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Abstract. Compact directed percolation is known to appear at the endpoint of the directed
percolation critical line of the Domany—Kinzel cellular automaton ir4+-11 dimension.
Equivalently, such transition occurs at zero temperature in a magneticHielgphon changing

the sign of H, in the one-dimensional Glauber—Ising model, with well known exponents
characterizing spin—cluster growth. We have investigated here numerically these exponents in
the non-equilibrium generalization of the Glauber model in the vicinity of the parity-conserving
phase transition point of the kinks. Critical fluctuations on the level of kinks are found to affect
drastically the characteristic exponents of spreading of spins while the hyperscaling relation
holds in its form appropriate for compact clusters.

1. Introduction

In the one-dimensional (1D) Domany—Kinzel automaton (DKCA) [1, 2] the sidier)

of sitej at timer depends ow(i — 1,t —1)+o(@ +1,t — 1), (c(i,t) = 0,1). Of the
conditional probabilitiegp(oc(i — 1, — Do (i +1,t — 1)|o (i, t)) the independent ones are
denoted bypy = p(00|1), p1 = p(011) = p(101) and p, = p(111). All sites are
updated simultaneously in the process. The phase diagram of the DKCA ipthgo)
plane, exhibits a line of (second-order) critical points of directed percolation universality
class, which line ends at the so-called compact directed percolation point (CDP). This point
is situated on the lingp, = 1, po = 0 at p; = % By crossing this point (changing the
sign of p; — %) the transition is a first order one between two ordered phases (empty and
full or, equivalently, using the spin variabi€i, 1) = 20 (i, t) — 1, all spins up and all spins
down). The characteristic critical exponents of the CDP transition are known exactly and a
hyperscaling relation has also been derived for such transitioddimensions [1, 3]. For

the spreading process of a singl€, 0) = 1 in the sea of zeros the expone#isn, and

z, defined at the transition point for the power-law time dependences of the density of 1's
n, o t", the survival probabilityP,(¢) o< t=% and the mean square distances of spreading
(R2(t)) ~ t** have been obtained as g)and 1, respectively [3]. (In the following subscript

s refers to spins for all the quantities. Without subscript the corresponding quantity for kinks
is meant, except for.) For the parallel (time-direction) and perpendicular (space-direction)
coherence lengths; andv; resp., as well as for the dynamical critical expongribomany

and Kinzel have obtained the exact resultg:= 2, v, = 1, Z = 2, respectively (which
means only two exponents as by definition= Zv,). The above-mentioned hyperscaling
law [3]

ns + 8& = dZ;/Z (l)
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is fulfilled with the above exponents. More generally, Dickman and Tretyakov argued, that
equation (1) is valid at first order transitions and it should apply to cases, whenever power-
law growth produces compact ‘colonies’, developing from single seeds. In [3] ‘compactness’
is clearly defined: it is meant that the density of colonies in surviving samples remains finite
for t — oo.

It is obvious that the above-sketched+{11)-dimensional CDP transition is equivalent
to that in the 1D (ferromagnetic) Glauber—Ising model [4at O, because the symmetry
as well as the kinetics are the same. Changing the parametef the DKCA around
p1= % corresponds to introducing a magnetic figidinto the spin—flip probabilityw; of
the Glauber—Ising model (section 2) and changing its sign.

On the basis of this equivalence it is of some interest to investigate the same spreading
problem in the framework of the non-equilibrium generalization [5, 6] of the kinetic Ising
model (NEKIM) (section 3), where, in some range of its parameters, there is a continuous
transition between a single domain and a multidomain state. The order parameter of this
transition is the density of kinks. The critical fluctuations of this so-called parity-conserving
(PC) transition [7, 8, 6, 9—-11] have pronounced effects on the underlying spin system, as was
found earlier [12] both in case of static and dynamic exponengstuations of quenching
from ' = oo (random initial states). These investigations will now be completed by
studying, via numerical simulations, the spin spreading process at the PC point (section 4).
It is found that the characteristic exponents differ from those of the CDP transition, as could
be expected, but basic similarities still remain. Thus, the transition which takes place upon
changing the sign of the magnetic field is of first order and its exponents satisfy equation (1).
Accordingly it can be called ‘compact’, and we will call it compact parity-conserving (CPC)
transition. The static magnetic critical exponentis also determined at the PC point.

