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A stochastic cellular automaton exhibiting a parity-conserving class transition has been investigated in the
presence of quenched spatial disorder by large-scale simulations. Numerical evidence has been found that weak
disorder causes irrelevant perturbation for the universal behavior of the transition and the absorbing phase of
this model. This opens up the possibility for experimental observation of the critical behavior of a nonequi-
librium phase transition to absorbing state. For very strong disorder the model breaks up into blocks with
exponential-size distribution and continuously changing critical exponents are observed. For strong disorder
the randomly distributed diffusion walls introduce another transition within the inactive phase of the model, in
which residual particles survive the extinction. The critical dynamical behavior of this transition has been
explored.
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I. INTRODUCTION

The classification of the universality classes of nonequi-
librium phase transitions to absorbing states is still an open
problem of statistical physics �1–3�. Reaction-diffusion �RD�
models exhibiting phase transitions to absorbing states bear a
particular interest since many other types of systems like
surface growth, spin systems, or stochastic cellular automata
can be mapped on to them. Unfortunately there has not been
experimental verification of such classes except the coagu-
lating random walk A+A→A �CRW� in one dimension �4�.
This is mainly due to the fact that the most well-known,
robust directed percolation �DP� class �5,6� is sensitive to
disorder �7–10�, which occurs in real systems naturally. It
would be very important to find some other nonequilibrium
class, which proves to be less sensitive to disorder, hence
would provide a candidate for experimental verification.

The study of disordered systems is a hot topic of current
research of statistical physics �11�. A principal condition for
the relevancy of disorder is the Harris criterion �12,13� set up
for equilibrium systems and has been found to be valid in
some nonequilibrium models. According to this criterion the
pure critical point is stable against disorder if the spatial
correlation length critical exponent �� fulfills the inequality

d�� � 2, �1�

where d is the spatial dimensionality. However, an exception
was reported very recently �14� for DP with temporal disor-
der. Note that for a CRW �which is exhibits the same scaling
behavior as the A+A→� annihilating random walk �ARW�
in one dimension �1D�� this criterion predicts relevant spatial
disorder ���=1�. Still an experiment �4� did not report a
measurable effect of randomness unless very strong disorder
fractures the medium.

Besides the robust DP another well-known universality
class is the so-called “parity-conserving” �PC� class of 1D
nonequilibrium transitions. This was discovered in a one-
dimensional stochastic cellular automata �CA� exhibiting Z2

symmetric absorbing states and domain walls following
even-offspringed branching and annihilating random walks:
A→3A, 2A→� �BARW2� �15�. Later it was observed by
numerical studies of other models �16–25� and field-
theoretical studies �26,27� confirmed the existence of a cor-
responding fixed point distinct from that of DP. For a review
see �28�. This class is also called the directed Ising, DP2, or
generalized voter model class.

According to the Harris criterion disorder should be rel-
evant for the critical behavior of this class ���=1.857�1�
�3��. In contrast to this a recent renormalization group �RG�
study �9� did not find a strong disorder fixed point like in the
case of DP. The question naturally arises if BARW2 is really
insensitive to disorder or the RG method �9� is not applicable
for this case. The principal aim of the present study is to
answer this question. Additionally in the absorbing phase of
the BARW2 model the ARW dynamics dominates, which has
also been addressed in the studies �29,30�. The renormaliza-
tion study of ARW with spatial randomness in the reaction
rates found marginal perturbations to the fixed point of the
pure system �30�. On the other hand, an exact study of the
infinite reaction rate ARW with space-dependent hopping
rates found nonuniversal power-law decay of the density of
A-s below a critical temperature �29�.

Note that in �9� the strong disorder is defined in such a
way that it cannot completely block reactions or diffusion of
the reactants. Therefore the so-called infinitely strong fixed
point of �9� does not correspond to the blocking case. Such
blocking or complete dilution was studied in a 1D toy model
of a random quantum ferromagnetic Ising model �31� where
continuously variable power laws were found at the phase
transition point. The effect of disconnected domains in the
reactions of CRW and ARW has been investigated in �32�.
This study reported stretched exponential decay in the case
of exponential domain-size distributions and continuously
changing density decay for blocks distributed in a power-law
manner. In the 1D model such complete blocking may also
occur; hence, we investigate this topological effect.

