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Multispecies annihilating random walk transition at zero branching rate:
Cluster scaling behavior in a spin model

Nóra Menyhárd1 and Géza Ódor2
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Numerical and theoretical studies of a one-dimensional spin model with locally broken spin symmetry are
presented. The multispecies annihilating random walk transition found at zero branching rate previously is
investigated now concerning the cluster behavior of the underlying spins. Generic power-law behaviors are
found, besides the phase transition point, also in the active phase with fulfillment of the hyperscaling law. On
the other hand scaling laws connecting bulk and cluster exponents are broken—a possibility in no contradiction
with basic scaling assumptions because of the missing absorbing phase.
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I. INTRODUCTION

The study of nonequilibrium model systems has attrac
great attention in recent years. A variety of phase transiti
has been found characterized by critical exponents, b
static and dynamic. Of special interest are transitions fro
fluctuating active state into an absorbing one. A wide ran
of models with transitions into absorbing states was found
belong to the directed percolation~DP! universality class@1#.
Another universality class of interest is the so-called pa
conserving~PC! class @2–5#. The mostly studied particle
model in this class is branching annihilating random w
~BARW! in one dimension~1D! with an even number o
offsprings (2A→0, A→3A, in the simplest case!. The first
example of model systems exhibiting PC-type transition w
given, however, in two 1D cellular automata by Grassber
@6#. The prototypespin model for PC-type phase transition
was proposed by one of the authors@7# by introducing a class
of nonequilibrium kinetic Ising models~NEKIM ! with com-
bined spin-flip dynamics@8# at zero temperatureT50 and
Kawasaki spin-exchange kinetics@9# at T5`.

Transitions between active and absorbing phases h
been, however, mostly studied in particle-type models. T
N-BARW2 model is a classical stochastic system of N typ
of particles with branching annihilating random walk. F
N.1, N types of particlesAi perform diffusion, pairwise
annihilation of the same species, and branchingAi→Ai
12Aj with rate s for i 5 j and with rates8/(N21) for i
Þ j . According to field theory@10# in this model the rates
flows to zero under coarse-graining renormalization wh
implies that the model is always active except for the an
hilation fixed point ats850. It forms a universality class
the so-called N-BARW2, different from DP and PC, wi
well-known bulk critical exponents in 1D.

In the NEKIM model a global asymmetry of the spin
~magnetic field! is known to change the PC transition in
the DP type@11,12#. The question arises what is the effect
a local breaking of the spin symmetry in such a spin syste
The first indication in this direction has come from a work
Majumdaret al. @13# who studied the coarsening dynami
of a Glauber-Ising chain with strong asymmetry in the an
1063-651X/2003/68~5!/056106~6!/$20.00 68 0561
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hilation rate maximally favoring2 spins ~MDG model!.
These authors found the result that while the1 domains still
coarsen ast1/2, the 2 domains coarsen slightly faster a
t1/2 ln(t). As a result at late times, the system started from
random initial state decays into a fully compact state wh
all spins become2 in a slow logarithmic way 1/ln(t).

In a previous paper@14# the authors presented an asym
metric spin-model~NEKIMA ! by generalizing the NEKIM
model which includes as a special case the MDG model
NEKIMA there is local spin asymmetry both in the annih
lation rate~favoring 2 spins! and the diffusionlike spin-flip
rate ~favoring 1 spins! and thus acting oppositely. Globa
scaling properties of the model have been investigated
merically as well as using cluster mean-field~MF! approxi-
mation. The N-BARW2 transition, for which no spin mod
had been known previously, was found at zero spin-excha
rate. In the present paper we further investigate this mode
such parameter values for which in the original NEKI
model PC-type transition takes place. In the plane of
spin-asymmetry parameter and kink-branching probabi
we have found, by computer simulations as well as by clus
mean-field calculations, a phase diagram showing a reen
directed-percolation line. Our main purpose, however,
been to investigate the cluster development properties~a! at
and in the vicinity of the N-BARW2 line and~b! in the rest
of the parameter space considered. For the mean popula
size n(t);th, for the mean square spreading of spi
R2(t);tz, and for the survival probabilityP(t);t2d generic
scaling behavior has been found via computer simulation
~almost! the whole plane of the phase diagram with fulfi
ment of the hyperscaling law. Upon crossing the line of ze
branching rate~where the phase transition takes place!, how-
ever, dynamic scaling is found to be violated concern
laws connecting bulk exponents and cluster ones. We tr
back such a possibility to the circumstance that the absorb
phase is missing by the N-BARW2 transition.