2. Glauber—Ising model

Thed = 1 Ising model with Glauber kinetics is exactly solvable. In this case the critical
temperature is af" = 0, the transition is of first order. We recall that = e it
plays the role of% in one dimension and in the vicinity df = O critical exponents
can be defined as powers pf-, thus for example that of the coherence length,via

& « pr~". In the presence of a magnetic fietf] (when the Ising Hamiltonian is given by

H=-J),sisiza— H) s, s; = £1), the magnetization is known exactly. At=0

m(T =0, H) = sgn(H). )
Moreover, foré > 1 andH /kT <« 1 the the exact solution reduces to

m ~ 2hé h=H/kgT. €)
In scaling form one writes:

m~§ N g(hg ) @)

where A is the static magnetic critical exponent. Comparison of equations (3) and (4)
results ing, = 0 andA = v. These values are well known for the 1D Ising model. It is
clear that the transition is discontinuousHt= 0 also when changing/ from positive to
negative values, see equation (2). (In the following the order of limits will always be meant
as: firstH — 0 and thenT — 0.)

1 In a previous paper of the present authors [13], devoted to damage spreading investigations of different non-
equilibrium one-dimensional models, the issue of a CPC transition has already been raised.
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The kinetics of the Ising model in a magnetic field has been formulated by Glauber [4].
In its most general form the spin—flip transition rate for spirsitting at sitei is:

w,-h =w;(1— tanhhsi ~ w;(1— hs;) (5)
r z 14
w; = 5(1 + 8si—18i+1) (1 = 5 (si—1+ Si+1)> (6)

wherey = tanh 2/ /kT (J denoting the coupling constant in the Ising Hamiltoniardnds
are further parameters. This model will reach the same equilibrium state as the Ising model
in a magnetic field.

For the casé = 0, I' = 1.0, which is usually referred to as the Glauber—Ising model,
Z = 2 (Z is the usual dynamic critical exponent) is also a well known result. In section 3
we will give a brief review of the non-equilibrium generalization of the kinetic Ising model
which will be used later.

3. The non-equilibrium generalization model

In the non-equilibrium generalization model (NEKIM), besides the spin—flip transition rate
equation (6), taken aI' = 0, also a nearest-neighbour mixing of spins with probability
Pe. IS applied at each timestep of the simulation. The spin—exchange transition rate of
nearest-neighbour spins (the Kawasaki [14] ratd at o) is w;;j11 = %pex[l — 8iSiy1l,
wherep,, is the probability of spin—exchange. Spin—flip and spin—exchange are then applied
alternately. The model was originally proposed and investigated for valge$ at finite
temperatures in [5]. It is , however, & = 0 and for negative values @, that in this
system a second order phase transition takes place [6] fdiritke from an absorbing to an
active state, which belongs to the PC universality class. The order parameter is the density
of kinks, at the PC point it decays in time as a power layk o %, with @ = 0.285(3).

The absorbing phase is double degenerate, an initial state decays algebraically to the
stationary state, which is one of the absorbing ones (all spins up or all spins down, provided
the initial state has an even number of kinks) and the whole absorbing phase behaves like
a critical point with power-law decay of correlations, like the Glauber—Ising pdirt 0,

Pex = O)

Now let us look at the PC transition from the point of view of the underlying spin
system. The above-mentioned first-order transitiof at O of the Ising system disappears
at the PC point and is, of course, absent in the whole active phase of the kinks. The
fluctuations of this PC transition exert a pronounced effect on the underlying spin system
as found earlier [12] thus, e.g. the the classical dynamical expdhgedefined, as usual
through the relaxation time, of the magnetization, o< £%, was found to beZ = 1.75(1)
instead of the Glauber—Ising value Bf= 2. In this case one approaches the PC point from
the temperature ‘direction’, by decreasing it to O (the effect of temperature is to create kink
pairs inside of ordered spin domains). On the other hand, we can also look at the transition
by changing a characteristic parameter (chosen by us & deNEKIM through the critical
point 5. and fixing the other two. As a function ef = |(5 — §.)| the transition—on the
level of spins—is again a first-order one of type order-disorder. Namely, taking initial states
with an even number if kinks, the magnetization of the stationary state has a jump @t
The same is true when changing the magnetic fielidlom negative to positive values at
€ = 0. Thus for the spins the value of the (static) critical exportgns zero, in all the three
‘directions’ of departing from PCy{y, ¢ and k), as mentioned above. (For simulational
results see [12, 13].)
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Figure 1. Local slopes of the spin density, (r) for zero magnetic field near the PC point.

