Griffiths phases of contact processes in complex networks

Géza Ódor

RESEARCH INSTITUTE FOR TECHNICAL PHYSICS AND MATERIALS SCIENCE (MFA) BUDAPEST

- Exploration of complex networks is flourishing since ~2000 (Barabási & Albert)
- Dynamical systems living on networks is of current interest
- Research of disordered materials is intensifying
- Open: Complex networks + quenched disorder ?
- Origin of non-universal (dynamic) scaling behaviors?

n

е

n

е

Diffusion spectrum imaging

Power-law scaling in nature

• Earthquake size distribution

Meteorology and Climatology:

O.Petres and D. Neelin, Nature Phys. 2 (2006) 393

Damage formation by collisions, explosions

(F. Kun & H. Hermann)

10⁻³
10⁻⁴
10⁻⁵
10⁻⁶
10⁻⁷
10⁻⁸
10⁻⁵
10⁻⁶
10⁻⁷
10⁻⁸
10⁻⁸
10⁻⁸
10⁻¹
10⁻⁸
10⁻¹
10⁻⁸
10⁻¹
10⁻⁸
10⁻¹
10⁻⁸
10

What is the origin?

"Self-Organized Criticality" (SOC)?

Bak-Tang-Wiesenfeld sand pile model (1987) CA:

Add a grain of sand:

$$h(x,y) \rightarrow h(x,y) + 1$$

And avalanche if: $h(x,y) > h_c$:
 $h(x, y) \rightarrow h(x, y) - 4$
 $h(x \pm 1, y) \rightarrow h(x \pm 1, y) + 1$
 $h(x, y \pm 1) \rightarrow h(x, y \pm 1) + 1$

The term SOC usually refers to a mechanism of *slow energy accumulation* and *fast energy redistribution*, driving a system toward a critical state.

Prototype: sand pile model

Self-tuning to critical point:

Stochastic sand pile models can be mapped onto ordinary nonequilibrium criticality at phase transition to absorbing phases (Dickman et al. 2000)

Scaling-universality classes of basic models

Universality classes in complex system due to : $\xi \to \infty$ i.e. near critical points or in system with currents (nonequilibrium)

Basic models can be classified by universal scaling behavior according to some global conditions: dimensions, symmetries,..., topological constraints:

G. Ódor: Universality in nonequilibrium system (World Scientific 2008), Rev. Mod. Phys. 2004

What prevents the observation of universal behavior ?

Prototype model describing epidemic or activity spreading: Contact Process (CP) (1d):

Contact process, scaling, DP

- $\rho(t) = \frac{1}{L^d} \sum \langle n_r(t) \rangle$ $\rho_{\text{stat}} = \lim_{t \to \infty} \rho(t)$ • Order parameter: density of active sites:
- Critical phase transition
- $\rho \sim (\lambda \lambda_c)^{\beta}$ active phase Scaling behavior
 - Correlation length diverges anisotropically : $\xi_{\perp} \sim |\Delta|^{-\nu_{\perp}}$, $\xi_{\parallel} \propto |\Delta|^{-\nu_{\parallel}}$
 - Independent critical exponents: β , $\mathbf{v}_{_{I}}$, $\mathbf{v}_{_{\parallel}}$
 - Density decay: $\rho(t) \sim t^{-\alpha}$ where: $\alpha = \beta / \nu_{\parallel}$
- Directed Percolation, DP Universality Class
 - Robust class of epidemic, information, ... etc. spreading well known in d = 1,2,3,4 ... Eucledean dimensions

Basic network models

From regular to random networks:

Scale free networks:

Erdős-Rényi (p = 1)

Degree (k) distribution : $N \rightarrow \infty$ node limit:

$$P(k) = e^{-\langle k \rangle} \langle k \rangle^k / k!$$
Topological dimension: $N(r) \sim r^d$
Above perc. thresh.: $d = \infty$
Below: $d = 0$

Barabási-Albert

Degree distribution:

$$P(k) = k^{-\gamma}$$
 ($2 < \gamma < 3$)
Topological dimension: $d = \infty$

Focus on dynamical systems living on networks: Fast dynamics is expected

How do networks differ from Eucledean lattices in general?

