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Multispecies annihilating random walk transition at zero branching rate:
Cluster scaling behavior in a spin model
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Numerical and theoretical studies of a one-dimensional spin model with locally broken spin symmetry are
presented. The multispecies annihilating random walk transition found at zero branching rate previously is
investigated now concerning the cluster behavior of the underlying spins. Generic power-law behaviors are
found, besides the phase transition point, also in the active phase with fulfillment of the hyperscaling law. On
the other hand scaling laws connecting bulk and cluster exponents are broken—a possibility in no contradiction
with basic scaling assumptions because of the missing absorbing phase.

DOI: 10.1103/PhysReVvE.68.056106 PACS nun)er05.70.Ln, 05.70.Fh, 05.70.Jk, 82.20.Wt

I. INTRODUCTION hilation rate maximally favoring— spins (MDG mode).
These authors found the result that while thelomains still

The study of nonequilibrium model systems has attracted¢oarsen ag'?, the — domains coarsen slightly faster as
great attention in recent years. A variety of phase transitions"? In(t). As a result at late times, the system started from a
has been found characterized by critical exponents, bothandom initial state decays into a fully compact state where
static and dynamic. Of special interest are transitions from &ll spins become- in a slow logarithmic way 1/Inj.
fluctuating active state into an absorbing one. A wide range In a previous papef14] the authors presented an asym-
of models with transitions into absorbing states was found tdnetric spin-mode(NEKIMA) by generalizing the NEKIM
belong to the directed percolatiéBP) universality clas§1]. ~ model which includes as a special case the MDG model. In
Another universality class of interest is the so-called parityNEKIMA there is local spin asymmetry both in the annihi-
conserving(PO) class[2-5]. The mostly studied particle lation rate(favonng - sping and the.dlffusmnlll_(e spin-flip
model in this class is branching annihilating random walk'ate (favoring + sping and thus acting oppositely. Global
(BARW) in one dimension(1D) with an even number of scalllng properties of th_e model have begn mvestlgate_d nu-
offsprings (A—0, A—3A, in the simplest cageThe first merically as well as using cluster mean-fi¢hdF) approxi-
example of model systems exhibiting PC-type transition wa ation. The N'BARW.2 transition, for which no Spin madel
given, however, in two 1D cellular automata by Grassberger ad been known previously, was found at zero spm-exchange
[6]. The prototypespin model for PC-type phase transitions rate. In the present paper we further investigate this model at

. . such parameter values for which in the original NEKIM
was proposed by one of the authpr$by introducing a class model PC-type transition takes place. In the plane of the
of nonequilibrium kinetic Ising modelNEKIM) with com-

) o : spin-asymmetry parameter and kink-branching probability
bined spin-flip dynamic$8] at zero temperatur&=0 and \ye have found, by computer simulations as well as by cluster

Kawasaki spin-exchange kinetif8] at T=cc. mean-field calculations, a phase diagram showing a reentrant
Transitions between active and absorbing phases hav@rected-percolation line. Our main purpose, however, has
been, however, mostly studied in particle-type models. Thgeen to investigate the cluster development propeftieat
N-BARW2 model is a classical stochastic system of N typesynd in the vicinity of the N-BARW?2 line an¢b) in the rest
of particles with branching annihilating random walk. For of the parameter space considered. For the mean population
N>1, N types of particlesA; perform diffusion, pairwise sjze n(t)~t”, for the mean square spreading of spins
annihilation of the same species, and branch®g-Ai  R2(t)~tZ and for the survival probabilitP(t) ~t~° generic
+2A; with rate o for i=j and with rates'/(N—1) fori  scaling behavior has been found via computer simulations in
#]. According to field theory10] in this model the rater  (aimosj the whole plane of the phase diagram with fulfill-
flows to zero under coarse-graining renormalization whichment of the hyperscaling law. Upon crossing the line of zero
implies that the model is always active except for the a”ni'branching ratéwhere the phase transition takes plac®w-
hilation fixed point ato’=0. It forms a universality class, ever, dynamic scaling is found to be violated concerning
the so-called N-BARW2, different from DP and PC, with jaws connecting bulk exponents and cluster ones. We trace
well-known bulk critical exponents in 1D. back such a possibility to the circumstance that the absorbing