PHYSICAL REVIEW E 73, 036130 �2006�

1539-3755/2006/73�3�/036130�7�/$23.00 ©2006 The American Physical Society036130-1

http://dx.doi.org/10.1103/PhysRevE.73.036130


II. NEKIMCA MODEL

To study PC class transitions with disorder we have cho-
sen a very simple stochastic cellular automaton �SCA� the
NEKIMCA introduced in �21�. It is easy to show that the
dual variables of spins �↑� the kinks �•� exhibit BARW2 dy-
namics via the synchronous spin-flip dynamics. In this SCA
parity-conserving kink branching is also generated due to the
synchronous spin update of neighboring sites without intro-
ducing an explicit spin-exchange reaction as in case of the
NEKIM model �18�. The reactions are like the following:

random walk: ↑↑ • ↓→
wi

↑ • ↓↓,

annihilation: ↑ • ↓ • ↑→
wo

↑ ↑↑,

branching: ↑↑ • ↓ ↓→
wi

2

↑ • ↓ • ↑ •↓.
In the NEKIMCA there are two independent variables pa-

rametrized as

wi = ��1 − ��/2, �2�

wo = ��1 + �� . �3�

In the computer the state of a single spin is represented by
a 1 or 0 of a 32- or 64-bit word s�j� �depending on the CPU
type�. Hence 32 or 64 CA samples �exhibiting different ran-
dom initial conditions but the same quenched noise� are up-
dated at once.

The following bit-parallel algorithm was used for the up-
date of states s�j� at site j. A random number x�j�� �0,1� is
selected with uniform distribution. If

x�j� � qi�j� = wi + ��j� , �4�

a spin flip, corresponding to random walk of the dual vari-
able

s��j� = �s�j + 1� Ù s�j − 1�� Ù s�j� , �5�

is written to all bits of s�j��. Following this another uni-
formly distributed random number y�j�� �0,1� is chosen and
if

y�j� � qo�j� = wo + ��j� , �6�

a spin flip, corresponding to annihilation of the dual vari-
ables

s��j� = ��s�j − 1� Ù s�j�� & �s�j + 1� Ù s�j��� Ù s�j� , �7�

is performed. Here ��j� denotes the quenched random noise
variable with uniform distribution

��j� � �− �,�� , �8�

and Ù and & are the logical XOR and AND of computer words.
Note that for strong disorder qi�j� or qo�j� may be less than 0
at a site meaning a blockade for that reaction.

A single Monte Carlo step �MCS� consists of updating all
s��j� sites with periodic boundary conditions and writing
back s�j�=s��j� for j� �0,L−1� �throughout the paper the
time is measured by MCS�.

III. DYNAMICAL SIMULATIONS ALONG THE
DISORDERED PC TRANSITION LINE

The simulations were carried out on L=4�104–105 sized
systems with periodic boundary conditions. The initial states
were randomly half-filled lattices, and the density of kinks is
followed up to 107–108 MCS. We started the exploration of
the �� ,�� phase diagram by determining the phase transition
of the impurity-free ��=0� case with �=1. This was located
at �c=−0.550�1� as a power-law decay of the kink density,

	 
 t−�, �9�

with exponent �=0.28�1�. This is in good agreement with
the PC class value �21�. Next we introduced the quenched
disorder and determined �c for different � values. Table I and
Fig. 1 show the results. As one can see the disorder moves
the transition point in such a way that the size of absorbing
phase increases along the −� axis.

Weak disorder ���wo� seems to be irrelevant �see Fig. 2�.
The line corresponding to �=0.5675 can well be described
by a power law from 103� t�108 MCS �5 decades� with

TABLE I. Numerical results for the disordered PC class transi-
tion line.

� −�c � � z 


0.0 0.550�1� 0.280�6�
0.1 0.5513�5� 0.280�6�
0.2 0.557�1� 0.280�6�
0.3 0.5676�1� 0.280�5� 0.95�1� 1.11�1� 0.285�5�
0.4 0.5849�1� 0.265�10�
0.5 0.6115�4� 0.25�1� 0.84�2� 1.0�1� 0.252�6�
0.6767�2� 0.7 0.22�1� 0.80�2�

FIG. 1. �Color online� Phase diagram of the disordered
NEKIMCA for negative �. Bullets correspond to the disordered PC
class transition points, squares to the freezing transition �lines are a
guide for the eye only�. The dashed line shows wo, while the dotted
line denotes wi.
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exponent �=0.28. The local slopes �effective exponents� of
the kink density decay are defined as

�ef f�t� =
− ln�	�t�/	�t/m��

ln�m�
�10�

�where we used m=2�. At the critical point the �ef f�t� curve
exhibits a straight-line shape for t→�, while in subcritical
�supercritical� cases �ef f�t� curves veer down �up�, respec-
tively. One can read off �ef f →�=0.28�1� in a perfect agree-
ment with the PC class value. Similar results are obtained for
�=0.1,0.2,0.4 and summarized in Table I.

