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» Exploration of complex networks is flourishing since ~2000 (Barabasi & Albert)
* Dynamical systems living on networks is of current interest
» Research of disordered materials is intensifying

* Open: Complex networks + quenched disorder ? v,

Whole brain structural

* Origin of non-universal (dynamic) scaling behaviors ? :
connection network
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Power-law scaling in nature
e Earthquake size distribution
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Meteorology and Climatology:
O.Petres and D. Neelin, Nature Phys. 2 (2006) 393
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«And many more... What is the origin ?



“Self-Organized Criticality” (SOC) ?

Bak-Tang-Wiesenfeld sand pile ~ The term SOC usually refers to a mechanism
of slow energy accumulation and fast energy
redistribution, driving a system toward a

Add a grain of sand: .-
h(x.y) 5 hixy) +1 critical state.

And avalanche if: h(x,y) > h: «<—Prototype: sand pile model
h(x, y) > hx,y) -4

h(x+1,y) » h(x+ 1,y) +1 Self-tuning to critical point:
h(x,y 1) = h(x,yx 1) +1

model (1987) CA:

Activity

/ energy

Pe

Stochastic sand pile models can be mapped

onto ordinary nonequilibrium criticality at

phase transition to absorbing phases

(Dickman et al. 2000)




Scaling-universality classes of basic models

Universality classes in complex system due to : & — «
l.e: near critical points or in system with currents (nonequilibrium)

Basic models can be classified by universal scaling behavior
according to some global conditions: dimensions, symmetries,...,
topological constraints :

G. Odor: Universality in nonequilibrium system
(World Scientific 2008), Rev. Mod. Phys. 2004
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What prevents the observation of universal behavior ?

Prototype model describing epidemic or activity spreading : Contact Process (CP) (1d):
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Contact process, scaling, DP

plt) = — S (n(t))  paga lim p(t)
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e Order parameter: density of active sites: L4 &
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 Directed Percolation, DP Universality Class

: .. : : g 4 TR A 0
Robust class of epidemic, information, ... etc. spreading A e
well known ind = 1,2,3,4 ... Eucledean dimensions Srmmmmmes >



Basic network models

From regular to random networks:
Erdds-Rényi (p = 1)

Regular Small-world Random

Degree (k) distribution :
N - co node limit:

P(k) =e" " <k> /k!

Topological dimension: N(r) ~ r °
Above perc. thresh.: d = e
Below: d=0

Increasing randomness

Scale free networks:

Barabasi-Albert
Degree distribution:

Pk)=kv (2<y < 3)
Topological dimension: d = oo

i IS

Focus on dynamical systems living on networks: Fast dynamics is expected



How do networks differ from Eucledean lattices in general ?

1) Small diameter — long-range interactions — weak fluctuations — mean-field behavior

DP + Lévy flight : P(r) ~r @+’ T A" |
Continuously changing exponents: ——» E“’B‘ E 2 sEEET
DP — mean-field-DP as: ¢ — 0 Sosk Ly ol _—
N ]
2) Heterqgenicity (i.e. aperiodicity, N | 0— S S 5 T H H:
changing degree k ...) — Other critical points ... T ol . . ; lf Yag #5553 5]
Y Vﬁ/{ . | L

0 5 2 2,5
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(Janssen et al, Hinrichsen et al 1999)

Up to now mainly 1) + 2) cases have been investigated by dynamical models
The heterogeneous mean-field approximation omits

Topology is relevant : >
The effect of topological disorder on scale-free: P(k) ~ k7 networks:
A =<k>/ <k’> =0 if 2<y <3 (Ising, CP ...) Always active Contact Process;

A >0 if y =3, or finite size, or weakened (weighted) links: vy dependent exponents



Rare Region argument for CP

 Fixed (quenched) disorder/impurity

changes the local birth rate = 1 > 1° . > 2 Act.
. L v e i
* Locally active, arbitrarily large ~,dirty critical point” GP:
Rare Regions .Clean critical point” 3
1 l 0 ]
in the inactive phase ’
due to the inhomogeneities
. Probability or RRofsize L : =, AT ") o Twe Abs.
w(L_ )~exp(-cL’, )
Contribute to the density:  p(t) ~ [dL L' w(lL_) exp[t/z(L)]
«For A < xc" . conventional (exponentially fast) decay
o At xc° the characteristic time scales as: 7 (L_)~ L ¢ = saddle point analysis:
Inp (t)~t/(9*2 (stretched exponential)
«For A°<A <A_: T(L,)~exp(bL): Griffiths Phase
= saddle point analysis: p(t) ~t °'" (continuously changing exponents)

« At xc Ultra slow time dependences : p(t) ~ In(t) "~
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Generalized Small World networks: P(l) ~ 512 —e—e-

(link length probability)
« Top. dim: N(l) ~ 19 d() finite: 2

/lc( [3) decreases monotonically from
A(0)=3.29785 (1d CP) to:
lim A (p) = 1towards mean-field CP value

p—

A< A () inactive, there can be

@ >

* Griffiths phase: A —dep. continuously changing —
dynamical power laws: —

for example : pt) ~t *® T 100 B

_—

Logarithmic corrections !

