exponents have been found. In case of the
NEKIM ssee Sec. IV.D.2d, simulations sÓdor et al., 1999;
Menyhárd and Ódor, 2000d have shown that the density
of kinks rkstd changes as

rkstd ~ tkssd s177d

when the system begins with two-point correlated kink
distributions of the form of Eq. s122d. The kssd changes
linearly between the two extremes b /ni =±0.285, as
shown in Fig. 18. This behavior is similar to that of the
DP model sSec. IV.A.7d, but here one can observe a
symmetry:

s ↔ 1 − s, k ↔ − k , s178d

which is related to the duality symmetry of the NEKIM
fEq. s164dg.

6. The Domany-Kinzel cellular automaton with spatial
boundary conditions

The surface critical behavior of the parity-conserving
class has been explored through the study of the gener-
alized Domany-Kinzel model sSec. IV.D.3; Lauritsen et
al., 1998; Howard et al., 2000; Frojdh et al., 2001d. The
basic idea is that on the surface one may include not

FIG. 17. Domain-wall dynamics in the interacting monomer-
monomer model: A particle reaction, branching; B particle re-
action, annihilation.
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only the usual BARW2 reactions fEq. s175dg but also a
parity symmetry-breaking A→x reaction. Depending
on whether or not the A→x reaction is actually
present, we may then expect different boundary univer-
sality classes. Since time-reversal symmetry fEq. s88dg is
broken for BARW2 processes, two independent expo-
nents sb1,seed, b1,densd characterize the surface critical be-
havior.

The surface phase diagram for the mean-field theory
of BARW svalid for d.dc=2d is shown in Fig. 19. Here
sm, sms

are the rates for the branching processes A
→ sm+1dA in the bulk and at the surface, respectively,
and ms is the rate for the surface spontaneous annihila-
tion reaction A→x. Otherwise, the labeling is the same
as that for the DP phase diagram ssee Fig. 7d. The ms.0
corresponds to the parity symmetry-breaking reflecting
boundary condition.

For the ms=0 sinactive boundary conditiond parity-
conserving case, the surface action is of the form

Ss =E dd−1xiE
0

t

dto
l=1

m/2

s2ls
s1 − cs

2lcsfsd , s179d

where cs=csxi ,x'=0, td and fs=fsxi ,x'=0, td. In d=1
the boundary and bulk transitions are inaccessible to
controlled perturbative expansions, but scaling analysis
shows that surface branching is irrelevant, leading to the
Sp* and Sp special transitions. For the case of ms.0
sreflecting boundary conditiond parity symmetry break-
ing, the surface action is

S2 =E dd−1xiE
0

t

dtSo
l=1

m

sls
s1 − cs

ldcsfs

+ msscs − 1dfsD , s180d

and the RG procedure shows that the stable fixed point
corresponds to an ordinary transition. Therefore in one
dimension the phase diagram looks very different from
the mean-field case sFig. 20d. One can differentiate two
cases corresponding to sad the annihilation fixed point of
the bulk and sbd the parity-conserving critical point of
the bulk. As one can see in both cases the ordinary tran-
sition sO ,O* d corresponds to ms.0, the reflecting
boundary condition, and the special transitions
sSp ,Sp* d to ms=0, the inactive boundary condition. The
active boundary condition obviously behaves as if there
existed a surface reaction equivalent to x→A, and thus
it belongs to the normal transition universality class. By
scaling considerations the following scaling relations can
be derived:

t1 = ni − b1,dens, s181d

ni + dn' = b1,seed + bdens + g1. s182d

Howard et al. s2000d showed that on the self-dual line of
the one-dimensional BARWe model ssee Sec. IV.D.2
and Mussawisade et al., 1998d the scaling relations be-
tween exponents of ordinary and special transitions,

b1,seed
O = b1,dens

Sp s183d

and

b1,seed
Sp = b1,dens

O , s184d

hold. Relying on universality Howard et al. claim that
they should be valid elsewhere close to the transition

FIG. 18. sColor in online editiond Kink density lnfrkstdg vs lnstd
in NEKIM simulations for s=0,0.1,0.2, . . . ,1 initial conditions
sfrom bottom to top curvesd. From Menyhárd and Ódor, 2000.

FIG. 19. Schematic mean-field boundary phase diagram for
BARW. See text for an explanation of the labeling. From
Fröjdh et al., 2001.

FIG. 20. Schematic surface phase diagrams for BARW in d
=1 for sad sm,sm,critical, and sbd sm=sm,critical. See text for an
explanation of the labeling. From Fröjdh et al., 2001.
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line. Numerical simulations support this hypothesis, as
shown in Table XX.

E. Branching with kA→x annihilation

In Sec. IV.C.1 the 2A→x annihilating random walk
sARWd was introduced. By adding branching processes
to it we defined the BARWo and BARWe models exhib-
iting continuous phase transitions ssee Secs. IV.A.3 and
IV.D.1d. Now we generalize this construction to models
with m branching and kA→x annihilation sBkARWd,
formulating the field-theoretical action

S =E ddxdtfcs]t − D¹2df − ls1 − ckdfk

+ ss1 − cmdcfg . s185d

These systems for k.2 exhibit continuous phase transi-
tions at zero branching rate with an upper critical di-
mension: dc=2/ sk−1d sLee, 1994; Cardy and Täuber,
1998d with the mean-field exponents

a = b = 1/sk − 1d, Z = 2, n' = 1/2. s186d

At dc swhich falls below physical dimensions for k.3d
the decay has logarithmic corrections:

rstd = Akflnstd/tg1/sk−1d. s187d

So for the AAA→x process in one dimension this gives
the decay behavior sLee, 1994d

rstd = S 1

4pÎ3D
D1/2

flnstd/tg1/2 + Ost1/2d , s188d

which is the dominant behavior of the one-dimensional
bosonic pair-contact model with particle diffusion at the
transition point ssee Sec. V.Fd. Note that for k=3, m
=1,2 the field theory of Cardy and Täuber s1998d pre-
dicts DP-class transitions in d=1 owing to the BARWo
terms generated by renormalization.

F. General nA→ sn+kdA, mA→ sm− ldA processes

For a long time reaction-diffusion models with only
single-parent branching have been investigated, al-
though there was an early forgotten numerical result by

Grassberger s1982cd claiming a non-DP-type of continu-
ous phase transition in a model where particle produc-
tion can occur by the reaction of two parents. Later it
turned out that in such binary production lattice models,
where solitary particles follow a random walk sand
hence behave like a coupled systemd, different universal
behavior emerges ssee Sec. V.Fd. In this subsection I
shall discuss the mean-field classes in the models

nA→
s

sn + kdA, mA→
l

sm − ldA , s189d

with n.1, m.1, k.0, l.0, and m− lù0. If n particles
collide, then they can spawn k additional particles, while
if m particles collide, then m of those particles is anni-
hilated. In low dimensions the site-restricted and
bosonic versions of these models exhibit different be-
havior. The field theory of the n=m= l=2, bosonic
model was investigated by Howard and Täuber s1997d,
who concluded that it possessed a non-DP-type of criti-
cality with dc=2 ssee Sec. V.Fd. For other cases no rigor-
ous field-theoretical treatments exist. Numerical simula-
tions in one and two dimensions for various n=3 and
n=4 models have resulted in somewhat contradictory
results sPark et al., 2002; Kockelkoren and Chaté, 2003a;
Ódor, 2003ad. There is disagreement as to the value of
the upper critical dimension, but in any case dc seems to
be very low sdc=1−2d, hence the number of non-mean-
field classes in such models is limited. By contrast, there
is a series of mean-field classes depending on n and m.

1. The n =m symmetric case

In such models there is a continuous phase transition
at finite production probability: at sc.0 characterized
by the order-parameter exponents sPark et al., 2002;
Ódor, 2003ad:

b = 1, a = 1/n . s190d

These classes generalize the mean-field class of the
directed-percolation sSec. IV.Ad and binary production
models sSec. V.Fd. For purposes of referencing it in
Table XXXII of the Summary, I call it the PARW’s ssym-
metric production and m-particle annihilating random
walkd class.

2. The n >m case

In this case the mean-field solution provides a first-
order transition ssee see Ódor, 2003ad, hence it does not
imply anything with respect to possible classes for mod-
els below the critical dimension sd,dcd. Note, however,
that by higher-order cluster mean-field approximations,
when the diffusion plays a role the transition may be-
come a continuous one ssee, for example, Ódor et al.,
1993; Menyhárd and Ódor, 1995; Ódor and Szolnoki,
1996d.

3. The n <m case

In this case the critical point is at zero production
probability sc=0 where the density decays as aMF

TABLE XX. Critical boundary exponents of the parity-
conserving class in d=1,2 for ordinary and special cases: IBC,
inactive boundary condition; RBC, reflecting boundary condi-
tion; O, one dimensional; Sp, special.

One
dimensional

sIBCd

One
dimensional

sRBCd

Two
dimensional

sOd

Two
dimensional

sSpd

b1,seed 2.06s2d 1.37s2d 0 0
b1,dens 1.34s2d 2.04s2d 3/2 1
t1 1.16s4d 1.85s4d 1 1
g1 2.08s4d 2.77s4d 1/2 1/2
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=1/ sm−1d as in case of the n=1 branching and m= l
annihilating models sBkARW classes; see Sec. V.Ed, but
the steady-state exponent is different: bMF=1/ sm−nd,
defining another series of mean-field classes sPARWa;
Ódor, 2003ad. Again cluster mean-field approximations
may predict the appearance of other s.0 transitions
with different critical behavior.

V. UNIVERSALITY CLASSES OF MULTICOMPONENT
SYSTEMS

First I shall recall some well-known results ssee refer-
ences in Privman, 1996d for multicomponent reaction-
diffusion systems without particle creation. From the
viewpoint of phase transitions these describe the behav-
ior in the inactive phase or, in the case of some
N-component BARW models, right at the critical point.
Then I shall show the effect of particle exclusions in one
dimension. Later I shall discuss universal behavior of
more complex, coupled multicomponent systems. This
field is quite new and some of the results are still under
debate.

A. The A+B→x classes

The simplest two-component reaction-diffusion model
involves two types of particles undergoing diffusive ran-
dom walks and reacting upon contact to form an inert
particle. The action of this model is

S =E ddxdtfcAs]t − DA¹2dfAcBs]t − DB¹2dfB

− ls1 − cAcBdfAfBg − rs0dfcAs0d + cBs0dg , s191d

where DA and DB denote the diffusion constants of spe-
cies A and B. In d,dc=4 dimensions and for homoge-
neous, initially equal density of A and B particles sr0d
the density decays asymptotically as sBurlatskii and
Ovchinnikov, 1978; Ovchinnikov and Zel’dovich, 1978;
Toussaint and Wilczek, 1983; Kang and Redner, 1985;
Bramson and Lebowitz, 1988; Lee and Cardy, 1995d

rAstd = rBstd ~ CÎDt−d/4, s192d

where D=rs0d−C8rd/2s0d+ ¯ , C is a universal constant,
and C8 is a nonuniversal constant. This slow decay be-
havior is due to the fact that, in the course of the reac-
tion, local fluctuations in the initial distribution of reac-
tants lead to the formation of clusters of like particles
that do not react, and they will be asymptotically segre-
gated for d,4. The asymptotically dominant process is
the diffusive decay of the fluctuations of the initial con-
ditions. Since this is a short-ranged process, the system
has a long-time memory—appearing in the amplitude
dependence—for the initial density rs0d. For dø2 a con-
trolled RG calculation is not possible, but the result
s192d gives the leading-order term in e=2−d expansion.
For the case of DAÞDB a RG study sLee and Cardy,
1995d found a new amplitude but the same exponents.

The persistence behavior in one dimension with ho-
mogeneous, equal initial density of particles fr0=rAs0d
+rBs0dg was studied by O’Donoghue and Bray s2001d.
The probability pstd that an annihilation process has not
occurred at a given site stype-I persistenced has the
asymptotic form

pstd , const + t−ul. s193d

For a density of particles r@1, ul is identical to that
governing the persistence properties of the one-
dimensional diffusion equation, where ul<0.1207. In the
case of an initially low density, r0!1, ul<1/4 was found
asymptotically. The probability that a site remains unvis-
ited by any random walker stype-II persistenced decays in
a stretched exponential way:

pstd , exps− const 3 r0
1/2t1/4d s194d

provided r0!1.

B. AA→x, BB→x with hard-core repulsion

The next-simplest two-component model in which
particle blocking may be effective in low dimensions was
investigated first in the context of a stochastic cellular
automaton model. At the symmetric point of the gener-
alized Domany-Kinzel model ssee Sec. IV.D.3d, compact
domains of I1 and I2 grow separated by A=Ac−I1 and
B=Ac−I2 kinks that cannot penetrate each other. In
particle language, this system is a reaction-diffusion
model of two types A+A→x, B+B→x with the exclu-
sion AB}BA and special pairwise initial conditions
sbecause the domains are bounded by kinks of the same
typed:

. . . . A . . . A . . . B . B . . B . . . . . B . . A . . A . .