To confirm these results we run cluster-spreading simula-
tions from a single active seed �one kink, odd sector� and
measured the number of particles �N�t�� and the diameter of
clusters �R�t��. At the critical point these are expected to
scale as

N�t� 
 t
, R�t� 
 tz/2. �11�

As Fig. 3 shows both quantities exhibit power-law behavior
with PC class exponents 
=0.285�5� and z=1.11�1� �17,28�.

Finally we performed steady-state simulations in the ac-
tive phase at �=0.3. We followed the density of kinks in
many realizations until saturation is reached and averaged in
a time window following that point. The steady-state density
in the active phase at a critical phase transition is expected to
scale as

	��,�� 
 �� − �c��. �12�

Using the local slopes method one can get a precise estimate
for � as well as for the corrections to scaling,

�ef f��i� =
ln 	��,�i� − ln 	��,�i−1�

ln��i� − ln��i−1�
, �13�

where we used the �c value determined before. The local

slopes analysis resulted in �ef f →�=0.95�1� in agreement
with the PC class value again �25� �see Fig. 4�.

Annihilation blocking on the disordered PC transition line

In the inactive phase and at the critical point depletion of
kinks dominates via the AA→� annihilation. However, for
strong enough disorder active domains of arbitrary sizes may
also emerge due to the exponential distribution of such
events. The contribution of these such large regions can be
estimated as in �13� with the difference that for the PC class
even the absorbing phase decays algebraically; i.e., one does
not have exponential decay that could slow down to
stretched exponential at some “clean critical point” as in the
DP case. The probability pa for finding a rare region of size
la is

FIG. 2. �Color online� Density decay of NEKIMCA for �=0.3,
�=1 for different �=0.571,0.57,0.568,0.5675,0.567,0.565,0.56,
0.55 �from top to bottom�. The insert shows the local slopes for �
=0.568,0.5675,0.567 �from top to bottom�.

FIG. 3. �Color online� Spreading in NEKIMCA for �=0.3, �
=1, �c=−0.5679. The inset shows the corresponding local slopes.

FIG. 4. �Color online� Effective order parameter exponent re-
sults on the disordered PC class line for �=0.3,0.5 �top to bottom�.
Lines correspond to a linear fit.
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pa 
 exp�− qla� , �14�

where q
wi
2−wo+� is the probability that a site is active.

The long-time kink decay density is dominated by these rare
regions. For long times any finite region decays exponen-
tially hence

	�t� 
� dlalapa exp�− t/��la�� , �15�

where ��la� is the characteristic decay time of a size of region
of size la. The average lifetime of such active regions grows
as

��la� 
 exp�ala� �16�

because a coordinated fluctuation of the entire region is re-
quired to take it to the absorbing state. The saddle-point
analysis of �15� as in �13� results in power-law decay

	�t� 
 t−pa/a. �17�

Hence one may expect continuously changing decay expo-
nents either as the effect of rare active regions or as the effect
of high diffusion barriers �29�.

As we discussed in the previous section we did not see the
occurrence of such continuous-decay variables for weak dis-
order. However, by going above �� 	0.4 the situation
changes and we begin to see deviation from the pure PC
decay behavior �see Table I�. The effect of disorder becomes
drastic. By increasing � above wo the qo reaction probabili-
ties may become zero at certain sites randomly �with prob-
ability pw� and the kink annihilation is blocked at those sites.
From annihilation reaction point of view the systems falls
apart to l blocks with an exponential probability distribution

p�l� = pwpnw
l , �18�

where the no-wall probability pnw is related to � according to
our algorithm as pnw=1− pw=1− ��−wo� is set. This means
that neighboring kinks cannot even annihilate at the block
boundary points which may cause relevant perturbation to
the critical behavior.