1) **Small diameter** \rightarrow long-range interactions \rightarrow weak fluctuations \rightarrow mean-field behavior

DP + Lévy flight :
$$P(r) \sim r^{-(d+\sigma)}$$

Continuously changing exponents : \longrightarrow **DP** \rightarrow mean-field-**DP** *as*: $\sigma \rightarrow 0$

- 2) **Heterogenicity** (i.e. aperiodicity, changing degree $k \dots \rightarrow$ Other critical points ...
- 3) **Disorder (quenched)** \rightarrow Other critical points ... Griffiths phases, activated scaling?

(Janssen et al. Hinrichsen et al 1999)

Up to now mainly 1) + 2 cases have been investigated by dynamical models The heterogeneous mean-field approximation omits quenched disorder, describes annealed disorder, what we have learnt:

Topology is relevant:

The effect of topological disorder on scale-free: $P(k) \sim k^{-\gamma}$ networks:

$$\lambda_c = \langle k \rangle / \langle k^2 \rangle = 0$$
 if $2 < \gamma < 3$ (Ising, CP ...) Always active Contact Process;

 $\lambda_{s} > 0$ if $\gamma = 3$, or finite size, or weakened (weighted) links: γ dependent exponents

Rare Region argument for Q-disordered CP

- Fixed (quenched) disorder/impurity changes the local birth rate $\Rightarrow \lambda_c > \lambda_c^0$ Locally active, arbitrarily large Rare Regions in the inactive phase due to the *inhomogeneities* Probability or RR of size L_c :
- Probability of RR of Size L_R . $w(L_R) \sim exp(-c L_R^d)$

Contribute to the density: $\rho(t) \sim \int dL_R L_R^d w(L_R) \exp[-t/\tau(L_R^d)]$

- For $\lambda < \lambda_c^0$: conventional (exponentially fast) decay
- At λ_c^0 the characteristic time scales as: $\tau(L_R) \sim L_R^{-Z} \Rightarrow$ saddle point analysis: $\ln \rho(t) \sim t^{d/(d+Z)}$ (stretched exponential)
- For $\lambda_c^0 < \lambda < \lambda_c$: $\tau(L_R) \sim \exp(b L_R)$: Griffiths Phase ⇒ saddle point analysis: $\rho(t) \sim t^{-c/b}$ (continuously changing exponents)
- At λ_c Ultra slow time dependences : $\rho(t) \sim \ln(t)^{-\alpha}$

CP + Topological disorder results

Generalized Small World networks: $P(l) \sim \beta l^{-2}$ (link length probability)

• Top. dim: $N(I) \sim I^d d(\beta)$ finite:

 $\lambda_{c}(\beta)$ decreases monotonically from

$$\lambda_c(0) = 3.29785 \text{ (1d CP) to:}$$

 $\lim_{\beta \to \infty} \lambda_c(\beta) = 1$ towards mean-field **CP** value

 $\lambda < \lambda_c(\beta)$ inactive, there can be

locally ordered, **rare regions** due to more than avarage, active, incoming links

• Griffiths phase: λ – dep. continuously changing dynamical power laws:

for example : $\rho(t) \sim t^{-\alpha (\lambda)}$

Logarithmic corrections!

- **Ultra-slow** ("activated") scaling: $\rho \propto \ln(t)^{-\alpha}$ at λ_c
- As $\beta \rightarrow 1$ Griffiths phase shrinks/disappears

FIG. 3: Density decay in Benjamini-Berger networks with s=2 and $\beta=0.2$ for different values of λ (from top to bottom: 2.81, 2.795, 2.782, 2.77, 2.75, 2.73, 2.71, 2.70, 2.69, 2.67, 2.65, 2.6). Straight lines lie in the Griffiths phase. Inset: Corresponding effective exponents, illustrating the presence of corrections to scaling.

