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consequences

Renewable energy adds more instability 
due to the large fluctuations of the power 
sources, like wind farms:

Anvari et al  2018
Complexity and Synergetics.
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Sciences, Jan. 4-7, 2000, Maui, 
Hawaii.  2000 IEEE

Extreme events occur more frequently 
than by an independent variable ensemble

Self-Organized Criticality (SOC) was 
assumed to describe this:

Competition of supply and demand 
Dobson et al Chaos 17 (2007) 026103
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The EU 2022 HV network
SciGRID project based on ENTSO-E & OpenStreetMap data

Modular HV network,  with graph dimension: d = 1.8(2)         Incomplete network

Adjacency  Matrix



  

Summary of network invariants
N nodes, E edgesGraph:

Average degree

Cumulative degree distribution 

Shortest path-length

Clustering coefficient

Small world coefficient Modularity

Similar invariants, small world networks, but d < 3



  

The synchronization model



  

Methods and measured quantities



  

Cascade simulations by line-cuts
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Cascade failure statistics

Dragon king
←  events
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Fluctuation peaks and Island effects

Enhanced stability at (R) peaks , near the synchronization transition !
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Comparison of frequency results with 
measurements of Hungarian HV power-grid

Frequency data in Hungary at 10/23 2022
Fits well with q-Gaussian (q~1.1) (SEGAN)

Kuramoto solution on a 387 node HV with
Real pararameters, in/out powers, 
line admittances, inertias … etc
Fits well with q-Gaussian (q~1.6)



Local frequency
Synchronization 
during a blackout 
cascade, simulated 
by kuramotoGPU.
Chimera states:
Deng and Ódor
Chaos 2024
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Expansion plans in real power grids cause non-local overloads of the grid.



  

Braess Paradox and the SOC

Schafer et al Nature Communications 13, 5396 (2022) 5396 

Expansion plans in real power grids cause non-local overloads of the grid.

This happpens for low and high 
couplings, but not in the SOC
region
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Phys. Rev. Res. 6 (2024) 013194
SEGAN 2024 in press
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Outage durations with PL tails
(digression)

Electrical outages  Blackout cascades, still they show PL duration 
tails:

Following power-spectral analysis we proposed SOC and HOT models to understand
See our recent paper :   PRX Energy 2 (2023).033007  



  

Summary of community results

Louvain algorithm used with resolution
Parameter 
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Admittances (interaction weights), calculated 
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Admittances (interaction weights), calculated 
from cable lengths and specific resistances

PL exponents ~ 2, Universal ?
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Load and generator power distributions

~ 0.25  Universal ?
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