In the case of homogeneous, pairwise initial conditions,
simulations by Ódor and Menyhárd s2000d showed a
density decay of kinks r~ t−a characterized by a power
law with an exponent somewhat larger than a=0.5. The
a=1/2 would have been expected in the case of two
copies of ARW systems that do not exclude each other.
Furthermore, the deviation of a from 1/2 showed an
initial density dependence. Ódor and Menyhárd s2000d
provided a possible explanation based on permutation
symmetry between types, according to which hard-core
interactions cause marginal perturbation resulting in
nonuniversal scaling. The situation is similar to that of
compact directed percolation that is confined by para-
bolic boundary conditions ssee Sec. IV.C.3d if we assume
that AB and BA pairs exert parabolic space-time con-
finement on coarsening domains. Nonuniversal scaling
can also be observed at surface critical phenomena.
Similarly here, AB, BA pairs produce “multisurfaces” in
the bulk. However, simulations and independent interval
approximations in a similar model predict logarithmic
corrections to the single-component decay with the form
r, t−1/2 / lnstd sMajumdar et al., 2001d. Note that both
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kinds of behavior may occur in case of marginal pertur-
bations. Cluster simulations sÓdor and Menyhárd, 2000d
also showed an initial-density- frI1s0dg dependent sur-
vival probability of I2’s in the sea of I1’s:

PI2std ~ t−dfrI1s0dg. s195d

However, this reaction-diffusion model with homoge-
neous, random initial distribution of A’s and B’s exhibits
a much slower density decay. An exact duality mapping
helps to understand the coarsening behavior. Consider
the left-most particle, which may be either A or B, and
arbitrarily relabel it as a particle of species X. For the
second particle, we relabel it as Y if it is the same species
as the initial particle; otherwise we relabel the second
particle as X. We continue to relabel each subsequent
particle according to this prescription until all particles
are relabeled from hA ,Bj to hX ,Yj. For example, the
string

AABABBBA¯

translates to

XYYYYXYY ¯ .

The diffusion of the original A and B particles at equal
rates translates into diffusion of the X and Y particles.
Furthermore, the parallel single-species reactions, A
+A→x and B+B→x, translate directly to two-species
annihilation X+Y→x ssee Sec. V.Ad in the second sys-
tem. The interesting point is that, in the X+Y→x
model, blockades do not exist, because XY pairs annihi-
late, and there is no blockade between XX and YY
pairs. Therefore the density decay should be propor-
tional to t−1/4. Simulations confirmed this for the A+A
→x, B+B→x model sÓdor, 2001cd. Nevertheless cor-
rections to scaling were also observed. The pairwise ini-
tial condition transforms in the second system to do-
mains of . .XYXY . . separated by YY and XX pairs,
which do not allow X and Y particles to escape each
other.

C. Multispecies Ai+Aj→x classes

When the diffusion-limited reactions AB→x sSec.
V.Ad for q.2 species are generalized,

Ai + Aj → x , s196d

in dù2 dimensions the asymptotic density decay for
such mutual annihilation processes with equal rates and
initial densities is the same as for single-species pair an-
nihilation AA→x.

In d=1, however, particles of different types cannot
pass each other and segregation occurs for all q,`. The
total density decays according to a q-dependent power
law, r~ t−asqd, with

a = sq − 1d/2q s197d

exactly sDeloubrière et al., 2002d. These findings were
also supported by Monte Carlo simulations. Special ini-
tial conditions such as . . .ABCDABCD. . . prevent the
segregation and lead to decay of the 2A→x model sSec.
IV.C.1d.

D. Unidirectionally coupled ARW classes

Above we have considered symmetrically coupled
ARW systems. Now let us turn to unidirectionally
coupled ARW sSec. IV.C.1d models:

A + A → x, A → A + B ,

B + B → x, B → B + C ,

C + C → x, C → C + D ,

. . . . s198d

These models were introduced and analyzed with the
RG technique and simulations by Goldschmidt s1998d.
In unidirectional coupling, A→B constitutes a sponta-
neous death process of A particles leading to exponen-
tial density decay. On the other hand, quadratic coupling
of the form A+A→B+B leads to asymptotically decou-
pled systems sHoward and Täuber, 1997d. The mean-
field theory is described by the rate equation for the
density risx , td at level i:

]risx,td
]t

= D¹2risx,td − 2lirisx,td2 + si,i−1ri−1sx,td ,

s199d

which relates the long-time behavior of level i to that of
level i−1:

ristd ~ ri−1
1/2 . s200d

By inserting into this the exact solution for annihilating
random walks sSec. IV.C.1d, one gets

ristd , 5t−d/2i for d , 2,

st−1 ln td1/2i−1 for d = dc = 2,

t−1/2i−1 for d . 2.

s201d

The action of a two-component system with fields a, â, b,

b̂ for equal annihilation rates sld takes the form

S =E ddxE dtfâs]t − D¹2da − ls1 − â2da2

+ b̂s]t − D¹2db − ls1 − b̂2db2 + ss1 − b̂dâag . s202d

The RG solution is plagued by IR-divergent diagrams
similarly to that of unidirectionally coupled directed per-
colation ssee Sec. VI.Hd, which can be interpreted as
evidence of an eventual nonuniversal crossover to the
decoupled regime. Simulation results—exhibiting finite
particle numbers and coupling strengths—really show
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the breakdown of scaling fEq. s201dg, but the asymptotic
behavior could not be determined. Therefore the results
s201d are valid for an intermediate time region.

E. Directed percolation coupled to frozen fields

One of the first generalizations of absorbing phase-
transition models were systems in which percolation is
coupled to frozen fields; these classes exhibit many ab-
sorbing states, hence not fulfilling the conditions of the
DP hypothesis sJanssen, 1981; Grassberger, 1982a; Sec.
IVd. Several variants of models with infinitely many ab-
sorbing states containing frozen particle configurations
have been introduced. In these models, nondiffusive
sslaved particles are coupled to a DP-like sorder param-
eterd process. In the case of homogeneous, uncorrelated
initial conditions, DP-class exponents have been found,
whereas in cluster simulations—which involve a corre-
lated initial state of the order-parameter particles—
initial-density-dependent scaling exponents sh and dd
arise. These cluster exponents take the DP-class values
only if the initial density of the slave particles agrees
with the “natural density” that occurs in the steady state.
The first such models, introduced by Jensen s1993ad and
Jensen and Dickman s1993ad were the so-called pair-
contact process ssee Sec. V.Ed and the dimer reaction
model. These systems seem to be single-component
ones, when rules for the pairs are defined, but the iso-
lated, frozen particles behave as a second component. In
the threshold transfer process sMendes et al., 1994d the
two components are defined as the 2’s, which follow the
DP process, and the 1’s, which decay or reappear as

x→
r

1→
1−r

x.
For the pair-contact model defined by the simple pro-

cesses s205d, a set of coupled Langevin equations were
set up sMuñoz et al., 1996, 1998d for the fields n1sx , td and
n2sx , td:

]n2

]t
= fr2 + D2¹

2 − u2n2 − w2n1gn2 + În2h2, s203ad

]n1

]t
= fr1 + D1¹

2 − u1n2 − w1n1g + În2h1, s203bd

where Di, ri, ui, and wi are constants and h1sx , td and
h2sx , td are Gaussian white noise terms. Owing to the
multiple absorbing states and the lack of the time-
reversal symmetry fEq. s88dg a generalized hyperscaling
law s155d was derived by Mendes et al. s1994d. As dis-
cussed by Muñoz et al. s1998d this set of equations can be
simplified by dropping the D1, u1, and noise terms in Eq.
s203bd and then solving that equation for n1 in terms of
n2. Substituting this result for n1 into Eq. s203ad yields

]n2sx,td
]t

= D2¹
2n2sx,td + m2n2sx,td − u2n2

2sx,td

+ w2fr1/w1 − n1sx,0dgn2sx,tde−w1e0
t n2sx,sdds

+ În2sx,tdh2sx,td , s204d

where n1sx ,0d is the initial condition of the n1 field, and
m2=r2−w2r1 /w1. The “natural density” sJensen and
Dickman, 1993d, n1

nat, then corresponds to the uniform
density, n1st=0d=r1 /w1, for which the coefficient of the
exponential term vanishes, and we get back the Lange-
vin equation s84d for directed percolation. This deriva-
tion provides a simple explanation for the numerical ob-
servation of DP exponents in the case of natural initial
conditions. However, it does not take into account the
long-time memory and the fluctuations of passive par-
ticles fwith power-law time and p dependences sÓdor et
al., 1998dg. Therefore some of the terms omitted from
this derivation sfor instance, the term proportional to n2

2

in the equation for n1d cannot be safely eliminated
sMarques et al., 2001d and this simplified theory does not
generate critical fluctuations for its background field.
This treatment has still not provided theoretical proof
for the initial-density-dependent spreading exponents
observed in simulations sJensen, 1993a; Jensen and
Dickman, 1993; Mendes et al., 1994; Odor et al., 1998d
and in the numerical integration of the Langevin equa-
tion sLópez and Muñoz, 1997d. Furthermore, the situa-
tion is much more complicated when approaching criti-
cality from the inactive phase. In particular, the scaling
behavior of n1 in this case seems to be unrelated to n2
sthis is similar to the diffusive slave field case; see Ódor
et al., 2002; Sec. V.F.3d. In this case it is more difficult to
analyze the field theory and dynamical-percolation-type
terms are generated that can be observed in two dimen-
sions by simulations and by mean-field analysis sMuñoz
et al., 1996, 1998; Wijland, 2002d. Very recently it was
claimed, based on the field-theoretical analysis of the
generalized epidemic process sSec. IV.Bd—which exhib-
its similar long-time memory terms—that the cluster
variables should follow stretched exponential decay be-
havior sJimenez-Dalmaroni and Hinrichsen, 2003d.

In two dimensions the critical point of spreading spsd
moves sas a function of initial conditionsd and does not
necessarily coincide with the bulk critical point spcd. The
spreading behavior depends on the coefficient of the ex-
ponential, non-Markovian term of Eq. s204d. For a posi-
tive coefficient the ps falls in the inactive phase of the
bulk and the spreading follows dynamical percolation
ssee Sec. IV.Bd. For a negative coefficient the ps falls in
the active phase of the bulk, and spreading exponents
are nonuniversal sas in one dimensiond but satisfy the
hyperscaling law fEq. s155dg.

Up to now I have discussed spreading processes with
unary particle production. Now I introduce a family of
systems with binary particle production si.e., for a new
particle to be produced, two particles need to collided.
The pair-contact model is defined on the lattice by the
following processes:

2A→
1−p

3A, 2A→
p

x , s205d

such that reactions take place at nearest-neighbor sites
and we allow single-particle occupancy at most. The or-
der parameter is the density of nearest-neighbor pairs
r2. The pair-contact process exhibits an active phase for
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p,pc; for pùpc the system eventually falls into an ab-
sorbing configuration devoid of nearest-neighbor pairs
sbut with a density r1 of isolated particlesd. The best
estimate for the critical parameter in one dimension is
pc=0.077 090s5d sDickman and de Silva, 1998a, 1998bd.
Static and dynamic exponents that correspond to ini-
tially uncorrelated homogeneous states agree well with
those of s1+1d-dimensional directed percolation sTable
XIId. Spreading exponents that involve averaging over
all runs, hence involving the survival probability, are
nonuniversal ssee Fig. 21; Ódor et al., 1998d. The anoma-
lous critical spreading in this model can be traced to a
long memory in the dynamics of the order parameter r2,
arising from a coupling to an auxiliary field sthe local
particle density rd, which remains frozen in regions
where r2=0. Ódor et al. s1998d observed a slight varia-
tion of the spreading critical point as a function of r1s0d
ssimilarly to the two-dimensional cased, but more de-
tailed simulations sDickman, 1999d suggest that this
could be explained by strong corrections to scaling.
Simulations provided numerical evidence that the r1 ex-
hibits anomalous scaling as

ur1
nat − r1u ~ up − pcub1

to r1
nat=0.242s1d with a DP exponent sÓdor et al., 1998d

for p,pc and with b1=0.9s1d for p.pc sMarques et al.,
2001d. The damage-spreading transition point and the
DS exponents of this model coincide with the critical
point and the critical exponents of the pair-contact
model sÓdor et al., 1998d.

The effect of an external particle source that creates
isolated particles, and hence does not couple to the or-
der parameter, was investigated by simulations and by
mean-field plus coherent anomaly approximations
sDickman, Rabelo, and Ódor, 2001d. While the critical
point pc showed a singular dependence on the source
intensity, the critical exponents appeared to be unaf-
fected by the presence of the source, except possibly for
a small change in b.

The properties of the two-dimensional pair contact
process in homogeneous, uncorrelated initial conditions
was investigated by simulations sKamphorst et al., 1999d.
In this case all six nearest neighbors of a pair were con-
sidered for reactions s205d. The critical point was located
at pc=0.2005s2d. By determining a, b /n', and Z expo-
nents and order-parameter moment ratios by simula-
tions, Kamphorst et al. confirmed the universal behavior
of the s2+1d-dimensional DP class sTable XIId. The
spreading exponents are expected to behave as de-
scribed in Sec. V.E.