II. THE MODEL AND PREVIOUS RESULTS

The general form of the Glauber spin-flip transition rate
one dimension for spinsi sitting at sitei is @8# (si561):
©2003 The American Physical Society06-1
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w~si ,si 21 ,si 11!5
G

2
~11 d̃si 21si 11!F12

1

2
si~si 211si 11!G

~1!

at zero temperature.~Usually the Glauber model is unde
stood as the special cased̃50, G51.!

The kink →3 kink processes are introduced via the e
change rate

wex~si ,si 11!5
pex

2
~12sisi 11!. ~2!

This model~called NEKIM!, for negative values ofd̃ in
Eq. ~1! shows a line of PC transitions in the plane of t
parameters (pex ,d̃) @7#. In NEKIMA @14# the authors have
extended the above model by introducing local symme
breaking in the spin-flip rates of the1 and2 spins as fol-
lows. Concerning the annihilation rates the prescription
Ref. @13# is followed:

w~1;22 !51, w~2;11 !50, ~3!

while further spin-symmetry breaking is introduced in t
diffusion part of the Glauber transition rate as follows.
calculating the transition rates

p[w~2;12 !5w~2;21 !5G/2~12 d̃ ! ~4!

the Glauber form, Eq.~1!, is used unchanged, whilew(1;
12) andw(1;21) are allowed to take smaller values:

p1[w~1;12 !5w~1;21 !<p. ~5!

In this way, by locally favoring the1 spins, the effect of the
other dynamically induced fields arising from the prescr
tion @Eq. ~3!# is counterbalanced. The spin-exchange par
the NEKIM model remains unchanged, Eq.~2!. It is worth
mentioning that the lifting of the strong restriction in Eq.~3!
together with applying spin anisotropyp1,G/2(12d) has
the same effect as a global magnetic field favoring1 spins.

For pex50, the absorbing states in the extreme situat
p150, when diffusionlike spin flipping maximally favors1
spins, are states with single frozen2 spins like12111
2112111. By increasingp1 from zero, a slow random
walk of these lonely2- spins starts and by annihilating ran
dom walk only one of them survives and performs rand
walk ~RW! ~see Fig. 1!. All 1 and all2 states are, of course
also absorbing.

In Ref. @14# the authors have studied the following glob
quantities for different values ofp1,p: the density of kinks
as a function of time, starting from a random initial distrib
tion of spins forpex50:

r~ t !;t2a ~6!

and its asymptotic values for finite but small values ofpex

r`~pex!;pex
b . ~7!
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The results obtained within error of simulations,a50.5 and
b51.0, pointed to the presence of an N-BARW2 transitio
Finite size scaling behavior was also examined to find
other two bulk exponents,j, the correlation length andt, the
characteristic time:

j;pex
2n' , t;jZ, ~8!

whereZ is the dynamical critical exponent. The expectati
for an N-BARW2 transition at zero branching rate was ju
tified by the values:n'51.0 andZ52.0, which were found
within error of simulations. We also found the expect
phase diagram of a line of DP transitions in the (p1 ,pex)
plane~instead of the PC line of NEKIM!.

III. CLUSTER BEHAVIOR AT AND BELOW
THE N-BARW2 TRANSITION

Spreading from a localized source at criticality is usua
described by the following three quantities:

P~ t !;t2d, n~ t !;th, R2~ t !;tz, ~9!

wheren(t) denotes the mean population size,R2(t) is the
mean square spreading of particles~here spins! about the
origin, and P(t) is the survival probability. In most case
these quantities are defined for particles, in the present c
however, like for studying compact directed percolation
an Ising chain@15#, they will be used for spins.