In the NEKIM model a global asymmetry of the spins phase is missing by the N-BARW2 transition.
(magnetic field is known to change the PC transition into

the DP typg11,17. The question arises what is the effect of
alocal breaking of the spin symmetry in such a spin system.
The first indication in this direction has come from a work of
Majumdaret al. [13] who studied the coarsening dynamics  The general form of the Glauber spin-flip transition rate in
of a Glauber-Ising chain with strong asymmetry in the anni-one dimension for spiw; sitting at sitei is [8] (s;=*1):

Il. THE MODEL AND PREVIOUS RESULTS
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T - 1
W(Si,Si—1,Si+1)= 5(14‘ 0Si_1Si4+1)| 1— Esi(si—1+5i+1)

()
at zero temperaturdUsually the Glauber model is under-

stood as the special case-0, '=1.) ;
The kink —3 kink processes are introduced via the ex- 100 [} # |
change rate -

This model(called NEKIM), for negative values 0b in _
Eq. (1) shows a line of PC transitions in the plane of the |
parameters QEX,E) [7]. In NEKIMA [14] the authors have i L
extended the above model by introducing local symmetry
breaking in the spin-flip rates of the and — spins as fol-
lows. Concerning the annihilation rates the prescription in i 1. space-time development of (white) and — (black

|

1

Pex [
Wex(Si1Si+1)= 5 (1= SiSi+q). 2 ' lfl

200 (

|

Ref.[13] is followed: spins evolving from a random initial state far, =0.1, pe,=0.
Throughout the whole papeéris measured in units of Monte Carlo
w(+;——)=1 w(—;++)=0, ©) sweeps.

while further spin-symmetry breaking is introduced in the The results obtained within error of simulations=0.5 and
diffusion part of the Glauber transition rate as follows. In 5—1 0, pointed to the presence of an N-BARW?2 transition.

calculating the transition rates Finite size scaling behavior was also examined to find the
- other two bulk exponentg, the correlation length ang the
p=w(—;+—)=w(—;—+)=T/2(1-9) (4)  characteristic time:
the Glauber form, Eq(1), is used unchanged, whilg(+; E~ pe’X”i, T~ &, (8)

+—) andw(+;—+) are allowed to take smaller values:
whereZ is the dynamical critical exponent. The expectation
p.=w(+;+—)=w(+;—+)<p. (5) for an N-BARW?2 transition at zero branching rate was jus-
tified by the valuesy, =1.0 andZ=2.0, which were found
In this way, by locally favoring thet spins, the effect of the within error of simulations. We also found the expected
other dynamically induced fields arising from the prescrip-phase diagram of a line of DP transitions in the, (pe,)
tion [Eq. (3)] is counterbalanced. The spin-exchange part oplane(instead of the PC line of NEKI
the NEKIM model remains unchanged, E@). It is worth
mentioning that the IIftlng of the strong restriction in Ha) IIl. CLUSTER BEHAVIOR AT AND BELOW
together with applylng spin anisotrom/+<I‘/2(1— 5) has THE N-BARW?2 TRANSITION
the same effect as a global magnetic field favoringpins.
For pex=0, the absorbing states in the extreme situation Spreading from a localized source at criticality is usually
p. =0, when diffusionlike spin flipping maximally favors ~ described by the following three quantities:
spins, are states with single frozen spins like + —+ + +
—++—++ +. By increasingp, from zero, a slow random

walk of these lonely-- spins starts and by annihilating ran- wheren(t) denotes the mean population sif(t) is the

dom walk only one of them survives and performs random . ; )
walk (RW) (see Fig. 1 All + and all— states are, of course, mean square spreading of particlggere spins about the

also absorbin origin, and P(t) is the survival probability. In most cases
9 . . these quantities are defined for particles, in the present case,
In Ref. [14] the authors have studied the following global however, like for studying compact directed percolation of
guantities for different values qf, <p: the density of kinks ’

. . . o2 = 2 an Ising chaif 15], they will be used for spins.
as a funct'|on of t'mf' s.tartmg from a random initial distribu- In the active phase the survival probability defines a fur-
tion of spins forpe,=0:

ther useful critical exponemg’ (v|=Z2Zv,)

P(t)~t~% n(t)~t7, R3(t)~t? 9)

p(t)~t~« (6) P~t"2g(pet™") (10
and its asymptotic values for finite but small valuespg§ as
p--(Pex) ~ Phy- (7) P.~pel, B'=vd. (12)
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0.8 TABLE I. Cluster critical exponents at and near the N-BARW?2
transition point. The hyperscaling law+ 6=2/2 (see Sec. Yis
satisfied.