F. Directed percolation coupled to diffusive fields

The next question one can pose following Sec. V.E is
whether a diffusive field coupled to a DP process is rel-
evant. Prominent representatives of such models are bi-
nary particle production systems with explicit diffusion
of solitary particles. The critical behavior of such sys-
tems is still under investigation. The annihilation-fission
process is defined as

2A→
l

x, 2A→
s

sn + 2dA, Ax↔
D

xA . s206d

The corresponding action for bosonic particles was de-
rived from the master equation by Howard and Täuber
s1997d,

S =E ddxdtfcs]t − D¹2df − ls1 − c2df2

+ ss1 − cndc2f2g . s207d

Usually bosonic field theories describe well the critical
behavior of “fermionic” systems si.e., those with a maxi-
mum of one particle per site occupationd. This is due to
the fact that at obsorbing phase transitions the occupa-
tion number vanishes. In this case, however, the active
phases of bosonic and fermionic models differ signifi-
cantly: in the bosonic model the particle density di-
verges, while in the fermionic model there is a steady
state with finite density. As a consequence the bosonic
field theory cannot describe the active phase or the criti-
cal behavior of a fermionic particle system.

As one can see, this theory lacks interaction terms
linear in the smasslessd field variable f in contrast with
the DP action s87d. Although the field theory of bosonic
annihilation-fission has turned out to be nonrenormaliz-
ible, Howard and Täuber s1997d concluded that its criti-
cal behavior cannot be in the DP class. In fact, the upper
critical behavior is dc=2, which is different from that of
the DP and parity-conserving sÓdor et al., 2002d. In the
Langevin formulation

]rsx,td
]t

= D¹2rsx,td + sns − 2ldr2sx,td + rsx,tdhsx,td

s208d

the noise is complex:

khsx,tdl = 0, s209d

FIG. 21. sColor in online editiond Initial concentration depen-
dence of the exponent h for the pair-contact model. Linear
regression gives a slope 0.320s7d between h−hDP and r1s0d
−r1

nat. From Ódor et al., 1998.
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khsx,tdhsx8,t8dl = fnsn + 3ds − 2lgddsx − x8dst − t8d ,

a new feature sit is real in the case of directed percola-
tion and purely imaginery in the case of compact DP
and parity-conserving classesd.

Equation s208d without noise gives the mean-field be-
havior of the bosonic model. For ns.2l the density
diverges, while for ns.2l it decays with a power law,
with ab

MF=1. The mean-field description in the inactive
phase of the bosonic model was found to be valid for the
two-dimensional fermionic annihilation-fission system
too sÓdor et al., 2002d. Here the pair density decays as
r2std~ t−2 sÓdor et al., 2002d in agreement with the mean-
field approximation. Contrary to this, for lølc, r and r2
seem to be related by a logarithmic ratio rsTd /r2std
~ lnstd. This behavior could not be described by the
mean-field approximations and possibly due to the d
=dc=2 spatial dimension.

The field theory suggests that the scaling behavior of
the one-dimensional bosonic model in the inactive phase
is dominated by the 2A→x process, that has an upper
critical dimension dc=2, hence the particle density de-
cays with a power-law exponent: a=1/2 ssee Sec. IV.Ed.
At the transition point the dynamical behavior is unex-
plored, but the particle density is expected to tend to
constant. This behavior has been confirmed by simula-
tions in case of the one-dimensional annihilation-fission
model sÓdor and Menyhárd, 2002d.

The field-theoretical description of the fermionic
annihilation-fission process runs into even more serious
difficulties sTäuber, 2002d than that of the bosonic model
and predicts an upper critical dimension dc=1 that con-
tradicts simulation results sÓdor et al., 2002d. For the
fermionic annihilation-fission system, mean-field ap-
proximations sCarlon et al., 2001; Ódor et al., 2002d give
a continuous transition with exponents

b = 1, b8 = 0, Z = 2, ni = 2, a = 1/2, h = 0.

s210d

These mean-field exponents are distinct from those of
other well-known classes, including directed percolation,
parity-conserving, and voter model classes. They were
confirmed in a two-dimensional fermionic annihilation-
fission model, with logarithmic corrections, indicating
dc=2 sÓdor et al., 2002d. An explanation for the new
type of critical behavior based on symmetry arguments
is still lacking but numerical simulations suggest sÓdor,
2000; Hinrichsen, 2001cd the the behavior of this system
can be described sat least for strong diffusiond by
coupled subsystems: single particles performing annihi-
lating random walks coupled to pairs sBd following the
DP process: B→2B, B→x. The model has two non-
symmetric absorbing states: one is completely empty,
while in the other a single particle walks randomly. Ow-
ing to this fluctuating absorbing state, this model does
not oppose the conditions of the DP hypothesis. It was
conjectured by Henkel and Hinrichsen s2001d that this
kind of phase transition appears in models where sid soli-
tary particles diffuse, siid particle creation requires two

particles, and siiid particle removal requires at least two
particles to meet. Other conditions that affect these
classes are still under investigation.

1. The PCPD model

A model similar to Eq. s206d was introduced in an
early work by Grassberger s1982cd. His preliminary
simulations in one dimension showed a non-DP-type
transition, but the model has been forgotten for a long
time. The pair-contact particle-diffusion sPCPDd model
introduced by Carlon et al. s2001d is controlled by two
parameters, namely, the probability of pair annihilation
p and the probability of particle diffusion D. The dy-
namical rules are

AA x , x AA → AAA with rate s1 − pds1 − Dd/2,

AA → x x with rate ps1 − Dd ,

A x ↔ x A with rate D . s211d

The mean-field approximation gives a continuous tran-
sition at p=1/3. For pøpcsDd the particle and pair den-
sities exhibit singular behavior:

rs`d ~ spc − pdb, r2s`d ~ spc − pdb2, s212d

while at p=pcsDd they decay as

rstd ~ t−a, r2std ~ t−a2, s213d

with the exponents

a = 1/2, a2 = 1, b = 1, b2 = 2. s214d

According to pair mean-field approximations the phase
diagram can be separated into two regions ssee Fig. 22d.
While for D.1/7 the pair approximation gives the same
pcsDd and exponents as the simple mean field, for

FIG. 22. sColor in online editiond Schematic phase diagram of
the one-dimensional pair-contact process with particle diffu-
sion model: circles, simulation and DMRG results; vertical
solid line at p= 1

3 , mean-field; dashed line, pair approximation.
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D,1/7 the transition line breaks and the exponents are
different:

a = 1, a2 = 1, b = 1, b2 = 1. s215d

In the entire inactive phase the decay is characterized by
the exponents

a = 1, a2 = 2. s216d

The DMRG sCarlon et al., 2001d method and simula-
tions of the one-dimensional PCPD model sHinrichsen,
2001bd obtained pcsDd values in agreement, but for the
critical exponents no clear picture was found. Carlon
and Hinrichsen could not clarify whether the two dis-
tinct universality classes suggested by the pair mean-
field approximations were really observable in the one-
dimensional PCPD model. It is still a debated topic
whether one new class, two new classes, or continuously
changing exponents occur in one dimension. Since the
model has two absorbing states sbesides the vacuum
state there is another with a single wandering particled,
and some exponents were found to be close to those of
the PC class sZ=1.6–1.87,b /n'=0.47–0.51d, Carlon et
al. s2001d suspected that the transition sat least for low-
D valuesd is PC type. However, the lack of Z2 symmetry,
parity conservation, and further numerical data sÓdor,

2000; Hinrichsen, 2001bd exclude this possibility. Note
that the mean-field exponents are also different from
those of the parity-conserving class. Simulations and co-
herent anomaly calculations for the one-dimensional n
=1 annihilation-fission model sÓdor, 2000, 2003bd cor-
roborated the two new universality class candidates ssee
Fig. 23 and Table XXId. The order-parameter exponent
sbd seems to be very far from both the DP and the
parity-conserving class values sÓdor, 2000, 2003bd.

The two distinct class behaviors may be explained on
the basis of competing diffusion strengths of particles
and pairs si.e., for large D’s the explicit diffusion of lone
particles is strongerd. Similar behavior was observed in
the case of one-dimensional models with coupled scon-
servedd diffusive fields ssee Sec. V.Hd. However, a full
agreement has not been achieved in the literature with
respect to the precise values of the critical exponents.
The low-D a is supported by Park and Kim s2002d, who
considered a case with coagulation and annihilation
rates three times the diffusion rate. On the other hand,
the high-D a of Table XXI coincides with that of Kock-
elkoren and Chate s2003ad, who claim a single value for
0,D,1. By assuming logarithmic corrections it was
shown sÓdor, 2003bd that a single universality class can
indeed be supported with the exponents

a = 0.21s1d, b = 0.40s1d ,

Z = 1.75s15d, b/n' = 0.38s1d , s217d

but there is no strong evidence for such corrections. Al-
though the upper critical dimension is expected to be at
dc=2 sÓdor et al., 2002d, we cannot exclude the possibil-
ity of a second critical dimension sdc8=1d or topological
effects in one dimension that may cause logarithmic cor-
rections to scaling. The spreading exponent h seems to
change continuously with varying D. Whether this is
true asymptotically or the effect of some huge correction
to scaling is still not clear. The simulations of Ódor
s2000d confirmed that it is irrelevant whether the particle
production is spatially symmetric, AxA→AAA, or spa-
tially asymmetric, AAx→AAA, xAA→AAA. Recent
simulations and higher-level generalized mean-field ap-
proximations suggest sÓdor et al., 2002; Ódor, 2003bd
that the peculiarities of the pair approximation are not
real; for N.2 cluster approximations, the different scal-
ing behavior in the low-D region disappears. Recently

TABLE XXI. Summary of results for one dimension, n=1 annihilation-fission model. The nonuni-
versal critical parameter pc of the parallel model is shown here. CAM, coherent anomaly method.

D 0.05 0.1 0.2 0.5 0.9

pc 0.25078 0.24889 0.24802 0.27955 0.4324
bCAM 0.58s6d 0.58s2d 0.42s4d
b 0.57s2d 0.58s1d 0.58s1d 0.40s2d 0.39s2d
d 0.273s2d 0.275s4d 0.268s2d 0.21s1d 0.20s1d
h 0.10s2d 0.14s1d 0.23s2d 0.48s1d
d8 0.004s6d 0.004s6d 0.008s9d 0.01s1d

FIG. 23. sColor in online editiond Effective b exponents for
different diffusion rates: P, D=0.05; j, D=0.1; l, D=0.2; m,
D=0.5; ., D=0.7.
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two studies sDickman and de Menezes, 2002; Hinrich-
sen, 2003d reported nonuniversality in the dynamical be-
havior of the PCPD model. While Dickman and de Me-
nezes explored different sectors sa reactive and a
diffusive oned in the time evolution and gave nontrivial
exponent estimates, Hinrichsen offered a hypothesis
that the ultimate long-time hehavior should be charac-
terized by DP behavior.

If we replace the annihilation process 2A→x by co-
agulation 2A→A in Eq. s206d, we get the annihilation-
coagulation model. Generalized mean-field approxima-
tions and simulations of this model resulted in similar
phase diagram to those of the PCPD model, albeit with-
out any sign of two distinct regions. In agreement with
this, coherent anomaly approximations and simulations
for the one-dimensional model found the same kind of
continuous transition independently from D, with expo-
nents in agreement with those of the PCPD in the low-D
region sÓdor, 2001a; Park and Kim, 2002d. Again the
spatial symmetry of particle production was found to be
irrelevant. An exact solution was found by Henkel and
Hinrichsen s2001d for the special case in one dimension
when the diffusion rate is equal to the coagulation rate,
corresponding to the inactive phase according to which
particle decay is like of ARW: r~ t−1/2.

2. Cyclically coupled spreading with pair annihilation

In this section I show an explicit two-component real-
ization of the PCPD class. A cyclically coupled two-
component reaction-diffusion system was introduced by
Hinrichsen s2001cd,

A → 2A, A → x, A → B ,

2B → A, B x ↔ x B , s218d

which mimics the PCPD model sSec. V.F.1d by mapping
pairs to A’s and single particles to B’s. This model is a
coupled DP+ARW system. Its s1+1d-dimensional criti-
cal space-time evolution pattern looks very similar to
that of the PCPD model. The appearance of evolution in
space-time seems to be a particular feature of this class.
It is built up from compact domains with a cloud of lone
particles wandering and interacting with them. Further-
more, this model also has two nonsymmetric absorbing
states: a completely empty one and another with a single
wandering B. When the annihilation and diffusion rates
of B’s sr=D=1d are fixed, the model exhibits a continu-
ous phase transition by varying the production rate of
A’s and the A→B transmutation rate. The simulations
in one dimension showed that rA~rB for large times and
resulted in the following critical exponent estimates:

a = 0.21s2d, b = 0.38s6d, b8 = 0.27s3d ,

Z = 1.75s5d, ni = 1.8s1d , s219d

satisfying the generalized hyperscaling relation s155d.
These exponents are similar to those of the PCPD
model in the high-diffusion region ssee Table XXId,
which is reasonable since D=1 is fixed here.

3. The parity-conserving annihilation-fission model

As we have seen, parity conservation plays an impor-
tant role in unary production systems. In the case of
BARW processes it changes the universality of the tran-
sition from directed percolation sSec. IV.A.3d to the
parity-conserving class sSec. IV.D.1d. The question arises
whether one can see similar behavior in the case of bi-
nary production systems. Recently Park et al. s2001d in-
vestigated a parity-conserving representative sn=2d of
the one-dimensional annihilation-fission model fEq.
s206dg. By performing simulations for low D’s they found
critical exponents in the range of values determined for
the corresponding PCPD class. Park et al. claim that the
conservation law does not affect the critical behavior
and that the binary nature of the offspring production is
a sufficient condition for this class ssee, however, Sec.
V.F.2, where there is no such conditiond.