In the active phase the survival probability defines a f
ther useful critical exponentb8 (n i5Zn')

P;t2dg~pext
1/n i! ~10!

as

P`;pex
b8, b85n id. ~11!

0 100 200
x

0

100

200

t

FIG. 1. Space-time development of1 ~white! and 2 ~black!
spins evolving from a random initial state forp150.1, pex50.
Throughout the whole papert is measured in units of Monte Carl
sweeps.
6-2
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In the present case the following parameter values
NEKIMA were used in the simulations:G50.5, d̃
520.565 (p50.39125). The phase diagram in the (D[(p
2p1)/p,pex) plane is shown in Fig. 2. The origin (0,0) wi
be called ‘‘MDG point’’ as at this pointp15p and the model
is the same as treated in Ref.@13# ~though the values ofd̃
and G are different!. The line pex50 is a line of compact-
ness, as will be discussed in the following section. Also ot
details of the phase diagram will be explained later.

In NEKIMA 1 and2 spins are not symmetric, therefor
we have investigated two kinds of clusters. Namely, the
velopment of the2 cluster seed was started from a who
1 environment att50: 11111111 - 11111111,
while the 1 cluster from a sea of2 spins: - - - - - -
1 - - - - - . We will call them 2 cluster and1 cluster,
respectively. The simulations have been performed with s
eral values ofp1 and pex ; for tmax553103 Monte Carlo
~MC! steps and for averages over 104 samples. The loca
slopes

2d~ t !5
ln@P~ t !/P~ t/m!#

ln m
~12!

@and similarly for h(t) and z(t)] as a function of 1/t are
plotted, as usual in case of simulations for critically behav
quantities. In Eq.~12! m.1 is an arbitrary factor which we
took to be equal to 5. The results obtained in different
gions of the phase diagram, Fig. 2, are summarized on Ta

0 0.05 0.1 0.15 0.2
∆

0

0.2

0.4

0.6

0.8
p ex

ABSORBING

ACTIVE

DPLINE

NBARW2

DPLINE

FIG. 2. Phase diagram of the NEKIMA model ford520.565,
G50.5. The absorbing phase is fully2.
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I and II. As it is apparent from Table I, the1 cluster does not
change its exponents by crossing thepex50 line. The 2
cluster’s exponents, however, change abruptly.

For the casep150.3 Figs. 3 and 4 show the local expo
nent values,@Eq. ~12!# for pex50, i.e., at the N-BARW2
transition point and forpex50.02, i.e., in the active phase
Here and in most cases of our simulations the number of
steps has been 53103 with averaging over 23104 different
runs. In some cases, however, much longer runs have
been carried out up to 105 MC steps to corroborate thes
results, see Fig. 5.

For comparison let us recall the well-known values for t
above exponents in case of the compact directed percola
point of the Doma´ny-Kinzel cellular automaton@16#. Dick-
man and Tretyakov@15# have given the results in this conte
as follows:h50, d51/2, andz51. ~The same as for the
Glauber-Ising model atd̃50, G51.0.! It is of some interest
to present the measured cluster exponents at the origin o
phase diagram, Fig. 2, which is the equivalent of the MD
point. Here we found for the1 cluster: h50, d51/2, z
51 while for the2 cluster:h51/2, d50, z51 @with the
same accuracy as most of our results here (tmax
553103 MC steps!#. These data are summarized in Tab
III. Because of the relatively low upper limit in time of mos
of our simulations as given above, the possibility of the pr
ence of a ln(t) correction at the MDG point cannot be ex
cluded.

IV. BREAKING OF A SCALING LAW

According to the preceding section the result for the cr
cal exponent of the mean square distance of spreading f
the origin,z, is equal to 2.0 within error of numerical simu
lations. For the dynamical critical exponent the valueZ
52.0 was obtained, in the whole regime (p1 values! of the
N-BARW2 transition.

