Slow dynamics on quenched complex networks
Géza Odor MTA-TTK-MFA Budapest

Statphys research — dynamical processes defined on complex networks
Expectation: small world topology — mean-field behavior — fast dynamics

Whole brain structural
connection network

Prototype: Contact Process (CP) or Susceptible-Infected-Susceptible (SIS) two-state models:
Infect: A/ (1+A) Heal: 1/ (1+A)
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Order parameter : density of active (®) sites
Regular, Euclidean lattice: DP critical point : A_> 0 between inactive

and active phases




Observed power-law (slow) dynamics in
networks

* Brain : Size distribution of neural avalanches

G. Werner : Biosystems, 90 (2007) 496,

1093~

1075 o -

size (#electrodes) ia)
Internet: worm recovery time is slow: _
Can we expect slow dynamics E

iIn small-world networks ?

* Correlation length (¢) diverges

Tagliazucchi & Chialvo (2012) :
Brain complexity born out of criticality.
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Scaling in nonequilibrium system

Scaling and universality classes appear in complex systemdueto: ¢ - o
l.e: near critical points, due to currents ...

Basic models are classified by universal scaling behavior in Euclidean, regular system

* Why don't we see universality classes in models defined on networks ?
* Power laws are frequent in nature  Tuning to critical point ?

I'll show a possible way to understand these



Rare Region theory for CP

* Fixed (quenched) disorder/impurity Act.
changes the local birthrate [J A _>A° ,airty critical point” A —»
* Locally active, but arbitrarily large T GP
are ~egions ! N _ 1 %
in the inaCtive phase N : # .: ;,Clean Crltlcal pOInt c
due to the inhomogeneities W v
« Probability of RR of size L : = Abs.
w(lL_)~exp(-cL,) )
contribute to the density:  p(t) ~ [dL, L, w(L,) exp[t/T (L.)]
« For A <A : conventional (exponentially fast) decay
« At A the characteristic time scalesas: T (L,)~L_ % [ saddle point analysis:
In p(t) ~td/(d+2) stretched exponential
« For A< A<A_: T(L,)~exp(blL,): Griffiths Phase
p(t) ~t-c’P continuously changing exponents
« At A p(t) ~ In(t) @ Infinite randomness fixed point scaling

In case of correlated -Ss with dimension > d- : smeared transition




Basic nhetwork models

From regular to random networks:

Regular Small-world Handom

Erdés-Rényi (p = 1)

Degree (k) distribution in
N — c node limit:
P(k) =e®<l>"/ k!

p=0 _ > p=1 Topological dimension: N(r) ~ r°
Increasing randomness AbOve perC. threSh..' d —
Below percolation d =0

Scale free networks:

Degree distribution:
g P(k)=k1(2<y<3)

Topological dimension: d = oo

Example: Barabasi-Albert
lin. prefetential attachment



Rare active regions in the absorbing phase: T1(A)~ e*
— slow dynamics (Griffiths Phase) ?

M. A. Munoz, R. Juhdsz, C. Castellano and G. Odor, PRL 105, 128701 (2010)
1. Inherent disorder in couplings
2. Disorder induced by topology

Optimal fluctuation theory + simulations: YES

* In ErdGs-Rényi networks below the percolation threshold
* In generalized small-world networks for finite topological dimension



Generalized Small World networks: P(l) ~ ] -2 ' |
(link length probability) | ] ;
Top. dim: N(r) ~r¢  d(j) finite: I
A () decreases monotonically from e |

A (0)=3.29785 (1d CP) to:
lim P A (B) = 1 towards mean-field CP value

A <A () :Inactive, there can be

dynamical power laws:
for example : p) ~t -« ®

Logarithmic corrections !

Ultra-slow (“activated”) scaling: p o In(t)-“ atA_
As B — 1 Giriffiths phase shrinks/disappears

Same results for: cubic, regular random nets
higher dimensions ?
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FIG. 3: Density decay in Benjamini-Berger networks with
s = 2 and 7 = 0.2 for different values of A (from
top to bottom: 2.81,2.795,2.782,2.77 2.75,2.73,2.71,2.70,
2.69,2.67,2.65,2.6). Straight lines lie in the Griffiths phase.
Inset: Corresponding effective exponents, illustrating the
presence of corrections to scaling.