The two-dimensional version of the parity-conserving
annihilation-fission model was investigated by general-
ized mean-field and simulation techniques sÓdor et al.,
2002d. While the N=1,2 mean-field approximations
showed similar behavior to that of the PCPD model
sSec. V.F.1d, including the two-class prediction for N=2,
the N=3,4 approximations do not show D dependence
of the critical behavior: b=1,b2=2 were obtained for
D.0. Large-scale simulations of the particle density
confirmed the mean-field scaling behavior with logarith-
mic corrections. This result can be interpreted as nu-
merical evidence supporting an upper critical dimension
in this model of dc=2. The pair density decays in a simi-
lar way, but with an additional logarithmic factor to the
order parameter. This kind of strongly coupled behavior
at and above criticality was observed in case of the pair-
contact model too ssee Sec. V.Ed. At the D=0 end point
of the transition line s2+1d-dimensional-class DP criti-
cality ssee Sec. IV.Ad was found for r2 and for r−rspcd.
In the inactive phase for rstd we can observe the two-
dimensional ARW class scaling behavior ssee Sec.
IV.C.1d, while the pair density decays as r2~ t−2. Again,
as in d=1, parity conservation seems to be irrelevant.

G. BARWe with coupled nondiffusive field class

Similarly to the pair-contact process sSec. V.Ed, the
effect of infinitely many frozen absorbing states has
been investigated in the case of a BARWe model. A
parity-conserving version of the one-dimensional pair-
contact model sSec. V.Ed was introduced by Marques
and Mendes s1999d, in which pairs follow a BARW2 pro-
cess, while lone particles are frozen. Simulations showed
that while the critical behavior of pairs in the case of
homogeneous, random initial distribution belongs to the
parity-conserving class sSec. IV.D.1d, the spreading ex-
ponents satisfy hyperscaling fEq. s155dg and change con-
tinuously when the initial particle density is varied.
These results are similar to those found in the pair-
contact model. Again long-memory effects are respon-
sible for the nonuniversal behavior in case of seedlike
initial conditions. The slowly decaying memory was con-
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firmed by studying a one-dimensional, interacting
monomer-monomer model sPark and Park, 2001d by
simulations.

H. Directed percolation with diffusive, conserved slave
field classes

In view of the results of model C sSec. IIId, the obvi-
ous question is, what happens to the phase transition to
an absorbing state of a reaction-diffusion system if a
conserved secondary density is coupled to a noncon-
served order parameter? One can deduce from the
BARW1 spreading process sSec. IV.A.3d a two-
component, reaction-diffusion model, the diffusive
conserved-field model sKree et al., 1989; Wijland et al.,
1998d, that exhibits total particle density conservation as
follows:

A + B→
k

2B, B→
1/t

A . s220d

When the initial particle density fr=rAs0d+rBs0dg is var-
ied, a continuous phase transition occurs. The general
field-theoretical case was investigated by Wijland et al.
s1998d, while the equal-diffusion case, DA=DB, was
studied by Kree et al. s1989d. The mean-field exponents
that are valid above dc=4 are shown in Table XXII. The
rescaled action of this model is

Sfw,w̄,c,c̄g =E ddxdthw̄s]t − Ddw + c̄f]t + lsw − Ddgc

+ mw̄Dc + gcc̄sc − c̄d + ucc̄sw + w̄d

+ v1scc̄d2 + v2cc̄scw̄ − c̄wd + v3ww̄cc̄

− rBs0ddstdc̄j , s221d

where c and f are auxiliary fields, defined such that
their average values coincide with the average density of
B particles and the total density of particles, respec-
tively. The coupling constants are related to the original
parameters of the master equation by

m = 1 − DB/DA, g = kÎr/DA, ls = ksrc
mf − rd/DA,

v1 = v2 = − v3 = k/DA, u = − kÎr/DA, l = DB/DA,

s222d

rBs0d = rBs0d/Îr .

If one omits from the action fEq. s221dg the initial time
term proportional to rBs0d, then the remainder is, for

m=0 si.e., DA=DBd, invariant under time-reversal sym-
metry:

csx,td → − c̄sx,− td ,

c̄sx,td → − csx,− td ,
s223d

wsx,td → w̄sx,− td ,

w̄sx,td → wsx,− td .

The epsilon expansion solution sKree et al., 1989d and
simulation results sde Freitas et al., 2000; Fulco et al.,
2001d are summarized in Table XXII. Interestingly the
RG predicts Z=2 and n'=2/d in all orders of perturba-
tion theory.

The breaking of this symmetry for mÞ0, that is, when
the diffusion constants DA and DB are different, causes
different critical behavior for this system. For DA,DB,
the renormalization group sWijland et al., 1998d predicts
new classes with Z=2, b=1, n'=2/d, but simulations in
one dimension sFulco et al., 2001d show different behav-
ior ssee Table XXIIId. For non-Poissonian initial particle
density distributions, the critical initial slip exponent h
varies continuously with the width of the distribution of
the conserved density. The DA=0 extreme case is dis-
cussed in Sec. V.I.

For DA.DB no stable fixed-point solution was found
by renormalization, hence Wijland et al. s1998d conjec-
tured that there was a first-order transition, for which
signatures were found in two dimensions by simulations
sOerding et al., 2000d. However, e expansion may break
down in the case of another critical dimension dc8,dc
=4, for which simulations in one dimension sFulco et al.,
2001d have provided numerical support ssee Table
XXIVd.

I. Directed percolation with frozen, conserved slave field
classes

If the conserved field coupled to the BARW1 process
fEq. s220dg is nondiffusive, non-DP-class behavior is

TABLE XXII. Summary of results for diffusive conserved-
field classes for DA=DB.

d b Z n'

1 0.44s1d 2 2.1s1d
4−e 1−e /8 2 2/d

TABLE XXIII. Summary of results for diffusive conserved-
field classes for DA,DB.

d b Z n'

1 0.33s2d 2
4−e 1 2 2/d

TABLE XXIV. Summary of results for diffusive conserved-
field classes for DA.DB.

d b Z n'

1 0.67s1d 2
4−e 0
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again reported sPastor-Satorras and Vespagnani, 2000;
Rossi et al., 2000d. This is known as the nondiffusive
conserved-field sNDCFd class. The corresponding action
can be derived from Eq. s223d in the DA=0 limit:

S =E ddxdtfw̄s]t + r − D¹2dw + c̄s]t − l¹2dc + gcc̄sc

− c̄d + ucc̄sw + w̄d + v1scc̄d2 + v2cc̄scw̄ − c̄wd

+ v3ww̄cc̄g . s224d

When we neglect irrelevant terms, Eq. s224d is invariant
under the shift transformation,

c → c + D, r → r − v2D , s225d

where D is any constant. The field-theoretical analysis of
this action has run into difficulties sPastor-Satorras and
Vespagnani, 2000d. The main examples of models in the
NDCF class are the conserved threshold transfer process
and the conserved reaction-diffusion model sPastor-
Satorras and Vespagnani, 2000; Rossi et al., 2000d. Fur-
thermore, the models described by the NDCF class em-
brace a large group of stochastic sandpile models
sJensen, 1998d, in particular, fixed-energy Manna models
sManna, 1991; Dickman et al., 1998; Dhar, 1999; Muñoz
et al., 2001d. The upper critical dimension dc=4 has been
confirmed by simulations sLübeck and Hucht, 2002d.

It was also shown sAlava and Munoz, 2001d that these
models describe the depinning transition of the
quenched Edwards-Wilkinson class ssee Sec. VI.Cd or
linear interface models sBarabási and Stanley, 1995;
Halpin-Healy and Zhang, 1995d owing to the fact that
quenched disorder can be mapped onto long-range tem-
poral correlations in the activity field sMarsili, 1994d.
However, this mapping could not be done on the level of
Langevin equations of the representatives of NDCF and
linear interface models, and in one dimension this
equivalence may break down sAlava and Munoz, 2001;
Dickman, Alava, et al., 2001; Kockelkoren and Chaté,
2003bd. The critical exponents determined by simula-
tions sPastor-Satorras and Vespagnani, 2000; Rossi et al.,
2000; Lübeck, 2001, 2002; Dickman, Tomé, and Oliveira,
2002d and mean-field plus coherent anomaly methods in
one dimension sDickman, 2002d are summarized in
Table XXV. Similarly to the pair-contact process, these
models exhibit infinitely many absorbing states. There-
fore nonuniversal spreading exponents are expected sin
Table XXV the exponent h corresponding to natural ini-
tial conditions is shownd.

J. Coupled N-component DP classes

From the basic reaction-diffusion systems one can
generate N-component ones coupled by interactions
symmetrically or asymmetrically. Janssen s1997b, 2001d
introduced and analyzed by the field-theoretical RG
method sup to two-loop orderd a quadratically coupled,
N-species generalization of the DP process of the form

Aa ↔ 2Aa,

Aa → x ,

Aa + Ab → kAa + lAb, s226d

where k , l may take the values s0,1d. He has shown that
the multicritical behavior is always described by
Reggeon field theory sDP classd, but that this is unstable
and leads to unidirectionally coupled DP systems ssee
Fig. 24d.

He has also shown that by this model linearly, unidi-
rectionally coupled directed percolation ssee Sec. VI.Hd
can be described. The universality class behavior of uni-
directionally coupled DP is discussed in Sec. VI.H.

In one dimension, if BARWo-type processes are
coupled swhich alone exhibit DP class transitions ssee
Sec. IV.A.3d, hard-core interactions can modify the
phase-transition universality ssee Sec. V.L.1d.

TABLE XXV. Summary of results for nondiffusive conserved-field classes.

d a b g Z ni § h

1 0.14s1d 0.28s1d 1.5s1d 2.5
2 0.50s5d 0.64s1d 1.59s3d 1.55s4d 1.29s8d 2.22s3d 0.29s5d
3 0.90s3d 0.84s2d 1.23s4d 1.75s5d 1.12s8d 2.0s4d 0.16s5d
4 1 1 1 2 1 2 0

FIG. 24. sColor in online editiond Flow of the interspecies cou-
plings in the two-component, DP model under renormaliza-
tion: D, decoupled; S, symmetric; U, unidirectional fixed
points. From Janssen, 2001.
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K. Coupled N-component BARW2 classes

Bosonic, N-component BARW systems with two off-
spring sN-BARW2d, of the form

Aa → 3Aa, s227d

Aa → Aa2Ab, s228d

2Aa → x s229d

were introduced and investigated by Cardy and Täuber
s1998d via the field-theoretical RG method. These mod-
els exhibit parity conservation of each species and per-
mutation symmetry on N types fthe generalization for
OsNd symmetry is violated by the annihilation termg.
The A→3A process turns out to be irrelevant, because
like pairs annihilate immediately. Models with Eq. s228d
branching terms exhibit continuous phase transitions at
zero branching rate. The universality class is expected to
be independent from N and coincides with that of the
N→` sN-BARW2d model, which can be solved exactly.
The critical dimension is dc=2, and for dø2 the expo-
nents are

b = 1, Z = 2, a = d/2, ni = 2/d, n' = 1/d , s230d

while at d=dc=2 logarithmic corrections to the density
decay are expected. Simulations on a d=2 sfermionicd
lattice model confirmed these results sÓdor, 2001cd.

In one dimension it turns out that introducing hard-
core interactions between particles, so that two particles
can never overlap, can be relevant and different univer-
sal behavior can emerge. Here the phase transition be-
havior of the fermionic and bosonic models are equiva-
lent in one dimension sat least for static exponentsd in
the case of pairwise initial conditions ssee Sec. V.Bd
when different types of particles do not make up block-
ades for each other. Such a situation happens when these
particles are generated as domain walls of
sN+1d-component systems exhibiting SN+1 symmetric
absorbing states ssee Secs. V.K and IV.D.2d.

The generalized contact process has already been in-
troduced in Sec. IV.D.3 with the main purpose of show-
ing an example of a parity-conserving universality class
transition in the case of Z2-symmetric absorbing states.
The more general case with n.2 permutation symmet-
ric absorbing states was investigated, using the DMRG
method, by Hooyberghs et al. s2001d and turned out to
exhibit an N-BARW2 transition. In the one-dimensional
model, where each lattice site can be occupied by at
most one particle sAd or can be in any of n inactive
states sx1 ,x2 , . . .xnd, the reactions are

AA → Axk,xk,A with rate l/n, s231d

Axk,xkA → xkxk with rate mk, s232d

Axk,xkA → AA with rate 1, s233d

xkxl → Axl, xkA sk Þ ld with rate 1. s234d

The original contact process sSec. IV.A.1d corresponds
to the n=1 case, from which the reaction s234d is obvi-
ously absent. The reaction s234d in the case nù2 ensures
that configurations like sxixi¯xixixjxj¯xjxjd, with
iÞ j, are not absorbing. Such configurations do
evolve in time until the different domains coarsen
and one of the n absorbing states sx1x1¯x1d,
sx2x2¯x2d, sxnxn¯xnd is reached. For generalized
contact processes with n=2, simulations sHinrichsen,
1997d and a DMRG study sHooyberghs et al., 2001d
proved that the transition falls in the parity-conserving
class if m1=m2, or in the DP class if the symmetry be-
tween the two absorbing states is broken sm1Þm2d.