06 . Exponents Pex=0, Pex=0, Pex* 0, Pex* 0,

ACTIVE + _ + _
n 1.0 0.0 1.0 1.0
504 DPLINE . é 0.0 0.0 0.0 0.0
z 2.0 0.0 2.0 2.0

i I and Il. As it is apparent from Table I, the cluster does not
change its exponents by crossing thg=0 line. The —

0.2 ABSORBING

NBARW2 cluster’s exponents, however, change abruptly.
T T T T For the case, =0.3 Figs. 3 and 4 show the local expo-
05 0,05 o1 015 02 nent values[Eq. (12)] for p.,=0, i.e., at the N-BARW2
' A ' ' transition point and fop.,=0.02, i.e., in the active phase.

Here and in most cases of our simulations the number of MC
FIG. 2. Phase diagram of the NEKIMA model fo= —0.565,  steps has been>510°® with averaging over X 10* different
I'=0.5. The absorbing phase is fully. runs. In some cases, however, much longer runs have also
been carried out up to $0MC steps to corroborate these
In the present case the following parameter values ofesults, see Fig. 5.
NEKIMA were used in the simulationsT=0.5, 3 For comparison let us recall the well-known values for the
— —0.565 (p=0.39125). The phase diagram in the<£(p  @bove exponents in case of the compact directed percolation
—p.)/P,Pey) Plane is shown in Fig. 2. The origin (0,0) will point of the Domay-Kinzel ce_llular automato_||j16]._ Dick-
be called “MDG point” as at this poinp, = p and the model Man and Tretyako{15] have given the results in this context

is the same as treated in RéL3] (though the values 0 as fOHOWS:_n:O’ 0= 1~/2’ andz=1. (The same as_ for the
andT are different. The line p,,=0 is a line of compact- Glauber-Ising model aé=0, I'=1.0.) It is of some interest

ness, as will be discussed in the following section. Also othefO Present the measured cluster exponents at the origin of the

details of the phase diagram will be explained later. phase diagram, Fig. 2, which is the equivalent of the MDG
In NEKIMA + and— spins are not symmetric, therefore POINt. Here we found for the- cluster: =0, 6=1/2, z

we have investigated two kinds of clusters. Namely, the de=1 While for the — cluster: »=1/2, 6=0, z=1 [with the

velopment of the— cluster seed was started from a wholly S8Me accuracy as most of our results herg,,(
+ environment at=0: ++++++4—+ - ++++—++++ =5X10° MC stepg]. These data are summarized in Table

while the + cluster from a sea of spins - - - - - - IIl. Because of the relatively low upper limit in time of most
e “We will call them — cluster and+ cluster.  Of our simulations as given above, the possibility of the pres-

respectively. The simulations have been performed with sevec€ of a Inf) correction at the MDG point cannot be ex-
eral values ofp, and pey; for ta=5x10° Monte Carlo ~ cluded.
(MC) steps and for averages over*l€amples. The local

slopes IV. BREAKING OF A SCALING LAW

According to the preceding section the result for the criti-
_ In[P(t)/P(t/m)] 12 cal exponent of the mean square distance of spreading from
Inm the origin, z, is equal to 2.0 within error of numerical simu-

lations. For the dynamical critical exponent the valde
[and similarly for (t) andz(t)] as a function of I/ are =~ =2.0 was obtained, in the whole regimp,( values of the
plotted, as usual in case of simulations for critically behavingN-BARW?2 transition.
guantities. In Eq(12) m>1 is an arbitrary factor which we On the other hand, at BARW-type transitions, such as DP
took to be equal to 5. The results obtained in different re-and PC transitions, the following scaling law connects the
gions of the phase diagram, Fig. 2, are summarized on Tablesbove two critical exponents:

—5(t)

TABLE Il. Cluster critical exponents at and near the DP line. For abbreviations see Fig. 2. The hyperscaling law, valid for DP transitions,
n+26=12/2 (see Sec. Yis satisfied.

