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The topology of large Open
Connectome networks for the
human brain

Michael T. Gastner? & Géza Odor? SCIENTIFIC REPORTS | 6:27249 | DOI: 10.1038/srep27249

The degree distribution of 10 large human connectomes
obtained by DMRI DTR algorithm has been analyzed by
Mazx likelihood + Akaike Criterion, for 6 models:

10” observation epas
R (H— EXP ) =[] [Prik, w1,
]EI-I E P‘D"I:L'r 'i=k:n:.n
= i
2 e TPW i 2K(K + 1
S 0% N | E';:‘,.‘"B AIC, = —2 In(L(¥)) + 2K + {—KJr}
Al N — —
AT o
;Ij I'O £ ) -
3 RS et Model F(k)
E 10k exponential (EXP) gk
power law (POW) o (ko)
10 3 log-normal (LGN) l - .I,—E'rl'(m—f?—)
Weibull (WBL) exp (—ok™)
10 E I . I . I . I . I L e truncated power law (TPW) o (k+a) e ™
0 1000 2000 3000 4000 5000 6000 generalized Weibull (GWE) exp [a (v — (k+7)7)]

k
Figure 2. The maximum-likelihood distributions from each model family for matching the degree

distribution of network KKI-18. In this example the generalized Weibull distribution is the best compromise
in the right tail (see Table 2).

The generalized Weibull (stretched exponential) fits the best them
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Power-law tails with exponents ~ 3

In-out strength pdf-s : faster than PL decay
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For the full fly brain the PL degree distribution fit breaks down
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FIG. 1: Weight distribution of the fruit-fly connectome. Right

inset: adjacency matrix plot of the fruit-fly connectome. Left 5
inset: full adjacency matrix down-sampled with a max pool- B
ing kernel of size 10 x 10. Black dots denote connections

between presynaptic and postsynaptic neurons. Right inset: 0

zoom-in to the center of the matrix without down-sampling.

G.O. et al Phys. Rev. Res. 4 (2022) 023057.
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