The DMRG study for n=3 and n=4 showed that the
model is in the active phase over the whole parameter
space, and the critical point is shifted to the limit of
infinite reaction rates. In this limit the dynamics of the
model can be mapped onto the zero-temperature n-state
Potts model ssee also the simulation results of Lipowski
and Droz, 2002ad. It was conjectured by Hooyberghs et
al. s2001d that the model is in the same N-BARW2 uni-
versality class for all nù3. If we consider the region
between xi and xj as a domain wall sXijd one can follow
the dynamics of such variables. In the limit l→`, Xij
coincides with the particle A, and in the limit m→`, Xij
coincides with the bond variable xixj. For finite values
of these parameters one can still apply this reasoning at
a coarse-grained level. In this case Xij is not a sharp
domain wall, but an object with a fluctuating thickness.
For n=2 it was shown in Sec. IV.D.3 that the variables of
such a domain wall follow BARW2 dynamics fEq.
s175dg. For n.2 one can show that besides the
N-BARW2 reactions s227d and s228d involving a maxi-
mum of two types of particles, reaction types occur in-
volving three different domains siÞ j, iÞk and jÞkd:

Xij → XikXkj, XikXkj → Xij s235d

with increasing importance as n→`. These reactions
break the parity conservation of the N-BARW2 process.
Therefore the numerical findings of Hooyberghs et al.
s2001d for n=3,4 indicate that they are probably irrel-
evant or the conditions for N-BARW2 universal behav-
ior could be relaxed. Owing to the fact that the Xij vari-
ables are domain walls, they appear in a pairwise
manner, hence hard-core exclusion effects are ineffec-
tive for the critical behavior in one dimension. For the
effect of pairwise initial conditions for dynamical expo-
nents, see Sec. V.B.

For n=3, upon breaking the global S3 symmetry to a
lower one, one gets a transition either in the directed
percolation sSec. IV.Ad or in the parity-conserving class
sSec. IV.Dd, depending on the choice of parameters
sHooyberghs et al., 2001d. Simulations indicate sLip-
owski and Droz, 2002bd that for this model local symme-
try breaking may also generate a parity-conserving-class
transitiond.
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L. Hard-core 2-BARW2 classes in one dimension

Besides the effects of coupling interactions in low di-
mensions, blockades generated by hard-core particles
may also play an important role. The effect of particle
exclusion si.e., AB}BAd in 2-BARW2 models sSec.
V.Kd was investigated by Kwon et al. s2000d and Ódor
s2001cd. For d=2 the bosonic field-theoretical predic-
tions sCardy and Täuber, 1998d were confirmed sÓdor,
2001c; mean-field class transition with logarithmic cor-
rectionsd. In one dimension, however, two types of phase
transitions were identified at zero branching rate ss=0d
depending on the arrangement of offspring relative to
the parent in process s228d. That is, if the parent sepa-
rates the two offspring s2-BARW2sd,

A→
s

BAB , s236d

the steady-state density is higher than in the case when
they are created on the same site s2-BARW2ad:

A→
s

ABB , s237d

at a given branching rate, because in the former case
they are unable to annihilate each other. This results in
different order-parameter exponents for the symmetric
s2-BARW2sd and asymmetric s2-BARW2ad cases,

bs = 1/2, ba = 2. s238d

This result is in contrast with a widespread belief that
the bosonic field theory swhere AB↔BA is allowedd
can describe these systems „because in that case the
critical behavior is different fEq. s230dg…. This observa-
tion led Kwon et al. s2000d to the conjecture that in one-
dimensional, reaction-diffusion systems a series of new
universality classes should appear if particle exclusion is
present. Note, however, that since the transition is at s
=0 in both cases, the on-critical exponents do not de-
pend on how particles are created and they can be iden-
tified with those described in Sec. V.B. Ódor s2001cd de-
termined a set of critical exponents satisfying scaling
relations for these two new classes shown in Table
XXVI.

1. Hard-core 2-BARWo models in one dimension

Hard-core interactions in the two-component, one-
offspring production model s2-BARW1d were investi-
gated by Ódor s2001bd. Without interaction between dif-
ferent species one would expect a DP-class transition.
By introducing the AB}BA blocking to the two-
component model,

A→
s

AA, B→
s

BB , s239d

AA→
1−s

x , BB→
1−s

x , s240d

Ódor s2001bd located a DP-class transition at s
=0.81107. Note that the effects exerted by different spe-
cies on each other are irrelevant now, unlike for the case
of a coupled ARW sSec. V.Bd. On the other hand, if we
couple the two subsystems by production of offspring:

A→
s/2

AB, A→
s/2

BA , s241d

B→
s/2

AB, B→
s/2

BA , s242d

AA→
1−s

x , BB→
1−s

x , s243d

a continuous phase transition emerges when the param-
eter describing the offspring production rate s is zero.
Therefore the critical exponents are the same as those
described in Sec. V.B—and the order-parameter expo-
nent is found to be b=1/2. Therefore this transition be-
longs to the same class as the 2-BARW2s model ssee
Sec. V.Ld. The parity conservation law, which is relevant
in the case of one-component BARW systems, turns out
to be irrelevant here. This finding reduces the expecta-
tions suggested by Kwon et al. s2000d for a whole new
series of universality classes in one-dimensional systems
with exclusions. In fact, the blockades introduced by ex-
clusions generate robust classes. Ódor s2001bd suggested
that in coupled branching and annihilating random-walk
systems of N types of excluding particles for continuous
transitions at s=0, two universality classes exist, those
of 2-BARW2s and 2-BARW2a models, depending on
whether the reactants can immediately annihilate si.e.,
whether similar particles are separated by other types of
particlesd or not. Recent investigations in similar models
sLipowski and Droz, 2001; Park and Park, 2001d are in
agreement with this hypothesis.

2. Coupled binary spreading processes

Two-component versions of the PCPD model sSec.
V.F.1d with particle exclusion in one dimension were in-
troduced and investigated by simulations sÓdor, 2002d
with the aim of testing whether the hypothesis of Ódor
s2001bd for N-component BARW systems sSec. V.L.1d
can be applied to such models. The following models
with the same diffusion and annihilation terms sAA
→x , BB→xd as in Sec. V.B and different production
processes were investigated.

TABLE XXVI. Summary of critical exponents in one dimen-
sion for N-component branching and annihilating random
walk with even offspring sN-BARW2d-like models. The
N-BARW2 data are quoted from Cardy and Täuber s1996d.
Data divided by “u” correspond to random vs pairwise initial
conditions sÓdor and Menyhárd, 2000; Hooyberghs et al.,
2001; Menyhárd and Ódor, 2002d. Exponents denoted by * ex-
hibit initial-density dependence.

Exponent N-BARW2 N-BARW2s N-BARW2a

ni 2 2.0s1du0.915s2d 8.0s4du3.66s2d
Z 2 4.0s2d u1.82s2d* 4.0s2d u1.82s2d*
a 1/2 0.25s1d u0.55s1d* 0.25s1d u0.55s1d*
b 1 0.50s1du1.00s1d 2.0s1du1.00s1d
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s1d Production and annihilation random-walk model s2-
PARWd:

AA→
s/2

AAB, AA→
s/2

BAA , s244d

BB→
s/2

BBA, BB→
s/2

ABB , s245d

s2d Symmetric production and annihilation random-
walk model s2-PARWsd:

AA→
s

AAA , s246d

BB→
s

BBB , s247d

These two models exhibit active steady states for
s.0 with a continuous phase transition at sc=0.
Therefore the exponents defined on the critical
point are those of the two-component ARW model
with exclusion sSec. V.Bd. Together with the expo-
nent b=2 result for both cases this indicates that
they belong to the N-BARW2a class. This also
means that the hypothesis set up for N-BARW2 sys-
tems sÓdor, 2001b; Sec. V.L.1d can be extended.

s3d Asymmetric production and annihilation random-
walk model s2-PARWad

AB→
s/2

ABB, AB→
s/2

AAB , s248d

BA→
s/2

BAA, BA→
s/2

BBA . s249d

This model does not have an active steady state. The
AA and BB pairs annihilate themselves on contact,
while if an A and B particle meet an AB→ABB
→A process eliminates blockades, and the densities
decay with the r~ t−1/2 law for s.0. For s=0 the
blockades persist, and in case of a random initial
state r~ t−1/4 decay ssee Sec. V.Bd can be observed.

s4d Asymmetric production and annihilation random-
walk model with spatially symmetric creation s2-
PARWasd:

AB→
s/2

ABA, AB→
s/2

BAB , s250d

BA→
s/2

BAB, BA→
s/2

ABA . s251d

In this case AB blockades proliferate from produc-
tion events. As a consequence, an active steady state
appears for s.0.3253s1d with a continuous phase
transition. The space-time evolution from a ran-
dom initial state shows sFig. 25d that compact do-
mains of alternating . .ABAB . . sequences are
formed, separated by lone wandering particles.
This pattern is very similar to what was seen in the
case of one-component binary spreading pro-
cesses sHinrichsen, 2001cd: compact domains
within a cloud of lone random walkers, except
that now domains are built up from alternating

sequences only. This means that the . .AAAA. . .
and . . .BBBB. . . domains decay by this annihilation
rate and particle blocking is responsible for the
formation of compact clusters. In the language of
the coupled DP+ARW model sHinrichsen, 2001cd,
the pairs following the DP process are now the
AB pairs, which cannot decay spontaneously but
only through an annihilation process: AB+BA
→x. They interact with two types of particles ex-
ecuting annihilating random walks with exclu-
sions. The simulations resulted in the critical ex-
ponent estimates: b=0.37s2d, a=0.19s1d, and Z
=1.81s2d, which agree fairly well with those of the
PCPD model in the high-diffusion-rate region
sÓdor, 2000d.

VI. INTERFACE GROWTH CLASSES

Interface growth classes are strongly related to the
basic universality classes discussed so far and can be ob-
served in experiments more easily. For example, one of
the few experimental realizations of the robust DP class
sSec. IV.Ad is related to a depinning transition in inho-
mogeneous porous media sBuldyrev et al., 1992; see Sec.
VI.Fd. The interface models can be defined either by
continuum equations or by lattice models of solid-on-
solid sSOSd or restricted solid-on-solid sRSOSd types. In
the latter case the height variables hi of adjacent sites
are restricted,

uhi − hi+1u ø 1. s252d

The morphology of a growing interface is usually char-
acterized by its width,

FIG. 25. sColor in online editiond Space-time evolution of the
asymmetric production and m-particle annihilating random
walk s2-PARWasd model at the critical point. Black pixels cor-
respond to A particles, others to B’s. From Ódor, 2002.
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WsL,td = F 1

Lo
i

hi
2std − S 1

Lo
i

histdD2G1/2

. s253d

In the absence of any characteristic length, growth pro-
cesses are expected to show power-law behavior of the
correlation functions in space and height and the surface
is described by the Family-Vicsek scaling sFamily and
Vicsek, 1985d form:

WsL,td = tã/ZffL/jistdg , s254d

with the scaling function fsud

fsud , Huã if u ! 1

const if u @ 1.
s255d

Here ã is the roughness exponent and characterizes the
stationary regime in which the correlation length jistd
has reached a value larger than the system size L. The

ratio b̃= ã /Z is called the growth exponent and charac-
terizes the short-time behavior of the surface. Similarly
to equilibrium critical phenomena, these exponents do
not depend on the microscopic details of the system un-
der investigation. Using these exponents it is possible to
divide growth processes into universality classes
sBarabási and Stanley, 1995; Krug, 1997d. The scaling
form s254d of W2 is invariant under L rescaling,

x → Lx, t → LZt, hsx,td → L−ãhsx,td . s256d

Recently anomalous roughening has been observed in
many growth models and experiments. In these cases the
measurable ãloc roughness exponent is different from ã
and may satisfy a different scaling law.2

Surfaces in sd+1d-dimensional systems can be mapped
onto a time step of a d-dimensional particle reaction-
diffusion or spin models. For example, the one-
dimensional Kawasaki spin model corresponding to the
K↔3K process with random walk of kinks is mapped
onto the one-dimensional surface as shown in Fig. 26.

This means that a spatial profile hhistdj corresponds to
a unique hsjj spin configuration at time t by accumulating
the spin values

histd = o
j=1

i

sj. s257d

In one dimension the surface can also be considered as a
random walker with fluctuation

Dx ~ t1/Zw. s258d

Hence the roughness exponent is related to the dynami-
cal exponent Zw as

ã = 1/Zw. s259d

The ã=1/2 corresponds to uncorrelated sor finite corre-
lation lengthd random walks. If ã.1/2 the surface ex-
hibits correlations, while if ã,1/2 the displacements in
the profile are anticorrelated. Since the surfaces may ex-
hibit drifts, fluctuations around the mean are measured
defining the local roughness (Hurst) exponent. Using this
surface mapping, Sales et al. s1997d have characterized
the different classes of Wolfram’s one-dimensional cellu-
lar automata sWolfram, 1983d.