Exponents On DP line- On DP line— Absorbing phaser Absorbing phase- Active phaset+  Active phase—
n 0.31 1.0 Exponential 1.0 1.0 1.0
S 0.16 0.0 Exponential 0.0 0.0 0.0
z 1.26 2.0 Exponential 2.0 2.0 2.0
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FIG. 3. Cluster exponents for cluster atp,.=0.3, pe=0. FIG. 5. Cluster spreading exponents forcluster at parameter
Number of MC steps: 19 number of averages: 10+ correspond valuesp, =0.3, pe=0.02 (5= —0.565'=0.5). Number of MC
to », X to z/2, and * to 4. steps: 18, number of averages: 10Upper curve: 7., lower
curve: Zg¢42.
z=2/Z. (13

In the absorbing phase the functigrir,t) is expected to
This relation is usually quoted as a consequence of dynamidecrease exponentially ap(r,t)~exp—r/é, where &

cal scaling. Using the above cited results, however,(E8.  ~A "L, This form implies forF (u,v) (with v <0) the form
is broken. The possibility of breaking this scaling law is
actually due to the circumstance that the N-BARW2 transi- F(u,v)ﬁexp(_c\/mvm), (15)

tion point lies at the zero value of the branching probability,
Pex=0, and there is no absorbing phase with exponentiallyyhere C>0 is constant. Fog to be time independent the
decreasing space and time dependences. To support this pog#aling law is required:
let us recall the way Mendest al.[17] derived relation(13).

They started from the general expresdid8] for the den- 2v,

2
sity of particles(kinks) at space point in the absorbing = =7 (16)
phaseA <0 (hereA denotes the deviation from the critical ”
poiny and at large fixed value df(for d=1) This scaling law is not fulfilled in the presently discussed
p(r,t)=t7"22F(r?/t? At*"). (14 :jneondsei:)./Moreover, the bulk quantity, the time dependent kink
1 T T T T —a
% p(t)~t~¢, 17)
1 % .
08 | + n . and the expression obtainable from Etg)
__t+n—12z2
06 | | p(t)~t (18
g X
=y * are also in conflict; namely, while all the simulations have
@ 04r 1 resulted ine=0.5 within error and this is in agreement with
§ the scaling lawa = B/v, according to the values given in
- o2t .
TABLE lll. Cluster critical exponents in case of the Glauber-
Ising and MDG parameter values. The hyperscaling law &
0 Mk x * % =12/2 is satisfied.
0.2 1 1 1 1 Exponents  Glauber-Ising, Glauber-Ising, MDG, MDG,
T o 0.01 0.02 0.03 0.04 + - + -
1t
i 0 0 0.0 0.5
FIG. 4. Cluster exponents for cluster atp, =0.3, p,=0. o 1/2 1/2 0.5 0.0

Number of MC steps: ) number of averages: 10+ correspond z 1 1 1.0 1.0
to », X to z/2, and * to 4.
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Table | the exponent in Eq18) is zero, again within the auxiliary magnetic field; namely, one can simply make the
error of simulations(lt is to be noted that this conflict is no observation that all the clusters investigated on phe=0
more present concerning the exponent valuepat-0, line are compact and from this fact E@4) follows for the
wherea=0 and»—2z/2=0, as well) The apparent contra- hyperscaling law15].

diction, however, is resolved again by recalling that cluster Equation(24) is known as the hyperscaling law for com-
exponents and bulk exponents are allowed to be not corpact clusters. By definitiod+ 7 is the exponent which char-

nected by a scaling law. acterizes the average population in surviving trials and the
radius of such a cluster grows &~t?2. 5+ 7=dz/2 is
V. HYPERSCALING simply the scaling law for the volume of @dimensional

) ) sphere of radiug; [15].
The generalized hyperscaling 14w8] was developed for As a matter of fact, the- clusters are compact with
systems with multiple absorbing configurations and reads — g zi50 atp,,#0, and even in the DP region of Fig. 2. This
is not true, however, for the- cluster in the DP region,
_ which follows normal DP-cluster behavidsee Table )
+ =
ot2n=dz, (19 with the corresponding DP hyperscaling lai®3). (It is
worth noting that wheneves=0, and this fails only for the
whereB’ is defined for the active phase, E4Jl). + cluster in the DP region, the CDP and DP hyperscaling
The derivation of Eq.(19) goes along the following laws do not differ.
lines. It starts with Eq(14) for p(r,t) and with the expres-