As Fig. 5 shows for �=0.5 the phase transition occurs at
�c=−0.6115�3� and the density decay exponent is smaller
than the PC class value: �=0.25�1�. For �=−0.7 and �c

=0.677�1�, it is even smaller, �=0.22�1�, suggesting con-
tinuously changing exponents along this transition line by
increasing �. Similarly the steady-state exponent � and the
spreading exponent z change in this region �see Table I and
Fig. 3�.

IV. DYNAMICAL SIMULATIONS
IN THE INACTIVE PHASE

In the inactive phase the annihilating random walk domi-
nates, in which for pure systems the density decays asymp-
totically as a power law �33�:

	 
 t−1/2; �19�

hence, one can check the effect of disorder for this process.
As one can see on Fig. 6 the disorder does not change this

behavior for small �; the 	�t�t1/2 curves level off. For larger
�, however, the deviations from the law �19� is observable
for long time. Following a transient region, which is faster
than �19� and characteristic of an ARW with finite reaction
rates �34�, the decay slows down. For example, for �=0.57
and �=−0.6 power-law fitting for t�106 MCS results in �
=0.43�1�, while for �=0.48 and �=−0.5 we obtained �
=0.46�1�. These �-dependent � values are in agreement with
the results of �29�, where continuously changing power-law
exponents are determined below a critical temperature in the
case of exponentially distributed diffusion barrier heights.

V. DYNAMICAL SIMULATIONS
OF THE FREEZING TRANSITION

As one can see in Fig. 1 for negative � values the PC class
transition line does not cross the wi line, suggesting that the
diffusion and branching reactions are not blocked. However,

FIG. 5. �Color online� Effective � in the strong-disorder region
of the disordered PC class transition line ��=0.5�, −�c=0.613,
0.612,0.611,0.609 �top to bottom�.

FIG. 6. �Color online� Density decay in the inactive phase at
coordinates ��=−0.6, �=0.57�, ��=−0.5, �=0.3�, ��=−0.525, �
=0.1� �top to bottom�.
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due to the parallel computer algorithm we used in the case of
strong disorder ���1−wo�, qo may become 1 at certain sites
and hence a random walk move is immediately overwritten
by the CA update �7� at these sites. As a consequence in the
absorbing phase �above the disordered PC transition line� the
diffusion is blocked. Again the system falls apart to blocks
with closed diffusion boundaries. As the depletion goes on
kinks cannot leave the blocks to interact with others in
neighboring ones and “frozen” steady states emerge for ��
−�. Note, however, that the system is not completely frozen;
kinks cannot only diffuse within the blocks, but branching
may occur with �small probability� followed by a quick an-
nihilation. In any case the residual density remains small.

We run dynamical simulations on the freezing transition
line, and as Fig. 7 shows the density decay is slower than the
square-root law of ARW �19� and changes continuously
along the freezing transition line �see Table II�. However, for
��0.5 this deviation can be interpreted as a �logarithmic�
correction to scaling. For ��0.5 even the wo �annihilation�
reactions are blocked and the deviation from �19� is strong.
We repeated this simulation on a system with different size
�L=104�, but did not see any size dependence.

The spreading exponent z changes similarly along the
freezing transition line. It is close to z=1 for ��0.5 and
deviates it significantly for ��0.5 �see Fig. 8�. The average
number of kinks �N�t�� evolves to a small constant value as
t→� �
=0� all along the freezing transition line. This value
changes continuously by increasing the disorder strength.

For ��0.2 only a single kink survives �N���
1�, while for
other values see Table II.

In the frozen �active� phase in the long-time limit pairs
within the same block annihilate and basically lonely kinks
are wandering in confined regions of sizes l �local A→3A
→A reactions are also permitted with a small probability�.
Therefore the density of frozen kinks depends on the density
of blocks, hence on �. The concentration of blocks cb can be
expressed with the average length �l� of blocks as

	 
 cb 
 �l�−1. �20�

For the exponential block size distribution �18� the average
block size is

�l� = �− ln�pnw��−1, �21�

with the no-wall probability

pnw = 1 − pw = 1 − �wo + � − 1� = 2 − � − wo. �22�

The kink density is

	 
 − ln�2 − � − wo� , �23�

which for small wall probability pw has the leading-order
singularity

	 
 pW. �24�

This means that in the frozen phase �=1. The simulations
confirm this. For ��0.5, where only diffusion traps are
present the �	1 indeed �see Table II and Fig. 9�. For �
�0.5 where annihilation is also blocked the exponent � de-
creases by increasing � �see Table II�.