One can show that by coarse graining the one-
dimensional Kawasaki dynamics,

wi =
1

4t
f1 − sisi+1 + lssi+1 − sidg , s260d

a mapping can be made onto the Kardar-Parisi-Zhang
equation s270d, and the surface dynamics for lÞ0 scor-
responding to the anisotropic cased are in the Kardar-
Parisi-Zhang class sSec. VI.Dd, while for l=0 they are in
the Edwards-Wilkinson class sSec. VI.Bd. While these
classes are related to the simple random walk with Zw

=1/ ã=2, the question arises what surfaces are related to
other kinds of random walks sfor example, Levy flights
or correlated random walks, etc.d. Recently it was shown
that globally constrained random walks si.e., in which a
walker needs to visit each site an even number of timesd
can be mapped onto surfaces with dimer-type dynamics
sNoh et al., 2001d with Zw=3=1/ ã.

By studying the correspondences between lattice
models with absorbing states and models of pinned in-
terfaces in random media, Dickman and Munoz s2000d
established the scaling relation

b̃ = 1 − b/ni , s261d

which was confirmed numerically for d=1,2,3,4 contact
processes sSec. IV.A.1d. The local roughness exponent
was found to be smaller than the global value, indicating
anomalous surface growth in DP-class models.

In interface models different types of transitions may
take place:

s1d Roughening transitions may occur between the
smooth phase characterized by finite width W sin an in-
finite systemd and the rough phase when the width di-
verges in an infinite system sbut saturates in finite onesd
as a result of varying some control parameters sed. Near

2See, for example, Oliveira, 1992; Schroeder et al., 1993;
Yang, Wang, and Lu, 1994; Dasgupta et al., 1996; Jeffries et al.,
1996; López and Rodríguez, 1996, 1997; Sarma et al., 1996;
Krug, 1997; Bru et al., 1998; López and Schmittbuhl, 1998; Mo-
rel et al., 1998.

FIG. 26. Mapping between spins, kinks and surfaces.
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the transition point the spatial sjid and growth direction
correlations sj'd diverge as

ji ~ eni , s262d

j' ~ en' s263d

snote that in RD systems ji denotes temporal correlation
lengthd. In the smooth phase the heights histd are corre-
lated below j'. While in equilibrium models roughening
transitions exist in d.1 dimensions only in nonequilib-
rium models this may occur in d=1 as well.

s2d Depinning transitions occur when, as the conse-
quence of changing some control parameter susually an
external force Fd, the surface starts propagating with
speed v and evolves into a rough state. Close to the
transition v is expected to scale as

v ~ sF − Fcdũ s264d

with the ũ velocity exponent and the correlation expo-
nents diverge. Known depinning transitions sin random
mediad are related to absorbing phase transitions with
conserved quantities ssee Secs. VI.C and VI.Ed.

s3d A so-called faceting phase transition may also take
place in the rough phase when up-down symmetrical
facets appear. In this case the surface scaling behavior
changes ssee Sec. VI.Id.

A. The random deposition class

Random deposition is the simplest surface growth
process that involves uncorrelated adsorption of par-
ticles on top of each other. Therefore columns grow in-
dependently, linearly without bounds. The roughness ex-
ponent ã sand correspondingly Zd is not defined here.

The width of the surface grows as W~ t1/2 hence b̃=1/2
in all dimensions. An example of such behavior is the
dimer growth model described in Sec. VI.I.

B. Edwards-Wilkinson classes

As was mentioned in Sec. VI, growth models of this
class can easily be mapped onto spins with symmetric
Kawasaki dynamics or onto particles with annihilating
random walks sSec. IV.C.1d. If we postulate the transla-
tion and reflection symmetries

x → x + Dx t → t + Dt h → h + Dh x → − x h → − h ,

s265d

we are led to the Edwards-Wilkinson equation sEdwards
and Wilkinson, 1982d,

]thsx,td = v + s¹2hsx,td + zsx,td , s266d

which is the simplest stochastic differential equation that
describes a surface growth with these symmetries. Here
v denotes the mean growth velocity, s the surface ten-
sion, and z the zero-average Gaussian noise field with
variance

kzsx,tdzsx8,t8dl = 2Ddd−1sx = x8dst − t8d . s267d

This equation is linear and exactly solvable. The critical
exponents of Edwards-Wilkinson classes are

b̃ = S1
2

−
d

4
D, Z = 2. s268d

C. Quenched Edwards-Wilkinson classes

In random media, linear interface growth is described
by the so-called quenched Edwards-Wilkinson equation,

]thsx,td = s¹2hsx,td + F + h„x,hsx,td… , s269d

where F is a constant, external driving term and
h„x ,hsx , td… is the quenched noise. The corresponding
linear interface models exhibit a depinning transition at
Fc. The universal behavior of these models was investi-
gated by Nattermann et al. s1992d; Narayan and Fisher
s1993d; Kim et al. s2001d, and it was shown to be equiva-
lent to the nondiffusive conserved-field sNDCFd classes
sSec. V.Id. Analytical studies sNarayan and Fisher, 1993d
predict ã= s4−dd /3 and Z=2− s2/9ds4−dd.

D. Kardar-Parisi-Zhang classes

If we drop the h→−h symmetry from Eq. s265d we
can add a term to Eq. s266d that is the most relevant
term in the renormalization sense, breaking the up-
down symmetry:

]thsx,td = v + s¹2hsx,td + lf¹hsx,tdg2 + zsx,td . s270d

This is the Kardar-Parisi-Zhang equation sKardar et al.,
1986d. Here again v denotes the mean growth velocity, s
the surface tension, and z the zero-average Gaussian
noise field with variance

kzsx,tdzsx8,t8dl = 2Ddd−1sx − x8dst − t8d . s271d

This is nonlinear, but exhibits a tilting symmetry as a
result of the Galilean invariance of Eq. s270d:

h → h8 + ex, x → x8 − let, t → t8, s272d

where e is an infinitesimal angle. As a consequence the
scaling relation

ã + Z = 2 s273d

holds in any dimensions. In one dimension the critical
exponents are known exactly, whereas for d.1 dimen-
sions numerical estimates exist sBarabási and Stanley,
1995; see Table XXVIId. The upper critical dimension of
this model is debated. Mode-coupling theories and vari-
ous phenomenological field-theoretical schemes
sHalpin-Healy, 1990; Lässig, 1995; Lässig and Kinzel-
bach, 1997d settle to dc=4. In contrast to analytical ap-
proaches, numerical solutions of the Kardar-Parisi-
Zhang equation sWolf and Kertész, 1987d, simulations
sKim and Kosterlitz, 1989; Moser et al., 1991; Tang et al.,
1992; Ala-Nissila et al., 1993; Marinari et al., 2000d, and
the results of real-space renormalization-group calcula-
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tions sCastellano, Gabrielli, et al., 1998, 1999; Castellano,
Marsili, and Pietronero, 1998d provide no evidence for a
finite dc. Furthermore, the only numerical study sTu,
1994d of the mode-coupling equations gives no indica-
tion of the existence of a finite dc either. Recently simu-
lations of restricted solid-on-solid growth models were
used to build the width distributions of two- to five-
dimensional Kardar-Parisi-Zhang interfaces. The univer-
sal scaling function associated with the steady-state
width distribution was found to change smoothly as d
was increased, thus strongly suggesting that d=4 is not
an upper critical dimension for the Kardar-Parisi-Zhang
equation. The dimensional trends observed in the scal-
ing functions indicate that the upper critical dimension is
at infinity sMarinari et al., 2002d.

In the hope of classifying nonequilibrium phase-
transition classes according to their noise terms, Grin-
stein, Munoz, and Tu s1996d and Tu et al. s1997d intro-
duced and studied systems via the Langevin equation

]tnsx,td = D¹2nsx,td − rnsx,td − unsx,td2

+ nsx,tdhsx,td , s274d

exhibiting real multiplicative noise:

khsx,tdl = 0, khsx,tdhsx8,t8dl = 2nddsx − x8ddst − t8d ,

s275d

which is proportional to the field snd. The form of the
Langevin noise term can be deduced from a field-
theoretic action for the system derived from a micro-
scopic master equation sCardy, 1997d. For the DP class
the noise is real, while for ARW and parity-conserving
systems the noise is imaginary. Howard and Täuber
s1997d investigated two of the simplest reaction-diffusion
systems in which both real and imaginary noise are
present and compete: sad 2A→x, 2A→2B, 2B→2A,
and 2B→x; sbd 2A→x and 2A→ sn+2dA ssee Sec.
V.Fd. In neither case did they recover the multiplicative
noise critical behavior reported by Grinstein, Munoz,
and Tu s1996d or Tu et al. s1997d. Therefore they sus-
pected that there might not be a real reaction-diffusion
system possessing the multiplicative noise behavior.

On the other hand, Grinstein, Munoz, and Tu s1996d
and Tu et al. s1997d have established a connection be-
tween multiplicative noise systems and the Kardar-
Parisi-Zhang theory via the Cole-Hopf transformation:
nsx , td=ehsx,td. They have shown in one dimension that
the phase diagram and the critical exponents Z, n', and
b of the two systems agree within numerical accuracy.

They found diverging susceptibility swith continuously
changing exponents as a function of rd for the entire
range of r.

E. Quenched Kardar-Parisi-Zhang classes

In random media nonlinear interface growth is de-
scribed by the so-called quenched Kardar-Parisi-Zhang
equation sBarabási and Stanley, 1995d,

]thsx,td = s¹2hsx,td + lf¹hsx,tdg2 + F + h„x,hsx,td… ,

s276d

where F is a constant, external driving term and
h„x ,hsx , td… is the quenched noise swhich does not fluc-
tuate in timed. The universal behavior of this equation
was investigated by Buldyrev et al. s1993d and Leschorn
s1996d, who predicted ã.0.63 in one dimension, ã
.0.48 in two dimensions, and ã.0.38 in three dimen-
sions. It was shown numerically that in one dimension
this class is described by s1+1d-dimensional directed-
percolation depinning sTang and Leschhorn, 1992d. In
higher dimensions, however, it is related to percolating
directed surfaces sBarabási et al., 1996d.

F. Other continuum growth classes

For continuum growth models exhibiting the symme-
tries

x → x + Dx, t → t + Dt, h → h + Dh, x → − x ,

s277d

there are several possible general Langevin equations,
as follows sBarabási and Stanley, 1995d:

• The deterministic part of the equation may describe
a conservative or nonconservative process si.e., the
integral over the entire system may be zero or notd.
The conservative terms are ¹2h, ¹4h, and ¹2s¹hd2.
The only relevant nonconservative term is the s¹hd2.

• The system may be linear or not.

• The noise term may be conservative si.e., the result
of some surface diffusiond with correlator

kzdsx,tdzdsx8,t8dl = s− 2Dd¹2 + Dd8¹
4ddsx − x8ddst − t8d ,

s278d

or it may be nonconservative as in Eq. s267d, as the re-
sult of adsorption-desorption mechanisms.

When the surface growth properties of systems other
than the Edwards-Wilkinson and Kardar-Parisi-Zhang
classes were analyzed, five other universality classes
were identified ssee Table XXVIIId.

G. Models of mass adsorption-desorption, aggregation,
and chipping

Based on the interest in self-organized critical systems
in which different physical quantities exhibit power-law
distributions in the steady state over a wide region of the

TABLE XXVII. Scaling exponents of the Kardar-Parisi-
Zhang model from Barabási and Stanley s1995d.

d ã b̃ Z

1 1/2 1/3 3/2
2 0.38 0.24 1.58
3 0.30 0.18 1.66
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parameter space sBak et al., 1987d, a family of lattice
models in which masses diffuse, aggregate on contact, or
chip off a single unit mass was introduced by Majumdar
et al. s1998, 2000ad. Self-organized criticality has been
studied in a variety of model systems ranging from sand-
piles to earthquakes. A particularly simple lattice model
due to Takayasu, with mass diffusion, aggregation upon
contact, and adsorption of unit masses from outside at a
constant rate, exhibits self-organized criticality sTaka-
yasu et al., 1988; Takayasu and Takayasu, 1997d: the
steady-state mass distribution has a nontrivial power-law
decay for large masses in all dimensions sTakayasu et al.,
1988d. These mass adsorption-desorption models in one
dimension are defined as follows. A site i is chosen ran-
domly and then one of the following events can occur:

s1d Adsorption: With rate q, a single particle is ad-
sorbed at site i; thus mi→mi+1.

s2d Desorption: With rate p, a single particle is de-
sorbed from site i; thus mi→mi−1 provided miù1.

s3d Diffusion and aggregation: With rate 1, the mass mi
at site i moves to a nearest-neighbor site feither si
−1d or si+1dg chosen at random. If it moves to a
site that already has some particles, then the total
mass just adds up; thus mi→0 and mi±1→mi±1+mi.

s4d Chipping: With rate w a bit of mass at the site
“chips” off, e.g., provided miù1, a single particle
leaves site i.