2

1+ £
BI

sions
VI. REENTRANT PHASE DIAGRAM, CLUSTER
P(t)~t °®(AtY), (20) MF CALCULATIONS
P.~AF, B'=0oy (22) In the original NEKIM model at6=0 no transition oc-

curs, while for negative values of this parameter PC transi-
for the survival probability. Since the stationary distribution tion takes place. The spin asymmetry of NEKIMA changes

iS unique the character of the transition into DP and this appears also
for =0. Here we have chosen for our simulations and for

p(X,1)— P AP~ APTF (22)  the cluster mean-field approximation calculations a fixed
. . negative value ob. Our aim has been to explore some pos-

ast—e. HenceF(0y)~y”"#" which entails Eq(19). sible reminiscence of the PC transition. At the chosen param-

In case of the DP transitiofalong the DP line of Fig. @2

B'=p as it is well known, and thus Eq19) gives eter valuess= —0.565]'=0.5 in NEKIM the PC transition

occurs atpe,=0.12. Turning to NEKIMA, at the same val-

26+ n=12/2. (23 ues of 8,I" our simulations show that the transition point
(which is DP, of courseshifts to pe,=0.51. The absorbing
For the N-BARW2 transition, however, EGL9) does not  phase below this point is al-. For lettingp,<p the DP
apply as Eq(14), according to the preceding section, is notline starts tangentially upon increasipg, from 0 and ex-
an appropriate starting point. hibits a reentrant property. It ends up @at,=0.51 tangen-
To deduce the hyperscaling law valid for this case therajally. The regression takes place j§,~0.12, see Fig. 2,
are several possible ways of arguing. It is possible to enlarggost probably a remnant of the transition point of the corre-
the parameter space of our model: we can think of a thirgsponding PC transition. This turning point, however, is also
direction in the parameter space, approaching from where thef DP character as can be expected.
transition turns out to be of first order. For this aim one can Dynamical cluster mean-field approximations have been
introduce a “magnetic field” into the system by changing theintroduced for nonequilibrium models by Ref49,20. The

annihilation probability asv(+;——)=1—h. In this direc- master equations fdd=1-7 block probabilities were set up
tion B,=0 and thus Eq(19) gives d=1) as
n+6=12/2. (24
IPy({si})
This law is satisfied for all the clusters investigated, includ- — —T(Pas), (25)

ing those at the MDG point. Even fqgi,,#0 we can still

think of each point as being a first-order transition point with

B=0 in theh direction and the same considerations apply agvhere site variables may take valugs-+1. Taking into

above. Thus on the basis of the results presented now, traecount spatial reflection symmetries Bf({s;}) this in-

conclusion to be drawn is that hyperscaling is genericallyolves 72 independent variables in caséNet 7. The equa-

satisfied in the whole N-BARW2 phase of the NEKIMA tions were solved numerically for thePy({s;})/dt=0

model. steady state condition, for differept,, and p, values and
Looking at the problem from a different point of view, the p, () kink density was expressed IB®y({s;}). The re-

however, it is really not necessary to introduce the aboventrant behavior could not be observed 6 clusters.
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spin clusters behave differently. By investigating their devel-
01 . opment we conclude that generic power-law behavior char-
acterizes the cluster behavior at and in the vicinity of the
NBARW-2 transition.