—5§ = 0.393 0.394, 0.395 (from bottom to top). The best scaling resulfjs= 0.2884). In the
averaging the number of independent runs was 3-48F.
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Figure 2. Local slopes of the survival probability; () for zero magnetic field in the vicinity
of the PC point. —§ = 0.393 0.394, 0.395 (from bottom to top). The best scaling result is
8; = 0.287(3). In the averaging the number of independent runs was the same as for figure 1.

In the following we will choose the same PC transition point as in previous works
[6, 12], and make simulations at and around this point by changing the magnetié field
The parameters chosen ar€: = 0.35, p,, = 0.3,5, = —0.3952). In these previous
simulations the spin—flip part has been applied using two-sublattice updating. After that
we have stored the states of the spins and miadé is the size of the system) random
attempts of exchange using always the stored situation for the states of the spins before
updating. Together all these have been counted as one timestep of updating. (Usual Monte
Carlo update in this last step enhances the effegi,pfand leads td, = —0.362(1).)

4. Spin-cluster-growth simulations

Time-dependent simulations have proven to be a very efficient method for determining
critical exponents (besides the critical point itself) [15-17]. On the basis of equation (4),
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Figure 3. Phase diagram of NEKIM in thex, —3) plane. The chosen PC-point isbat —0.395.

For lower values of-§, in the Glauber—Ising regime, the vertical line connecting the PC and
the NGI points (at: = 0.0) consists of all CDP points with its characteristic critical exponents.
The simulations around the PC point have been done here $00 in the interval 0< 2 < 0.1.

The other parameters of NEKIM in the whole plane are as follolvs: 0.35 andp,, = 0.3.

the r-dependence of the magnetization in scaling form can be written as

m(t, h) ~ =% g (ht 7). @)
Such a form can be used in a quench frdm= oo to 7. and was exploited also in [12],
though ath = 0, using temperature as a second variable, for determining mainly static
critical exponents of the spins at the PC point.

In the following we will further study the influence of the PC transition on the spin
system from a different point of view. Instead of starting with an initial state of randomly
distributed up- and down-spins with zero average magnetization as in the above-mentioned
simulations of quenching, we will now investigate the evolution of the non-equilibrium
system from an almost perfectly magnetized initial state (or rather an ensemble of such
states). This state is prepared in such a way that a single up-spin is placed in the sea of
down-spins at./2. Using the language of kinks (or particles, in the branching annihilating
random walk (BARW) model [18, 9]) this corresponds to the usual initial state of two
nearest-neighbour kinks placed at the origin. The quantities usually measured of the forming
clusters are the order-parameter density, the survival probability and the average mean
square size of spreading?(r)) from the centre of the lattice. At the critical point these

guantities exhibit power-law behaviour in the limit of long times; more generally we can
write

ng(t, h) ~ 1" gy (ht7) 8)
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Figure 4. The scaling functiom,(t) o« t" and P;(t) « t~% at the NGI point of figure 3
(pex = 0.3, 8§ = 0). The power-law fit of the data shown givesN®' = 0.0006 and
8,NG! = 0.500(5). Number of independent runs in the averaging was (19>600".

for the deviation of the spin density from its initial valug, = m(¢, h) — m(0),

Py(t, h) ~ 175 ga(ht7) )
for the survival probability and
(R2(t, h)) ~ 17 ga(ht %) (10)

for the average mean square distance of spreading from the origin. The argument of the
scaling functions above has been taken from equation (7); but now at the PC point instead of
the Glauber—Ising one. Thus the exponefttsy and Z in the above equations take values
appropriate at the PC point. We note here that the coherence length expaoaygpearing
above is basically different from the, and v, generally used in the context of directed
percolation (DP) transitions or in connection with tkiaksin NEKIM. Namely, &, oc e+

with ¢ denoting the deviation from the PC point in the ‘direction’ of the quantity driving
the phase transitiore (= |5 — §.| here). Moreovery, = v, Z. (Z is, of course, independent

of the above-mentioned ‘directions’ [12].)