On the other hand, at BARW-type transitions, such as
and PC transitions, the following scaling law connects
above two critical exponents:

TABLE I. Cluster critical exponents at and near the N-BARW
transition point. The hyperscaling lawh1d5z/2 ~see Sec. V! is
satisfied.

Exponents pex50,
1

pex50,
2

pexÞ0,
1

pexÞ0,
2

h 1.0 0.0 1.0 1.0
d 0.0 0.0 0.0 0.0
z 2.0 0.0 2.0 2.0
sitions,
TABLE II. Cluster critical exponents at and near the DP line. For abbreviations see Fig. 2. The hyperscaling law, valid for DP tran
h12d5z/2 ~see Sec. V! is satisfied.

Exponents On DP line1 On DP line2 Absorbing phase1 Absorbing phase2 Active phase1 Active phase2

h 0.31 1.0 Exponential 1.0 1.0 1.0
d 0.16 0.0 Exponential 0.0 0.0 0.0
z 1.26 2.0 Exponential 2.0 2.0 2.0
6-3
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z52/Z. ~13!

This relation is usually quoted as a consequence of dyna
cal scaling. Using the above cited results, however, Eq.~13!
is broken. The possibility of breaking this scaling law
actually due to the circumstance that the N-BARW2 tran
tion point lies at the zero value of the branching probabil
pex50, and there is no absorbing phase with exponenti
decreasing space and time dependences. To support this
let us recall the way Mendeset al. @17# derived relation~13!.

They started from the general expression@18# for the den-
sity of particles~kinks! at space pointr in the absorbing
phaseD,0 ~hereD denotes the deviation from the critica
point! and at large fixed value oft ~for d51)

r~r ,t !5th2z/2F~r 2/tz,Dt1/n i!. ~14!

0 0.01 0.02 0.03 0.04
1/t

0.04

0.03

0.02

0.01

0

0.01
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0.03

0.04
lo

ca
l s
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pe

s

FIG. 3. Cluster exponents for2 cluster atp150.3, pex50.
Number of MC steps: 105, number of averages: 103. 1 correspond
to h, 3 to z/2, and * tod.
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FIG. 4. Cluster exponents for2 cluster atp150.3, pex50.
Number of MC steps: 105, number of averages: 103. 1 correspond
to h, 3 to z/2, and * tod.
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In the absorbing phase the functionr(r ,t) is expected to
decrease exponentially asr(r ,t);exp2r/j, where j
;D2n'. This form implies forF(u,v) ~with v,0) the form

F~u,v !→exp~2CAuuvun'!, ~15!

whereC.0 is constant. Forj to be time independent th
scaling law is required:

z5
2n'

n i
5

2

Z
. ~16!

This scaling law is not fulfilled in the presently discuss
model. Moreover, the bulk quantity, the time dependent k
density

r~ t !;t2a, ~17!

and the expression obtainable from Eq.~14!

r~ t !;th2z/2 ~18!

are also in conflict; namely, while all the simulations ha
resulted ina50.5 within error and this is in agreement wit
the scaling lawa5b/n i , according to the values given i

0 0.001 0.002 0.003
1/t

0.6

0.7

0.8

0.9

1

1.1

 η
ef

f, 
z ef

f/2

FIG. 5. Cluster spreading exponents for1 cluster at paramete
valuesp150.3, pex50.02 (d520.565,G50.5). Number of MC
steps: 105, number of averages: 103. Upper curve:he f f , lower
curve:ze f f/2.

TABLE III. Cluster critical exponents in case of the Glaube
Ising and MDG parameter values. The hyperscaling lawh1d
5z/2 is satisfied.

Exponents Glauber-Ising,
1

Glauber-Ising,
2

MDG,
1

MDG,
2

h 0 0 0.0 0.5
d 1/2 1/2 0.5 0.0
z 1 1 1.0 1.0
6-4
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Table I the exponent in Eq.~18! is zero, again within the
error of simulations.~It is to be noted that this conflict is n
more present concerning the exponent values atpexÞ0,
wherea50 andh2z/250, as well.! The apparent contra
diction, however, is resolved again by recalling that clus
exponents and bulk exponents are allowed to be not c
nected by a scaling law.