We have also investigated the phase space for positive �
�with �=0.5� where ��wi causes a direct freezing transition
via diffusion traps in the absorbing phase. The density decay

FIG. 7. �Color online� Density decay on the freezing transition
line for �=0.6,0.4,0.2 �top to bottom�.

TABLE II. Numerical results for the freezing transition line.

� −�c � � z N���

0.2 0.2 0.47�3� 1.00�5� 0.95�5� 1.031�1�
0.4 0.4 0.47�3� 0.95�5� 1.275�5�
0.5 0.5 0.43�1� 1.0�2� 1.85�5�
0.6 0.6 0.41�1� 0.75�3� 0.76�2� 3.75�5�
0.7 0.7 0.39�1� 0.68�4� 0.72�2� 14�1�

FIG. 8. �Color online� Spreading in NEKIMCA along the freez-
ing transition line �=0.7,0.6,0.0,0.2,0.125 �top to bottom�. The
�=0,0.125 data correspond to �=0.5, the others to �=1. The �
=0.125 line corresponds to �=0.5, the others to �=−�. The inset
shows the corresponding local slopes.
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simulations �see Fig. 10� show small deviations from the
square-root law of ARW �19�, which can be interpreted as
corrections to scaling.

VI. DISCUSSION

We have investigated the phase diagram of the
NEKIMCA as the function of quenched disorder with large-
scale simulations. We have chosen NEKIMCA, a very
simple SCA, which is known to exhibit PC class transition of
kinks to absorbing states. We determined static and dynamic
exponents �� ,� ,
 ,z� at several points along the phase tran-
sition line and in the inactive phase. The main consequence
of this survey is that weak disorder does not change the
scaling behavior of the quantities studied. This supports the
results of a recent real-space RG study �9� but contradicts the
Harris criterion.

A possible resolution of this contradiction could be the
study of the distribution of the critical-point coordinates over
the ensemble of samples of size L. According to recent
progresses in the finite-size scaling theory of disordered sys-
tems, thermodynamic observable are not self-averaging at
critical points when the disorder is relevant in the Harris
criterion sense �35–40�. This lack of self-averageness at criti-
cality is directly related to the distribution of pseudocritical
temperatures Tc�i ,L� over the ensemble of samples �i� of size
L. This has been shown numerically in the case of a wetting
transition of a polymer chain with quenched disorder �41�.
An interesting further direction of research would be the
study of those distributions for nonequilibrium systems like
for NEKIMCA.

For weak disorder ��� 
0.4� we did not see deviations
from the asymptotic square-root power law �19� in the inac-
tive phase. However, for stronger disorder a continuously
changing density decay exponent ��� was observed. This

corroborates a former RG study �30� for ARW’s with site-
dependent reaction rates and an exact calculation for the
infinite-reaction-rate ARW with disordered diffusion traps
�29�.

Very strong disorder in our model may introduce com-
plete blocking of reactions or diffusion with exponential
domain-size distribution. If the system becomes segmented
by diffusion walls, a freezing transition to fluctuating states
occurs. In this case in odd-parity blocks residual particles
remain active. Large-scale simulations suggest that this kind
of disorder is marginal; the density decay slows down from
the power law �19� by a logarithmic correction or changes
continuously if the annihilation is blockaded too. In the fro-
zen phase the concentration of residual kinks increases loga-
rithmically, with �ef f →1 asymptotically. This is in agree-
ment with the results of �32�, who considered the ARW
model with complete blockades. However, we did not see the
crossover to stretched exponential decay reported in �32� for
long time, but rather the decay slows down in our model.
This is due to the fact that in our model in the frozen state
not only do blockades exist, but reaction and diffusion prob-
abilities are randomized, which can introduce slower power
laws �13,29,30�.

In the region of the phase diagram where the disorder is
so strong that the annihilation reaction becomes segmented
we found continuously changing exponents along both the
disordered PC and the freezing transition lines.
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FIG. 10. �Color online� Density decay in NEKIMCA for posi-
tive � along the freezing transition line �=0.075,0.125,
0.175,0.25 �top to bottom�. The inset shows the corresponding local
slopes.

FIG. 9. �Color online� Effective order parameter exponent re-
sults on the freezing transition line for �=0.2,0.6 �top to bottom�.
Lines correspond to a linear fit.
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