We have measured, () and P,(¢) at and in the vicinity of the critical point with initial
configuration of a single up-spin at the origin in the sea of down-spins and allowing the
system to evolve according to the rule of NEKIM as described above. Averaging has been
taken over runs with different sequences of random numbers during the evolution. Figures 1
and 2 show the local slopes (for a definition see, e.g. {9]and —3§;, respectively. As
the survival probability must be the same for spins and kinks (if the minority spin dies
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Figure 5. Level-off values of the survival probability (¢, 2) for large times at different values

of h. The straight line (a) is power-law fit near the PC point with = 0.4455). Points around

the straight line (b) show simulational results of the same quantity for the NGI point, giving
ﬁx’NG' = 0.99(2). Number of independent runs in the averaging was-1CP.

out, kinks also disappear and vice ver§a)y= §. The same applies also for the root mean
square size of the cluster. As no result has been reported befa¥énféhe NEKIM model,
exhibiting figure 2 has its own meritg,, however, is an independent new exponent.
(Besides results at the PC point we have also carried out detailed simulational studies at
a point in the so-called Ising phase, namely ot 0, I = 0.35 andp,, = 0.3. This point
is a non-equilibrium one due to the non-zero valuepgf, and is marked on figure 3 with
NGI (non-equilibrium Glauber—Ising) on the abscissa. The results which we have obtained
via simulations at this point (figure 4) are, within error, the same as for the (exactly solved)
Glauber-Ising case.)
Figure 5 shows the the asymptotic values for large timeB;&f, /), for different values
of & in the range ofi = 0.005— 0.1. For the exponeng,” defined through

lim Py(t, h) o< h? (11)
—00

the valueg,” = .4455) has been obtained. Figures 6 and 7 show the scaling functions,
equations (8) and (9), respectively. Here the best fit for the scaling together of data with
different values ofs could be achieved witiA = 0.49(1), using the measured values

8, = 0.285,n, = 0.285, and that ofvZ from former studiesyZ = 0.777 [12]. Data for
different values oft scale together sufficiently well when considering the relatively poor
statistics (averages over410* samples, typically).



6778 N Menytard and GOdor

i

ne(t,h)/t™

O

1 - T TTTT] T T T T T
0.01 0.1 1 10
ht(A/UZ)

Figure 6. The scaling functiom (¢, #). The different curves correspond to the following values
of the parameteh: h = 0.05, 0.01, 0.009, 0.003 0.001, 0.0005. The values of the parameters
ns, A andvZ are given in the text. Number of independent runs in the averaging wabk02.

The scaling law

,  bvZ
Bs' = A
following from equation (9) is satisfied with the above values of the exponents, within error.
We note here thaB,’ can be connected witBink = Bkink’, USING in equation (12, = §
and the definition ofkink’ from [19] with the result:8," = Bkinkv/(vL A).
The hyperscaling law for the spreading exponents was derived in its most general form
by Mendeset al [19] which we write here for the spin quantities:

(12)

(1 + %) 8s +ns =dzy/2. (13)
In equation (13), in analogy with the spin-cluster-growth description at and in the vicinity of
the CDP transition of the DKCA [3], the above finite value&f enters. (As explained in

the introduction(p; — p1.) of the DKCA, with p;. = % corresponds ta in the Glauber—

Ising formulation.) Moreovers; = 0, which value follows near the PC point from the same
symmetry consideration as at the Glauber—Ising point (though does not in the active phase).
Here, again, one should recall the above-mentioned analogy between the DKCA'’s variable
(p1— %) and the variabléd: in this case. With the exponents obtained and summarized in
table 1 equation (13) is fulfilled. As already mentioned in the introduction, according to the
argumentation of [3] the fulfilment of the hyperscaling law in the above form is equivalent
to compactness of the clusters. For illustration developing clusters are exhibited on figure 8
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Figure 7. The scaling function? (¢, #). The values of the parameteys, A andvZ used are
given in the text. Number of independent runs and valuek afe the same as for figure 6.