The critical cluster exponents obtained satisfy the con-
straints on critical exponents in generédl) 6=0 and(2) 1
0.06 - i =<z=2. The critical exponens has been found to be zero.
\ The hyperscaling law is satisfied in the form known for com-

ABSORBING | pact directed percolation, and indeed, the N-BARW2 clusters
0.04 | n 1 are compact.
/ In a different problem Cafieret al. [21] have reported

cluster exponents similar to the ones found here. These au-

ACTIVE
0.08 - b

Pex

002 i thors studied how disorder affects the critical behavior of
e DP-like systems. Already in the 1980s No¢22] showed
0 w w w w w that quenched disorder changes their behaviad<t and
04 03% 039 0885 038 03715 037 gemonstrated that whah=1 a generic scale invariance can

be observed. In Ref21] it was shown that deep in the active
FIG. 6. Steady state density hi—6 (bullety andN=7 (boxes ~ Phasen=1, 6=0, andz=2 for the model they considered.
level approximation. Lines connecting symbols are shown for guid-AS we have_found als_o generic scale invariance and the_ same
ance of eye only. exponents, in the active phase of our model and even in the
region which is the active phase of the DP line of our phase
The results forN=6,7 are shown in Fig. 6. A slow shift diagram, the question arises whether the similarity is fortu-

towards lowem . values, which agree with the simulations, itous or not. Whether the slowly diffusing- clusters of
can be observed. NEKIMA distributed randomly in the direction can play a

role similar to quenched impurities, e.g., in the original
VIl. DISCUSSION NEKIM model, is a question for future investigations.

We have investigated a one-dimensional NEKIMA exhib-
iting strong spin asymmetry. In the plane of two of the pa-
rameters of NEKIMA(the kink-branching parameter and a  Support from the Hungarian Research Fund OT{GAant
spin-asymmetry paramejethe phase diagram is as follows: Nos. T-025286 and T-034784uring this study is gratefully
besides a reentrant DP line the NBARW-2 transition occursacknowledged. G.Oacknowledges the access to the NIIFI
at zero branching rate. Due to the asymmetriesand — Cluster-GRID and the Supercomputer Center of Hungary.

ACKNOWLEDGMENTS

[1] For a review, see J. Marro and R. Dickmatonequilibrium  [11] H. Park and H. Park, Physica221, 97 (1995.
Phase Transitions in Lattice Model€ambridge University [12] N. Menyhad and G. Qlor, J. Phys. A29, 7739(1996.
Press, Cambridge, 1986H. Hinrichsen, Adv. Phys49, 815  [13] S.N. Majumdar, D.S. Dean, and P. Grassberger, Phys. Rev.

(2000; G. Odor, Rev. Mod. Phys(to be published e-print Lett. 86, 2301(2001).
cond-mat/0205644. [14] N. Menyhad and G. @lor, Phys. Rev. B6, 016127(2002.
[2] 1. Jensen, Phys. Rev. ED, 3623(1994. [15] R. Dickman and Y. Tretyakov, Phys. Rev.32, 3218(1995.

[3] D. Zhong and D. ben-Avraham, Phys. Lett289, 333(1995. [16] E. Domany and W. Kinzel, Phys. Rev. Let63, 311 (1984.

[4] M.H. Kim and H. .Park, Phys. Rev. Leff3, 2579(1994. [17] J.F.F. Mendes, R. Dickman, M. Henkel, and M. Marques, J.
[5] H. Park, M.H. Kim, and H. Park, Phys. Rev. B2, 5664 Phys. A27, 3019(1994.

(1995. [18] P. Grassberger and A. de la Torre, Ann. PH&Y.) 122 373
[6] P. Grassberger, F. Krause, and T. von der Twer, J. Phyg, A

ar (1979.
L105 (1984; P. Grassbergeibid. 22, L1103 (1989. . i ) .
[7] N. Menyhad, J. Phys. /27, 6139(1994. [19] I(—|1.9Aé7()3utownz, J.D. Victor, and B.W. Knight, PhysicaZ8, 18

[8] R.J. Glauber, J. Math. Phy4, 191 (1963.
[9] See, e.g., K. KawasakRPhase Transitions and Critical Phe-
nomenaedited by C. Domb and M.S. Gre¢Academic Press,

[20] R. Dickman, Phys. Rev. 88, 2588(1988.
[21] R. Cafiero, A. Gabrielli, and M.A. Muoz, Phys. Rev. 57,

New York, 1972, Vol. 2, p. 443. 5060(1998.
[10] J. Cardy and U.C. Tuber, Phys. Rev. LetiZ7, 4780(1996; J.  [22] A.J. Noest, Phys. Rev. Let&7, 90 (1986; Phys. Rev. B38,
Stat. Phys90, 1 (1998. 2715(1988.

056106-6



