
 Statphys research  →  dynamical processes  defined on complex networks
 Expectation: small world  topology →  mean-field  behavior →  fast  dynamics

Prototype: Contact Process (CP) or Susceptible-Infected-Susceptible (SIS) two-state models:
 

 Order parameter : density of active (  ) sites
 Regular, Euclidean lattice: DP critical point : λ

c
 > 0 between inactive 

 and active phases

Slow dynamics on quenched complex networks 
 Géza Ódor MTA-TTK-MFA Budapest

Infect: λ / (1+λ) Heal: 1 / (1+λ)



Observed power-law (slow) dynamics in 
networks

 Brain :  Size distribution of neural avalanches 
   G. Werner : Biosystems, 90 (2007) 496,                                     

 Internet: worm recovery time is slow:
  

  Can we expect slow dynamics 
  in small-world networks ?

 Correlation length (ξdiverges
  Tagliazucchi & Chialvo (2012) : 
  Brain complexity born out of criticality. 



  

  Scaling and universality classes appear in complex system due to : ξ→ ∞ 
        i.e: near critical points, due to currents ... 

  Basic models are classified by universal scaling behavior in Euclidean, regular system

  Why don't we see universality classes in models defined on networks   ?
  Power laws are frequent in nature  ↔  Tuning to critical point  ?

   I'll show a possible way to understand these
 

    

Scaling in nonequilibrium system



Rare Region theory for quench disordered CP

 Fixed (quenched) disorder/impurity 

  changes the local birth rate  ⇒ λ 
c
 > λ

c
0                                                                         

   Locally active,  but arbitrarily large
                                                   
   Rare Regions                                                                             
                                                                                                
    in the inactive phase                                                                  
    due to the  inhomogeneities                                                                         
  Probability of RR of size L

R
:

   
     w(L

R
 ) ~ exp (-c L

R
 )  

     contribute to the density:     ρ(t)  ~  ∫ dL
R
   L

R
  w(L

R
 )   exp [-t /τ  (L

R
)]

  For  λ  < λ
c

0  :   conventional (exponentially fast) decay

  At  λ
c

0  the characteristic time scales as:  τ (L
R
) ~ L

R
 Z    ⇒        saddle point analysis:

                                                ln ρ(t) ~ t d  /  ( d + Z)                    stretched exponential
  For   λ

c
0 <  λ < λ

c
  :             τ (L

R
) ~ exp(b L

R
):                             Griffiths Phase  

            ρ(t) ~ t - c / b                         continuously changing exponents      
  At  λ

c
                                   ρ(t) ~ ln(t) −α    Infinite randomness fixed point scaling

  In case of correlated RR-s with dimension  > d- : smeared transition

λ
c

λ
c

0

Act.

Abs.

GP

„dirty critical point”

„clean critical point”



  

Basic network models
   From regular to random networks:

                                                                                     

                                                                                                     Erdős­Rényi (p = 1)

                                                                                                    Degree (k) distribution in
                                                                                     N→nodelimit:
                                                                                     P(k) = e­<k> <k>k / k!

                                                                                    Topological dimension: N(r)  r ∼ d

                                                                                               Above perc. thresh.:     d  =  
Below percolation      d = 0

Scale free networks:                                                       

                                                                                          Degree distribution:
                                                                                     P(k) = k ­γ  ( 2< γ < 3)

                                                                                                    Topological dimension: d =   

                                                                                           Example: Barabási­Albert
                                                                                               lin. prefetential attachment      
                                                                             
        



  

 
   Rare active regions in the absorbing phase:   τ(A)~ eA

   → slow dynamics (Griffiths Phase) ?
  

   M. A. Munoz, R. Juhász, C. Castellano and G. Ódor, PRL 105, 128701 (2010) 

  1. Inherent disorder in couplings
  2. Disorder induced by topology 

   Optimal fluctuation theory + simulations: YES  

   In Erdős-Rényi networks below the percolation threshold
   In generalized small-world networks for finite topological dimension

A



  

 CP + Topological disorder results 
   Generalized Small World networks:    P(l) ~βl 2 

       (link length probability)
   
    Top. dim: N(r) ∼ r d          d(β) finite:

      λ
c
(β) decreases monotonically from 

      λ
c
()= 3.29785 (1d CP) to:

      lim λ
c
(β ) = 1 towards mean-field CP value

     λ< λ
c
(β ) : inactive, there can be 

     locally  ordered, rare regions due to more 
     than average, active, incoming links

 Griffiths phase:  λdep. continuously changing 
    dynamical power laws:
    for example :  t  t ∼ 

       Logarithmic corrections !

 Ultra-slow (“activated”) scaling:  ln(t)α atλ
c

  
Asβ→   Griffiths phase shrinks/disappears

 Same results for: cubic, regular random nets
                               higher dimensions ? 


GP

l



  

Contact Process on Barabási­Albert (BA) 
network

 Heterogeneous mean-field theory: conventional critical point, with linear density decay:

   with logarithmic correction

 Extensive simulations confirm this:

 No Griffiths phase observed

 Steady state density vanishes at λ
c
 ≈1

  linearly,      HMF: β = 1 



CP results on Barabási-Albert graphs

  Excluding loops slows down the spreading     +       Weights:
    G. Ódor, R. Pastor-Storras PRE 86 (2012) 026117 
     WBAT-I:                           hubs are supressed

                                                                      WBAT-II:    disassortative

 λ dependent density  decay exponents:  Griffiths Phases  or Smeared phase transition ?
  .



  

Do power-laws survive the thermodynamic 
limit ?

 Finite size analysis shows the disappearance of a power-law scaling:

   Power-law → saturation explained by smeared phase transition:
                               High dimensional rare sub-spaces 



  

Percolation analysis of the weighted BA tree

We consider a network of a given size N,
and delete all the edges with a weight 
smaller than a threshold ω

th
. 

For small values of  ω
th
, many edges remain

in the system, and they form a connected 
network with a single cluster encompassing 
almost all the vertices in the network. 
When increasing the value of  ω

th
, the network 

breaks down into smaller subnetworks of 
connected edges, joined by weights larger 
than  ω

th
.

The size of the largest ones (S
i
) grows linearly 

with the network size N 
 standard percolation transition.

 
These clusters, which can become arbitrarily
large in the thermodynamic limit, play the role
of correlated RRs, sustaining independently 
activity and smearing down the phase transition.



Spectral Analysis of networks with quenched (disordered) topology

Weighted (real symmetric) Adjacency matrix:

Unweighted BAT

WBAT-II 

Express ρ
i 
 on orthonormal eigenvector ( f

i 
(Λ) ) basis:

Master (rate) equation of SIS for occupancy prob. at site i:

Localization, strong rare-region effects in case of  WBAT-II networks  !

Total infection density vanishes near  λ
c
  as :

ω
ij

Suggested by Goltsev, Dorogovtschev & Mendes 2012



  

Summary
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  Quenched disorder in complex networks can cause slow dynamics :
   Rare-regions → (Griffiths) phasess  →  no tuning or self-organization needed !

  In finite dim. (for CP) GP can occur due to topological disorder

 In infinite dim, scale-free, BA network mean-field transition of CP
 with logarithmic corrections (HMF+simulations)

 In BA trees non mean-field transition observed
 
 In weighted BA trees non-universal, slow, power-law dynamics
   can occur for finite N, but in the N →∞ limit saturation is observed

 Smeared transition can describe this, 
  percolation analysis confirms the existence of arbitrarily large dimensional
  sub-spaces with (correlated) large weights 

 Acknowledgements to : HPC-Europa2, OTKA, FuturICT.hu 
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