While the Takayasu model sp=0,w=0d does not have a
phase transition in the steady state, by introducing a
nonzero desorption rate p one can induce a critical line
pcsqd in the p-q plane. For fixed q, if one increases p
from 0, one finds that for all p,pcsqd, the steady-state
mass distribution has the same large-m behavior as in
the Takayasu case, i.e.,

Psmd ~ m−t, s279d

where the exponent t is the Takayasu exponent and is
independent of q. For p=pcsqd, we find that the steady-
state mass distribution still decays algebraically for large
m, but with a new critical exponent tc which is bigger

than the Takayasu exponent tt. For p.pcsqd, we find
that

Psmd , exps− m/m*d s280d

for large m, where m* is a characteristic mass that di-
verges if one approaches pcsqd from the p.pcsqd side.
The critical exponent tc is the same everywhere on the
critical line pcsqd. This phase transition occurs in all spa-
tial dimensions, including d=1. The t exponent was de-
termined for the mean-field and one-dimensional cases
sTakayasu et al., 1988; Majumdar et al., 2000bd,

tt
MF = 3/2, tc

MF = 5/2, tt
1d = 4/3, tc

1d = 1.833,

s281d

although the location of dc is not known.
This model can also be mapped onto interface dynam-

ics, if we interpret the configuration of masses as an in-
terface profile, regarding mi as a local height variable.
The phase transition of the model can be qualitatively
interpreted as a nonequilibrium wetting transition of the
interface. The corresponding surface growth exponents
are sMajumdar et al., 2000bd

b̃MF = 1/6, Z = 2, b̃1d = 0.358, Z = 2. s282d

In the p=q=0 conserved model, a nonequilibrium
phase transition occurs when the chipping rate or the
average mass per site r is varied. There is a critical line
rcswd in the r-w plane that separates two types of
asymptotic behaviors of Psmd. For fixed w, as r is varied
across the critical value rcswd, the large m behavior of
Psmd was found to be

Psmd , 5e−m/m*, r , rcswd ,

m−t, r = rcswd ,

m−t + infinite aggregate, r . rcswd .

s283d

As one increases r beyond rc, this asymptotic algebraic
part of the critical distribution remains unchanged but in
addition an infinite aggregate forms. This means that all
the additional mass sr−rcdV swhere V is the volume of
the systemd condenses onto a single site and does not
disturb the background critical distribution. This is
analogous, in spirit, to the condensation of a macro-
scopic number of bosons onto the single k=0 mode in an
ideal Bose gas as the temperature goes below a certain
critical value. Rajesh and Majumdar s2001d proved ana-
lytically that the mean-field phase boundary, rcswd
=Îw+1−1, is exact and independent of the spatial di-
mension d. They also provided unambiguous numerical
evidence that the exponent t=5/2 is also independent of
d. The corresponding growth exponents are Z=2 and
ã=2/3 sMajumdar et al., 2000ad. Even though the single-
site distribution Psmd may be given exactly by the mean-
field solution, that does not prove that mean-field theory
or product measure is the exact stationary state in all
dimensions.

TABLE XXVIII. Summary of continuum growth classes dis-
cussed in this section, following Barabási and Stanley s1995d.

Langevin equation ã b̃ Z

]th=−K¹4h+z s4−dd /2 s4−dd /8 4
]th=n¹2h+zd −d /2 −d /4 2

]th=−K¹4h+zd s2−dd /2 s2−dd /8 4
]th=−K¹4h+l1¹

2s¹hd2+z s4−dd /3 s4−dd /8+d s8+dd /3
dø1

]th=−K¹4h+l1¹
2s¹hd2+zd s2−dd /3 s2−dd /10+d s10+dd /3

d.1
s2−dd /2 s2−dd /8 4
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The left-right asymmetric version of the conserved
model was also studied by Majumdar et al. s2000ad. This
has a qualitatively similar phase transition in the steady
state to that of the conserved model but exhibits a dif-
ferent class phase transition owing to the mass current in
this system. Simulations in one dimension predict Z
=1.67, ã=0.67.

H. Unidirectionally coupled DP classes

As was mentioned in Sec. V.J in the case of coupled,
multispecies directed-percolation processes, field-
theoretical RG analysis sJanssen, 1997bd predicts DP
criticality with an unstable, symmetrical fixed point, such
that subsystems with unidirectionally coupled DP be-
havior emerge. This was shown to be a valid prediction
for linearly coupled, N-component, contact processes
too. Unidirectionally coupled DP systems of the form

A ↔ 2A, A → A + B ,

B ↔ 2B, B → B + C ,

C ↔ 2C, C → C + D s284d

were investigated by Täuber, Howard, and Hinrichsen
s1998d and Goldschmidt et al. s1999d with the motivation
that such models can describe interface growth models,
where adsorption-desorption are allowed at terraces and
edges ssee Sec. VI.Hd. The simplest set of Langevin
equations for such systems was set up by Alon et al.
s1998d:

]tfksx,td = sfksx,td − lfk
2sx,td + D¹2fksx,td

+ mfk−1sx,td + zksx,td , s285d

where zk are independent multiplicative noise fields for
level k with the correlations

kzksx,tdl = 0, s286d

kzksx,tdzlsx8,t8dl = 2Gfksx,tddk,ld
dsx − x8ddst − t8d ,

for k.0, while for the lowest level sk=0d f−1;0 is
fixed. The parameter s controls the offspring produc-
tion, m is the coupling, and l is the coagulation rate. As
one can see, the k=0 equation is just the Langevin equa-
tion for directed percolation s84d. The mean-field solu-
tion of these equations that is valid above dc=4 results
in critical exponents for the level k:

bMF
skd = 2−k s287d

and n'
MF=1/2 and ni

MF=1 independently of k. For d,dc
field-theoretical RG analysis of the action for k,K lev-
els

S = o
k=0

K−1 E ddxdtHckst]t − D¹2 − sdfk − mckfk−1

+
G

2
cksfk − ckdfkJ s288d

was performed by Täuber, Howard, and Hinrichsen
s1998d and Goldschmidt et al. s1999d. The RG treatment
runs into several difficulties. Infrared-divergent dia-
grams were encountered sGoldschmidt, 1998d and the
coupling constant m was shown to be a relevant quantity
swhich means it diverges under RG transformationsd.
Goldschmidt et al. s1999d argued that this is the reason
why scaling seems to break down in simulations for large
times sin lattice realization m is limitedd. The exponents
of the one-loop calculations for the first few levels, cor-
responding to the interactive fixed line, as well as results
of lattice simulations, are shown in Table XXIX. These
scaling exponents can be observed for intermediate
times, but it is not clear whether in an asymptotically
long time they drift to the decoupled values or not.

The main representatives of these classes are certain
monomer adsorption-desorption models sSec. VI.Hd and
polynuclear growth models with depinning transitions
sKertész and Wolf, 1989; Lehner et al., 1990; Toom,
1994a, 1994bd. The latter types of systems are defined by
parallel update dynamic rules, and coupled DP pro-
cesses emerge in a co-moving frame.

A coupled particle system can be related to an inter-
face growth model. Alon et al. s1996, 1998d defined solid-

TABLE XXIX. Critical exponents of unidirectionally coupled
directed percolation. From Goldschmidt et al., 1994.

d=1 d=2 d=3 d=4−e

b1 0.280s5d 0.57s2d 0.80s4d 1−e /6+Ose2d
b2 0.132s15d 0.32s3d 0.40s3d 1/2−e /8+Ose2d
b3 0.045s10d 0.15s3d 0.17s2d 1/4−Osed

d1 0.157s4d 0.46s2d 0.73s5d 1−e /4+Ose2d
d2 0.075s10d 0.26s3d 0.35s5d 1/2−e /6+Ose2d
d3 0.03s1d 0.13s3d 0.15s3d 1/4−Osed

h1 0.312s6d 0.20s2d 0.10s3d e /12+Ose2d
h2 0.39s2d 0.39s3d 0.43s5d 1/2+Ose2d
h3 0.47s2d 0.56s4d 0.75s10d 3/4−Osed

2/Z1 1.26s1d 1.10s2d 1.03s2d
2/Z2 1.25s3d 1.12s3d 1.04s2d 1+e /24+Ose2d
2/Z3 1.23s3d 1.10s3d 1.03s2d

n',1 1.12s4d 0.70s4d 0.57s4d
n',2 1.11s15d 0.69s15d 0.59s8d 1/2+e /16+Ose2d
n',3 0.95s25d 0.65s15d 0.62s9d

ni,1 1.78s6d 1.24s6d 1.10s8d
ni,2 1.76s25d 1.23s17d 1.14s15d 1+e /12+Ose2d
ni,3 1.50s40d 1.15s30d 1.21s15d
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on-solid sSOSd and restricted solid-on-solid sRSOSd
models that can be mapped onto unidirectionally
coupled directed percolation sSec. VI.Hd. In these mod-
els adsorption or desorption processes may take place at
terraces and edges. For each update a site i is chosen at
random and an atom is adsorbed

hi → hi + 1 with probability q s289d

or desorbed at the edge of a plateau

hi → minshi,hi+1d with probability s1 − qd/2,

hi → minshi,hi−1d with probability s1 − qd/2. s290d

Identifying empty sites at a given layer as A particles,
the adsorption process can be interpreted as the decay
of A particles sA→xd, while the desorption process cor-
responds to A-particle production sA→2Ad. These pro-
cesses generate reactions on subsequent layers, hence
they are coupled. The simulations in one dimension
have shown that this coupling is relevant in the upward
direction only, hence the model is equivalent to unidi-
rectionally coupled directed percolation. Defining the
order parameters on the kth layer as

nk =
1

No
i

o
j=0

k

dhi,j
, s291d

where hi is the height at site i, they are expected to scale
as

nk , sqc − qdbskd
, k = 1,2,3, . . . . s292d

When the growth rate sqd is varied, these models exhibit
a roughening transition at qc=0.189 sfor RSOSd and at
qc=0.233s1d sfor SOSd from a nonmoving, smooth phase
to a moving, rough phase in one spatial dimension. The
bk sand other exponentsd take those of the one-
dimensional unidirectionally coupled DP class ssee
Table XXIXd.

The scaling behavior of the interface width is charac-
terized by many different length scales. At criticality it
increases as

W2std ~ t ln t s293d

with t.0.102s3d for RSOS sHinrichsen and Mukamel,
2003d.

I. Unidirectionally coupled parity-conserving classes

Surface growth processes of dimers stimulated the in-
troduction of unidirectionally coupled BARW2 sSec.
IV.D.1d models sHinrichsen and Ódor, 1999a, 1999bd:

A → 3A, B → 3B, C → 3C ,

2A → x , 2B → x , 2C → x , s294d

A → A + B, B → B + C, C → C + D, . . .

generalizing the concept of unidirectionally coupled di-
rected percolation ssee Sec. VI.Hd. The mean-field ap-

proximation of the reaction scheme s294d looks like

]tnA = snA − lnA
2 ,

]tnB = snB − lnB
2 + mnA, s295d

]tnC = snC − lnC
2 + mnB, . . .

where nA, nB, nC correspond to the densities n0, n1, n2 in
the growth models. Here s and l are the rates for off-
spring production and pair annihilation, respectively.
The coefficient m is an effective coupling constant be-
tween different particle species. Since these equations
are coupled in only one direction, they can be solved by
iteration. Obviously, the mean-field critical point is sc
=0. For small values of s the stationary particle densities
in the active state are given by

nA =
s

l
, nB .

m

l
Ss

m
D1/2

, nC .
m

l
Ss

m
D1/4

, s296d

corresponding to the mean-field critical exponents

bA
MF = 1, bB

MF = 1/2, bC
MF = 1/4, . . . . s297d

These exponents should be valid for d.dc=2. Solving
for asymptotic temporal behavior one finds ni =1, imply-
ing that dk

MF=2−k.
The effective action of unidirectionally coupled

BARW2’s should be given by

Sfc0,c1,c2, . . . ,c̄0,c̄1,c̄2, . . . g

=E ddxdto
k=0

`

hc̄ks]l − D¹2dck − ls1 − c̄k
2dck

2

+ ss1 − c̄k
2dc̄kck + ms1 − c̄kdc̄k−1ck−1j , s298d

where c−1= c̄−1;0. Here the fields ck and c̄k represent
the configurations of the system at level k. Since even
the RG analysis of the one-component BARW2 model
suffered serious problems sCardy and Täuber, 1996d, the
solution of the theory of Eq. s298d seems to be hopeless.
Furthermore one expects IR diagram problems and di-
verging coupling strengths, as in the case of unidirec-
tional coupling. These might be responsible for viola-
tions of scaling in the long-time limit.

Simulations of a three-component model in one di-
mension, coupled by instantaneous particle production
of the form s294d, resulted in decay exponents for the
order parameter defined as s291d:

dA = 0.280s5d, dB = 0.190s7d, dC = 0.120s10d . s299d

For further critical exponents see Sec. VI.I.
It would be interesting to investigate parity-

conserving growth processes in higher dimensions. Since
the upper critical dimension dc8 is less than 2, one expects
the roughening transition—if one still exists—to be de-
scribed by mean-field exponents. In higher dimensions,
n-mers might appear in different shapes and orienta-
tions.
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The main representatives of these classes are certain
dimer adsorption-desorption models sSec.VI.Hd and
polynuclear growth models with depinning transitions
sHinrichsen and Ódor, 1999ad. The latter types of sys-
tems are defined by parallel update dynamic rules, and
coupled DP processes emerge in a comoving frame.