Table 1. Spin-cluster critical exponents for NEKIM in a magnetic field.

Bs v Bs A ns 85 Zs
NGI-CDP 0 1 0.99(2) 1 0.0006(4) 0.500(5) U=2/7)
CPC Q00(2) 0.444 Q45(1) 0.49(1) 0.288(4) 0287(3) 1.14(=2/2)

under three conditions:aj Glauber case (CDP in the DKCA sensd)) &t the NGI point

(see figure 3) where the kinetics is a non-equilibrium gmg & 0) and €) at the PC point.

It is apparent that the minority phase never develops inside of the majority one, moreover,
the branching process present in the kinetics in caspan{d €) makes the flat pieces of
CDP boundaries fringed.

The results together with some of the critical exponents obtained earlier in [12] are
summarized in table 1.

5. Summary

In summary, we have carried out numerical studies of the power-law behaviour of spreading
of spins, at the PC transition point of NEKIM (where a second-order transition occurs on the
level ofkinks). It has been found that the analogue of the Domany—Kinzel CDP transition—
a first-order transition upon changing the sign of an applied magnetic field—still exists. Of
the three exponents measured oy which is the static magnetic exponent of the Ising
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Figure 8. Clusters developing from a single up-spin (dark point) in the sea of down-spins (white
points) atr = O for three choices of NEKIM parameters, see text.

model, was found to be unaffected by the critical fluctuations of the kinks within error.
In view of other static Ising exponents, this circumstance is not so natural, such as the
coherence length exponent is a counterexample (see [12] and table 1). Consequently the
relation A = v valid in the Glauber—Ising case is no more fulfilled at the PC popijt.
characterizing the level-off values of the survival probability of the spin clusters is a new
(static) exponentA and 8," are connected by a scaling law. The third exponenthas
proven to be numerically equal 8y = § thus ensuring that the hyperscaling law is fulfilled
in a form appropriate for first order transitions and compact clusters [19, 3]. Moreover, we
have reported results of simulation for exponérnh case of NEKIM for the first time.

These results give further evidence to the conclusion that the effect of fluctuations felt
by the spin system at the PC transition is of interest in itself.

Acknowledgments

The authors thank Z &z for useful remarks. Support from the Hungarian research fund
OTKA (nos T017493, 027391 and 023552) and from NATO grant CRG-970332 is gratefully
acknowledged. The simulations were partially carried out on the Fujitsu AP1000 parallel
supercomputer.



Compact parity-conserving percolation in one dimension 6781
References

[1] Domany E and Kinzel W 198%&hys. Rev. Lett53 311
[2] Kinzel W 1985Z. Phys.B 58 229
[3] Dickman R and Tretyakov A Yu 199Phys. RevE 52 3218
[4] Glaube R J 1963J. Math. Phys4 191
[5] Droz M, Racz Z and Schmidt J 198@hys. RevA 39 214
[6] Menyhard N 1994J. Phys. A: Math. Ger27 6139
[7] Grassberger P, Krause F and von der Twer T 198Rhys. A: Math. Genl7 L105
[8] Grassberger P 1989. Phys. A: Math. Ger22 L1103
[9] Jensen | 1994hys. RevE 50 3623
[10] Zhong D and ben-Avraham D 199%hys. LettA 209 333
[11] Kim M H and Park H 1994hys. Rev. Letfr3 2579
[12] Menyhard N andOdor G 1996J. Phys. A: Math. Gern29 7739
[13] Odor G and Menyard N 1998Phys. RevE 57 5168
[14] See e.g. Kawasaki K 197Rhase Transitions and Critical Phenomewal 2, ed C Domb ad M S Green
(New York: Academic) p 443
[15] Grassberger P and de la Torre A 19%@n. Phys., NY122 373
[16] Li Z B, Schilke L and Zheng B 199%hys. Rev. Lett74 3396
[17] Schilke L and Zheng B 199®hys. LettA 204 295
[18] Takayasu H and Tretyakov A Yu 19%hys. Rev. Let68 3060
[19] Mendes J F F,Dickman R, Henkel M and MargseM C 1994J. Phys. A: Math. GerR7 3019