Contact Process on Barabasi-Albert (BA)
network

* Heterogeneous mean-field theory: conventional critical point, with linear density decay:

p(t) ~ [tIn(t)] L,

with logarithmic correction

* Extensive simulations confirm this:

* No Griffiths phase observed

« Steady state density vanishes at A_ =1

linearly,

HMF: B=1
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FIG. 1. Density decay (tp(t)) as a function of lu(t) for
the CP on unweighted looped BA networks with m = 3
of size N = 8 x 107. The different curves correspond to
A =1.2068,...,1.24 (bottom to top). Inset: Steady state den-
sity, showing agreement with HMF theory scaling. The full
line shows a power-law fitting to the data points in the form
—0.36(5)z" 72,



CP results on Barabasi-Albert graphs

* Excluding loops slows down the spreading + Weights:
G. Odor, R. Pastor-Storras PRE 86 (2012) 026117 i — [
*  WBAT-l: wjj =enikk;} " hubs are supressed Y= TN ko (N /i)l
WBAT-II:  disassortative

10"
10°
. 1|}5
=2 Iy J
e T
=28 [
0™
10 . . . 4
et 10 10 g
t
FIG. 3. (Color online) Density decay as a function of ume for FIG. 7. (Color onlinc) Density decay as a function of ime p(1) for
the CP on weighted BA trees generated with the WBAT-1 model the CF on weighted BA trees with a age-dependent weighting scheme
ith it v = L.5. Netw I::k ize N = 10°. Different y (WBAT-1I} with exponent x = 2. Network size N = 107, Different
Wit exponcnt v = .'1 -.':l1.l-|:l_ SIEE A = _ tHerEnt cur E_ﬁ curves comespond to A = 6.75, 6.8, 6.85, 6.87, 6.9, 6.92, 6.94, 6,96,
comrespond to A = 160. 156, 154, 149, 148, 147, 146, 145, 1447, 6.98,7,7.04,7.1,7,2, 7.4, 85,9, 12, 15 (from top to bottom). Insct:
1442, 144, 143.5, 143, 142, 140 (from top to botiom). Inset: Corresponding local slopes for A = 6.9,6.92,6.94 (from bottom to
Steady-state density. top).

A dependent density decay exponents: Griffiths Phases or Smeared phase transition ?



Do power-laws survive the thermodynamic

limit ?

* Finite size analysis shows the disappearance of a power-law scaling:
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FIG. 5. Density decay as a function of time p(t) for the CP
on weighted BA trees with a multiplicative weighting scheme
(WBAT-I) with exponent v = 1.5. Plots correspond to two
sets of A (upper branch: A = 144, lower branch A = 140)
at different network sizes V. Dashed lines represent PL fit-
tings. Inset: Initial time region of the same data, showing an
stretched exponential behavior.
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FIG. 8. Finite-size scaling analysis of the density decay ex-
ponent for A = 6.75 (triangles), A = 6.8 (boxes), A = 6.82
(triangles), A = 6.85 (bullets), A = 6,9 (rhombes) in the CP
on weighted BA trees with a age-dependent weighting scheme
(WBAT-II) with exponent x = 2. Top inset: p(t) for A = 6.82
(N = 10°, N = 4210, N = 10° top to bottom). Bottom in-
set: Initial time density.

Power-law - saturation explained by smeared phase transition:

High dimensional rare sub-spaces



Percolation analysis of the weighted BA tree

We consider a network of a given size N,
and delete all the edges with a weight
smaller than a threshold w, .

For small values of w,, many edges remain

In the system, and they form a connected
network with a single cluster encompassing
almost all the vertices in the network.

When increasing the value of w,, the network

breaks down into smaller subnetworks of
connected edges, joined by weights larger
than W, .

The size of the largest ones (S) grows linearly

with the network size N
<> standard percolation transition.

These clusters, which can become arbitrarily
large in the thermodynamic limit, play the role

of correlated RRs, sustaining independently
activity and smearing down the phase transition.
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FIG. 6. Size S; of the 5 largest clusters in a percolation anal-
yvsis of the WBAT-1 model with v = 1.5 for wy = 100w
(hollow symbols) and wip = 1000wmin (full symbols), where
Wmin 18 the minimum weight in the network. The size of all
components grows linearly with network size N, and 1s there-
fore infinite in the thermodynamic limit.



Spectral Analysis of networks with quenched (disordered) topology

Master (rate) equation of SIS for occupancy prob. at site i: To describe the localization of the components of F{A1)
do(t) [19] used the inverse participation ratio
pilt) L : L '
5 = Al + (1= alt)) ) Asidos(e) @, (4)

For t — oo the system evolves into a steady state, with
the probabilities expressed as

N
: IPR(A) =3 fH(A), (10)
=1
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Localization, strong rare-region effects in case of WBAT-II networks !
Suggested by Goltsev, Dorogovtschev & Mendes 2012



Summary

* Quenched disorder in complex networks can cause slow dynamics :
Rare-regions — (Griffiths) phasess — no tuning or self-organization needed !

* In finite dim. (for CP) GP can occur due to topological disorder

* |n infinite dim, scale-free, BA network mean-field transition of CP
with logarithmic corrections (HMF+simulations)

* In BA trees non mean-field transition observed

* In weighted BA trees non-universal, slow, power-law dynamics
can occur for finite N, but in the N - co limit saturation is observed

* Smeared transition can describe this,
percolation analysis confirms the existence of arbitrarily large dimensional
sub-spaces with (correlated) large weights

* Acknowledgements to : HPC-Europa2, OTKA, FuturlCT.hu
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