Similarly to the monomer case sSec. VI.Hd, dimer
adsorption-desorption models were defined sHinrichsen
and Ódor, 1999a, 1999b; Noh et al., 2000d. With the re-
striction that desorption may only take place at the
edges of a plateau, the models can be mapped onto the
unidirectionally coupled BARW2 class sSec. VI.Id. The
dynamical rules in d=1 are defined in Fig. 27. The map-
ping onto unidirectionally coupled BARW2 can be seen
in Fig. 28.

Such dimer models can be defined in arbitrary spatial
dimensions. Hinrichsen and Ódor s1999ad investigated
four one-dimensional variants:

s1d Variant A is a restricted solid-on-solid model evolv-
ing by random sequential updates.

s2d Variant B is a solid-on-solid model evolving by ran-
dom sequential updates.

s3d Variant C is a restricted solid-on-solid model evolv-
ing by parallel updates.

s4d Variant D is a solid-on-solid model evolving by par-
allel updates.

Variants A and B exhibit transitions in contrast with
polynuclear growth models, in which only parallel up-
date rules permit roughening transitions. When the ad-
sorption rate p is varied, the phase diagram shown in
Fig. 29 emerges for RSOS and SOS cases. If p is very

small, only a few dimers are adsorbed at the surface,
staying there for a short time before they evaporate
back into the gas phase. Thus the interface is anchored
to the actual bottom layer and does not propagate. In
this smooth phase the interface width grows logarithmi-
cally until it saturates at a finite value seven for L→`d.

As p increases, a growing number of dimers covers
the surface, and large islands of several layers stacked
on top of each other are formed. Approaching a certain
critical threshold pc the mean size of the islands diverges
and the interface evolves into a rough state with the
finite-size scaling form

W2sL,td . a lnftGst/LZdg . s300d

The order parameter defined on the kth layer as Eq.
s294d exhibits unidirectionally coupled BARWe critical
behavior. The transition rates and exponents are sum-
marized in Table XXX. Above pc one may expect the
interface to detach from the bottom layer in the same
way as the interface of monomer models starts to propa-
gate in the supercritical phase. However, since dimers
are adsorbed at neighboring lattice sites, solitary unoc-

TABLE XXX. Numerical estimates for the four variants of the
dimer model at the roughening transition p=pc supper partd
and at the transition p=0.5 slower partd.

Variant A B C D
Restriction

updates
yes

random
no

random
yes

parallel
no

parallel

pc 0.3167s2d 0.292s1d 0.3407s1d 0.302s1d
a 0.172s5d 0.23s1d 0.162s4d 0.19s1d
Z 1.75s5d 1.75s5d 1.74s3d 1.77s5d
d0 0.28s2d 0.29s2d 0.275s10d 0.29s2d
d1 0.22s2d 0.21s2d 0.205s15d 0.21s2d
d2 0.14s2d 0.14s3d 0.13s2d 0.14s2d

ã 1.2s1d undefined 1.25s5d undefined

b̃ 0.34s1d 0.50s1d 0.330s5d 0.49s1d

FIG. 27. sColor in online editiond Absorption of dimers with
probability p and desorbtion at the edges of terraces with
probability 1−p. Evaporation from the middle of plateaus is
not allowed. From Hinrichsen and Ódor, 1999a.

FIG. 28. Extended particle interpretation. Dimers are ad-
sorbed s2A→ x d and desorbed sA→3Ad at the bottom layer.
Similar processes take place at higher levels. From Hinrichsen
and Ódor, 1999a.

FIG. 29. sColor in online editiond Phase diagram of one-
dimensional dimer models.
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cupied sites may emerge. These pinning centers prevent
the interface from moving and lead to the formation of
droplets. Due to interface fluctuations, the pinning cen-
ters can slowly diffuse to the left and to the right. When
two of them meet at the same place, they annihilate, and
a larger droplet is formed. Thus, although the interface
remains pinned, its roughness increases continuously.
The width initially increases algebraically until it slowly
crosses over to a logarithmic increase Wstd,Îa ln t.

The restricted as well as the unrestricted variants un-
dergo a second phase transition at p=0.5 sNoh et al.,
2000d, where the width increases algebraically with time

as W, tb̃. In the RSOS case ordinary Family-Vicsek
scaling fEq. s254dg occurs, with the exponents given in

Table XXX. The dynamic exponent is Z= ã / b̃.3. This

value stays the same if one allows dimer digging at the
faceting transition, but other surface exponents ã

.0.29s4d and b̃.0.111s2d will be different sNoh et al.,
2000d. An explanation of the latter exponents is given by
Noh et al. s2001d based on mapping to globally con-
strained random walks. In the SOS cases svariants B,Dd,
large spikes are formed, and the surface roughens much

faster with a growth exponent of b̃.0.5. The interface
evolves into configurations with large columns of dimers
separated by pinning centers. These spikes can grow or
shrink almost independently. As the columns are spa-
tially decoupled, the width does not saturate in finite
systems, i.e., the dynamic exponents ã and Z have no
physical meaning.

For p.0.5 the restricted models A and C evolve into
faceted configurations. The width first increases algebra-
ically until the pinning centers become relevant and the
system crosses over to a logarithmic increase in the
width. Therefore the faceted phase may be considered
as a rough phase. The unrestricted models B and D,
however, evolve into spiky interface configurations. The
spikes are separated and grow independently by deposi-
tion of dimers. Therefore W2 increases linearly with
time, defining the free phase of the unrestricted models.

In the simulations mentioned up until now the inter-
face was grown from flat initial conditions. It turns out
that when one starts with random initial conditions hi
=0,1 the densities nk turn out to decay much more
slowly. For restricted variants an algebraic decay of n0
with an exponent

d0 . 0.13 s301d

was observed. Similarly, the critical properties of the
faceting transition at p=0.5 are affected by random ini-
tial conditions. The nonuniversal behavior for random
initial conditions is related to an additional parity con-
servation law. The dynamic rules not only conserve par-
ity of the particle number but also conserve the parity of
droplet sizes. Starting with a flat interface, the lateral

TABLE XXXI. Summary of known absorbing-state universal-
ity classes in homogeneous isotropic systems: DP, directed per-
colation; DyP, dynamical percolation; VM, voter model; PCP,
pair-contact process; NDLF, nondiffusive conserved field; PC,
parity-conserving; BP, binary production; DCF, diffusive con-
served field; N-BARW2, N-component branching and annihi-
lating random walk with two offspring; N-BARW2s, symmetric
N-BARW2; N-BARW2a, asymmetric N-BARW2.

CLASS Features Section

DP time-reversal symmetry IV.A
DyP long memory IV.B
VM Z2 symmetry IV.C
PCP coupled frozen field V.E

NDCF global conservation V.I

PC Z2 symmetry, BARW2 conservation IV.D.1
BP DP coupled to ARW V.F

DCF coupled diffusive conserved field V.H
N-BARW2 N-component BARW2 conservation V.K
N-BARW2s symmetric NBARW2+exclusion V.L
N-BARW2a asymmetric NBARW2+exclusion V.L

TABLE XXXII. Mean-field classes of known, homogeneous absorbing-state transitions: DP, directed percolation; DyP, dynamic
percolation; VM, voter model; PC, parity conserving; BKARW, branching and k-particle annihilating random walk; PARWs,
symmetric production and m-particle annihilating random walk; PARWa, asymmetric production and m-particle annihilating
random walk; NDCF, nondiffusive conserved field; NBARW2, N-component branching and annihilating random walk with even
offspring.

CLASS b b8 Z ni a d h dc

DP 1 1 2 1 1 1 0 4
DyP 1 1 2 1 1 1 0 6
VM 0 1 2 1 0 1 0 2
PC 1 0 2 1 1 0 −1/2 2
BkARW 1/ sk−1d 0 2 1 1/ sk−1d 0 0 2/ sk−1d
PARWs 1 0 2 n 1/n 0 0
PARWa 1/ sm−nd 2 sm−1d / sm−nd 1/ sm−1d
NDCF 1 1 2 1 1 1 0 4
NBARW2 1 0 2 1 1 0 0 2
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size of droplets is always even, allowing them to evapo-
rate entirely. However, for a random initial configura-
tion, droplets of odd size may be formed which have to
recombine in pairs before they can evaporate, slowing
down the dynamics of the system. In the language of
BARW2 processes, the additional parity conservation is
due to the absence of nearest-neighbor diffusion. Par-
ticles can only move by a combination of offspring pro-
duction and annihilation, i.e., by steps of two lattice
sites. Therefore particles at even and odd lattice sites
have to be distinguished. Only particles of different par-
ity can annihilate. Starting with a fully occupied lattice
all particles have alternating parity throughout the
whole temporal evolution, leading to the usual critical
behavior at the parity-conserving transition. For random
initial conditions, however, particles of equal parity can-
not annihilate, slowing down the decay of the particle
density. Similar sector decomposition has been observed
in diffusion of k-mer models sBarma et al., 1993; Barma
and Dhar, 1994d.

VII. SUMMARY

In summary, dynamical extensions of classical equilib-
rium classes were introduced in the first part of this re-
view. New exponents, concepts, subclasses, mixing dy-
namics, and some unresolved problems were discussed.
The common behavior of these models was the strongly
fluctuating ordered state. In the second part of the re-
view genuine nonequilibrium dynamical classes of
reaction-diffusion systems and interface growth models
were discussed. These were related to phase transitions
to absorbing states of weakly fluctuating ordered states.
The behavior of these classes is usually determined by
the spatial dimensions, symmetries, boundary condi-
tions, and inhomogeneities, as in the case of the equilib-
rium models, but in low dimensions hard-core exclusion
was found to be a relevant factor too, making the criti-
cality in fermionic and bosonic models different. The
symmetries are not so evident as in case of equilibrium
models. They are most precisely expressed in terms of
the relations of fields and response fields. Furthermore,
in recently discovered coupled systems with binary, trip-
let, or quadruplet particle production no special symme-
try seems to be responsible for a novel type of critical
behavior. Perhaps a proper field-theoretical analysis of
the coupled DP+ARW system could shed some light on
this mystery. Parity conservation in hard-core and in bi-
nary spreading models seems to be irrelevant. Table
XXXI summarizes the best-known families of absorbing
phase transition classes of homogeneous, spatially iso-
tropic systems. Those which are in the lower part exhibit
fluctuating absorbing states. The necessary and sufficient
conditions for these classes are usually unknown. The
mean-field classes can also give a guide to distinguishing
classes below dc. Table XXXII collects the mean-field
exponents and upper critical dimensions of the known
absorbing-state model classes. Note that in the general
nA→ sn+kdA, mA→ sm− ldA type of RD systems the
values of n and m determine the critical behavior.

In d.1 dimension the mapping of spin-systems onto
RD systems of particles is not straightforward; instead
one should also take into account the theory of branch-
ing interfaces sCardy, 2000d. Preliminary simulations us-
ing generalized Potts models have found interesting
critical phenomena exhibiting absorbing states sLip-
owski and Droz, 2002ad.

Further research is needed to explore the universality
classes of nonequilibrium phase transitions that are in-
duced by external current and of other models exhibit-
ing fluctuating ordered states sEvans et al., 1998; Evans,
2000d. Nonequilibrium phase transitions in quantum sys-
tems sRácz, 2002d or in irregular graph or network-based
systems are also a current interest of research. Finally,
having settled the problems raised by fundamental non-
equilibrium models, one should turn towards the study
of more applied systems.
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LIST OF ABBREVIATIONS

ABC active boundary condition IV.A.4

ARW annihilating random walk
sAA→ x d

IV.C.1

BARW branching and annihilation random
walk

IV.A

BARWe even-offspring branching and
annihilation random walk

IV.D.1

BARWo odd-offspring branching and
annihilation random walk

IV.A.3

BARW2 two-offspring branching and
annihilation random walk

IV.D.1

BkARW branching andk particle
annihilating random walk

IV.E

BP binary production V.F

CAM coherent anomaly method IV.A

CDP compact directed percolation IV.A.2

DCF diffusive conserved field V.H

DK Domany-Kinzel(cellular
automaton)

IV.A.2

DP directed percolation IV.A

DS damage spreading I.D

DyP dynamical percolation IV.B

EW Edwards-Wilkinson VI.B

DMRG density matrix renormalization
group

IV

GEP generalized epidemic process IV.B

GDK generalized Domany-Kinzel
(cellular automaton)

IV.D.3
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GMF generalized mean-field
approximation

II

IBC inactive boundary condition IV.D.4

IMD interacting monomer-dimer IV.A.4

KPZ Kardar-Parisi-Zhang VI.D

LIM linear interface model VI.C

MF mean-field approximation I.E

MM monomer-monomer IV.D.4

N-BARW2 even-offspring,N-component
branching and annihilation
random walk

V.K

NDCF nondiffusive conserved field V.I

NEKIM nonequilibrium Ising model IV.D.2

PC parity conserving IV.D

PCP pair contact process V.E

PCPD pair contact process with particle
diffusion

V.F.1

PARWs symmetric production and
m-particle annihilating random
walk

IV.F

PARWa asymmetric production and
m-particle annihilating random
walk

IV.F

PNG polinuclear growth models VI.H

RBC reflecting boundary condition IV.A.4

RD reaction-diffusion I.E

RG renormalization group I.E

RSOS restricted solid on solid model IV

SCA stochastic cellular automaton IV.A.2

SOS solid on solid model VI

TTP threshold transfer process V.E

UCDP unidirectionally coupled directed
percolation

VI.H

VM voter model IV.C
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