V. HYPERSCALING

The generalized hyperscaling law@18# was developed for
systems with multiple absorbing configurations and read

2S 11
b

b8
D d12h5dz, ~19!

whereb8 is defined for the active phase, Eq.~11!.
The derivation of Eq.~19! goes along the following

lines. It starts with Eq.~14! for r(r ,t) and with the expres-
sions

P~ t !;t2dF~Dt1/n i!, ~20!

P`;Db8, b85dn i ~21!

for the survival probability. Since the stationary distributio
is unique

r~x,t !→P`Db;Db1b8 ~22!

as t→`. HenceF(0,y);yb1b8 which entails Eq.~19!.
In case of the DP transition~along the DP line of Fig. 2!

b85b as it is well known, and thus Eq.~19! gives

2d1h5z/2. ~23!

For the N-BARW2 transition, however, Eq.~19! does not
apply as Eq.~14!, according to the preceding section, is n
an appropriate starting point.

To deduce the hyperscaling law valid for this case th
are several possible ways of arguing. It is possible to enla
the parameter space of our model: we can think of a th
direction in the parameter space, approaching from where
transition turns out to be of first order. For this aim one c
introduce a ‘‘magnetic field’’ into the system by changing t
annihilation probability asw(1;22)512h. In this direc-
tion bh50 and thus Eq.~19! gives (d51)

h1d5z/2. ~24!

This law is satisfied for all the clusters investigated, inclu
ing those at the MDG point. Even forpexÞ0 we can still
think of each point as being a first-order transition point w
b50 in theh direction and the same considerations apply
above. Thus on the basis of the results presented now
conclusion to be drawn is that hyperscaling is generica
satisfied in the whole N-BARW2 phase of the NEKIM
model.

Looking at the problem from a different point of view
however, it is really not necessary to introduce the ab
05610
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auxiliary magnetic field; namely, one can simply make t
observation that all the clusters investigated on thepex50
line are compact and from this fact Eq.~24! follows for the
hyperscaling law@15#.

Equation~24! is known as the hyperscaling law for com
pact clusters. By definitiond1h is the exponent which char
acterizes the average population in surviving trials and
radius of such a cluster grows asRt;tz/2. d1h5dz/2 is
simply the scaling law for the volume of ad-dimensional
sphere of radiusRt @15#.

As a matter of fact, the2 clusters are compact withd
50 also atpexÞ0, and even in the DP region of Fig. 2. Th
is not true, however, for the1 cluster in the DP region,
which follows normal DP-cluster behavior~see Table II!
with the corresponding DP hyperscaling law~23!. ~It is
worth noting that wheneverd50, and this fails only for the
1 cluster in the DP region, the CDP and DP hyperscal
laws do not differ.!

VI. REENTRANT PHASE DIAGRAM, CLUSTER
MF CALCULATIONS

In the original NEKIM model atd̃>0 no transition oc-
curs, while for negative values of this parameter PC tran
tion takes place. The spin asymmetry of NEKIMA chang
the character of the transition into DP and this appears
for d̃>0. Here we have chosen for our simulations and
the cluster mean-field approximation calculations a fix
negative value ofd̃. Our aim has been to explore some po
sible reminiscence of the PC transition. At the chosen par
eter valuesd̃520.565,G50.5 in NEKIM the PC transition
occurs atpex50.12. Turning to NEKIMA, at the same val
ues of d̃,G our simulations show that the transition poi
~which is DP, of course! shifts to pex50.51. The absorbing
phase below this point is all2. For letting p1,p the DP
line starts tangentially upon increasingpex from 0 and ex-
hibits a reentrant property. It ends up atpex50.51 tangen-
tially. The regression takes place atpex'0.12, see Fig. 2,
most probably a remnant of the transition point of the cor
sponding PC transition. This turning point, however, is a
of DP character as can be expected.