: : _ FIG. 3: Density decay in Benjamini-Berger networks with
1] ” . o N .
« Ultra-slow ( activated ) scallng. pocln(o atlc s = 2 and 7 = 0.2 for different wvalues of A (from
top to bottom: 2.81,2.795,2.782,2.77,2.75,2.73,2.71,2.70,
. ) . 2.69,2.67,2.65,2.6). Straight lines lie in the Griffiths phase.
* AS ﬁ — 1 Griffiths phase shrinks/ dlsappears Inset: Corresponding effective exponents, illustrating the

presence of corrections to scaling.

« Same results for cubic reqular random networks %



Generelaized SW networks with GP

10°

* CP on cubic regular random networks

10°

L = 10 sized simulations: 107 |
Griffiths Phase (strong log. corrections) .
* For general: P(l)~p |3 10°
s =0 mean-field behavior oo | S Tw T |
s<2 d =, power-laws (Lévy) with no GP M o K "
s > 2 mean edge length is finite,
d =1 CP with topological disorder 600
rare regions: subgraphs with more °? Liree cp
internal edges than the average ? o | v
Griffiths Phase . = 400 1%
Conjecture: IRPF of the disordered CP 3 i3
§ 0 1/In(ty 02
p(t) ~Int]~® &= 0.38197... o 200
[p(£)]71/% ~ Int — o

In p(t) ~ —d1In(Int)

_ _ _dlnpg
6Eﬁ(ﬂ ~ din(Int)




For other ne'tworks ? Percolation threshold for < K = =3

NOM-PERCOLATING REGIME |

PERCOLATING REGIME

Above percolation threshold 5
rare regions do not emerge —
Do not exepect Griffiths phase in nets

like Barabasi-Albert vagy Erd6s-Rényi
if <k>is large
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LAMBDA
s

MMulticritical point

ACTIVE PHASE
(iii)

Q-CP on Erdés-Rényi network <k>=3

1vi1] (Mo significant fare rc-;',_'r i1 et

Mean-field : 4 = 1, Pair mean-field: ﬂ = <k>/ (<k> -1) 'or 5z T3 v
+ reduced reactlon rates with binary probablllty distribution: T

0.5 IIIG 0,7 IZIB 0.8 1

1-q

PIAX)]=q 6 [Ax)—rA] + (1-q) 5[ Ax)—A] q _=2/3

perc

Rare Region theory A =<k>/(<k>-1) [1-q(1-r)]

(i) GP. Cluster size distribution : P(s) ~ s *"exp[-s(p-1-In(p))], where:

p = <k> (1-)

p(t) ~I ds s P(s) exp [-t/ T (5)] where: T (s) =t exp[A(A)s]

r = 0 case:

Saddle-point approximation: p(t) ~t” y= (p-1-In(p)) A(4) cont. changeing dyn. exps.

(i) g=q__: p®)~[Intt)]"" had>A activated scaling

perc

(iii)) Active phase: Giant component, MF+Griffiths eff., If g < qpemcritical line: p(t) ~ 1/t

(iv) g > Qe A=2_3 RR almost critical, streched exponential decay
(v) Multi-critical point: power-law decay
(vi) Abs phase: 1. (qper )>A>2 (q=0) 3 supercritical RRif: q_< e

(vii) A< 1.5 : RR free region : exponential decay
r> 0 : Similar phase-diagram, but active phase goes up to g=1

. but weak effects




Simulation results for Q-CP on Erdds-Rényi networks

N <10 <k> = 3 Decay from fully active state,
Cluster growth from a single seed

Same asymptotic behavior : Rapidity symmetry

Clear case: 1_(q=0) = 1.5, 2_(g=1) = 30 agrees with:
ACZ =<k>/(<k>-1) [1—-q(1-r)] pair approximation,

p(t) ~ 1/t

0 <q < 1: Agreement with the theory:

Percolation threshold for = K > =3
NON-PERCOLATING REGIM [-‘[ PERCOLATING REGIME

ACTIVE PHASE
(iii)

‘,,é& W4 Multicritical point
(v)
‘
i
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O Significant {are-region eligc
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l-q

r =0, g <2/3:Mean-field DP critical tra”S't'0n;,,,,~~~;:~:

q > 2/3 : No active phase:
A>A(q=q, =2/3)=45 p(t)-~ t” GP

r > 0 : similar phase diagram,
active phase goes upto g =1

Pt

Pt

FIG. 1: Average activity density p{f) vs time ¢ for ER net-
works with (k) = 3, r = 0, and N = 10%. As are ordered from
top Lu bottom in all panels. (a) Upper panel: g = 0.6, and
A =15,3.8, 3.6, 3.55.3.5 33 The dashed line i= proportional to
t~1. [a} Inset: pvslnit) for g =2/3; A =107, 5 4.5, 4; the
dashed line is proportional to ln.H',]"H (b) Lower panel:
g = 0.9, and A = 50,30, 20,15, 10,9, 7,5,4.5, 2.7. Straight
lines lie in the Griffiths phase.



Summary

* Quenched disorder increases the occurrences of non-universal scaling
behavior. Extended Griffiths Phases must occur in nature

« Slow (algebraic, logarithmic) dependence is expected in many dynamical
systems defined on networks ( - Fast dynamics in pure network models)

Understanding algebraic slow forgetting times of working memory
in a simple model of brain (see the paper/talk by Johnson et al)

In other epidemic/information spreading models living on heterogeneous
random networks with finite topological dimensions,

 New Hungarian-Spanish-Italian collaboration has been set up with the
first results:

Griffiths phases on complex networks: M. A. Munoz, R. Juhdsz, C. Castellano and G. Odor
arxXiv:1009.0395, PRL in press.
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