Dynamical cluster mean-field approximations have be
introduced for nonequilibrium models by Refs.@19,20#. The
master equations forN51 –7 block probabilities were set u
as

]PN~$si%!

]t
5 f „PN~$si%!…, ~25!

where site variables may take valuessi561. Taking into
account spatial reflection symmetries ofPN($si%) this in-
volves 72 independent variables in case ofN57. The equa-
tions were solved numerically for the]PN($si%)/]t50
steady state condition, for differentpex and p1 values and
the rk(`) kink density was expressed byPN($si%). The re-
entrant behavior could not be observed forN,6 clusters.
6-5
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The results forN56,7 are shown in Fig. 6. A slow shif
towards lowerp1 values, which agree with the simulation
can be observed.

VII. DISCUSSION

We have investigated a one-dimensional NEKIMA exh
iting strong spin asymmetry. In the plane of two of the p
rameters of NEKIMA~the kink-branching parameter and
spin-asymmetry parameter! the phase diagram is as follow
besides a reentrant DP line the NBARW-2 transition occ
at zero branching rate. Due to the asymmetries,1 and 2

0.370.3750.380.3850.390.3950.4
p+

0

0.02

0.04

0.06

0.08

0.1

p ex

ABSORBING

ACTIVE

FIG. 6. Steady state density inN56 ~bullets! andN57 ~boxes!
level approximation. Lines connecting symbols are shown for gu
ance of eye only.
-
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spin clusters behave differently. By investigating their dev
opment we conclude that generic power-law behavior ch
acterizes the cluster behavior at and in the vicinity of t
NBARW-2 transition.

The critical cluster exponents obtained satisfy the c
straints on critical exponents in general:~1! d>0 and~2! 1
<z<2. The critical exponentd has been found to be zero
The hyperscaling law is satisfied in the form known for co
pact directed percolation, and indeed, the N-BARW2 clust
are compact.

In a different problem Cafieroet al. @21# have reported
cluster exponents similar to the ones found here. These
thors studied how disorder affects the critical behavior
DP-like systems. Already in the 1980s Noest@22# showed
that quenched disorder changes their behavior ind,4 and
demonstrated that whend51 a generic scale invariance ca
be observed. In Ref.@21# it was shown that deep in the activ
phaseh51, d50, andz52 for the model they considered
As we have found also generic scale invariance and the s
exponents, in the active phase of our model and even in
region which is the active phase of the DP line of our pha
diagram, the question arises whether the similarity is for
itous or not. Whether the slowly diffusing2 clusters of
NEKIMA distributed randomly in thex direction can play a
role similar to quenched impurities, e.g., in the origin
NEKIM model, is a question for future investigations.
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@7# N. Menyhárd, J. Phys. A27, 6139~1994!.
@8# R.J. Glauber, J. Math. Phys.4, 191 ~1963!.
@9# See, e.g., K. Kawasaki,Phase Transitions and Critical Phe

nomena, edited by C. Domb and M.S. Green~Academic Press,
New York, 1972!, Vol. 2, p. 443.

@10# J. Cardy and U.C. Ta¨uber, Phys. Rev. Lett.77, 4780~1996!; J.
Stat. Phys.90, 1 ~1998!.
@11# H. Park and H. Park, Physica A221, 97 ~1995!.
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@16# E. Domány and W. Kinzel, Phys. Rev. Lett.53, 311 ~1984!.
@17# J.F.F. Mendes, R. Dickman, M. Henkel, and M. Marques,

Phys. A27, 3019~1994!.
@18# P. Grassberger and A. de la Torre, Ann. Phys.~N.Y.! 122, 373

~1979!.
@19# H.A. Gutowitz, J.D. Victor, and B.W. Knight, Physica D28, 18

~1987!.
@20# R. Dickman, Phys. Rev. A38, 2588~1988!.
@21# R. Cafiero, A. Gabrielli, and M.A. Mun˜oz, Phys. Rev. E57,

5060 ~1998!.
@22# A.J. Noest, Phys. Rev. Lett.57, 90 ~1986!; Phys. Rev. B38,

2715 ~1988!.
6-6