Same results for cubic regular random networks %

Generelaized SW networks with GP

- CP on cubic regular random networks
 L = 10⁷ sized simulations:
 Griffiths Phase (strong log. corrections)
- For general: $P(I) \sim \beta I^{-s}$

s = 0 mean-field behavior

s < 2 $d = \infty$, power-laws (Lévy) with no GP

s > 2 mean edge length is finite,
 d = 1 CP with topological disorder
 rare regions: subgraphs with more internal edges than the average

Griffiths Phase

Conjecture: IRPF of the disordered CP

$$\rho(t) \sim [\ln t]^{-\overline{\delta}} \qquad \overline{\delta} = 0.38197...$$

$$[\rho(t)]^{-1/\overline{\delta}} \sim \ln t$$

$$\ln \rho(t) \sim -\overline{\delta} \ln(\ln t)$$

$$\overline{\delta}_{\text{eff}}(t) = -\frac{d \ln \rho}{d \ln(\ln t)}$$

For other networks?

Above percolation threshold rare regions do not emerge →

Do not exepect Griffiths phase in nets like Barabási-Albert vagy Erdős-Rényi if <k> is large

Q-CP on Erdős-Rényi network $\langle k \rangle = 3$

Mean-field : $\lambda_c = 1$, Pair mean-field: $\lambda_c^2 = \langle k \rangle / (\langle k \rangle - 1)$

+ reduced reaction rates with binary probability distribution:

$$P[\lambda(x)] = \mathbf{q} \, \delta[\lambda(x) - \mathbf{r} \, \lambda] + (\mathbf{1} - \mathbf{q}) \, \delta[\lambda(x) - \lambda]$$

Percolation threshold for < K > =3 NON-PERCOLATING REGIME PERCOLATING REGIME ACTIVE PHASE (iii) Multicritical point (v) PROPERTY (vii) (No significant care-region effect) 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1 - q

 $\lambda^2 = \langle k \rangle / (\langle k \rangle -1) [1 - q(1-r)]$

Rare Region theory

(i) GP. Cluster size distribution: $P(s) \sim s^{-3/2} exp[-s(p-1-ln(p))]$, where: $p = \langle k \rangle (1-q)$

 $\rho(t) \sim \int ds \, s \, P(s) \, \exp\left[-t \, / \, \tau(s)\right]$

where: τ (s) \cong t_o exp[A(λ)s]

r = 0 case:

Saddle-point approximation: $\rho(t) \sim t^{-\gamma} \gamma = (p-1-\ln(p)) A(\lambda)$ cont. changeing dyn. exps.

(ii)
$$q = q_{perc}$$
: $\rho(t) \sim [\ln(t/t_0)]^{-1/2}$ ha $\lambda > \lambda_c$ activated scaling

(iii) Active phase: Giant component, MF+Griffiths eff., If $q < q_{perc}$ critical line: $\rho(t) \sim 1/t$

(iv) $q > q_{perc}$ $\lambda = \frac{\lambda}{c} \exists$ **RR** almost critical, streched exponential decay

(v) Multi-critical point: power-law decay

(vi) Abs phase: $\lambda_c (q_{perc}) > \lambda > \lambda_c (q=0)$ 3 supercritical **RR** if: $q_{loc} < q_{perc}$, but weak effects

(vii) $\lambda < 1.5$: RR free region : exponential decay

r > 0: Similar phase-diagram, but active phase goes up to q=1

Simulation results for Q-CP on Erdős-Rényi networks

 $N \le 10^{-7}$ < k> = 3 Decay from fully active state, Cluster growth from a single seed Same asymptotic behavior: Rapidity symmetry

Clear case: λ_c $(q=0) \approx 1.5$, λ_c $(q=1) \approx 30$ agrees with: $\lambda_c^2 = \langle k \rangle / (\langle k \rangle -1) [1 - q(1-r)]$ pair approximation, $\rho(t) \sim 1/t$

0 < q < 1: Agreement with the theory:

r = 0, q < 2/3: Mean-field DP critical transition q > 2/3: No active phase: $\lambda > \lambda_c (q = q_{perc} = 2/3) = 4.5$: $\rho(t) \sim t^{\tau}$ GP

FIG. 1: Average activity density $\rho(t)$ vs time t for ER networks with $\langle k \rangle = 3$, r = 0, and $N = 10^5$. λ s are ordered from top to bottom in all panels. (a) **Upper panel**: q = 0.6, and $\lambda = 5, 3.8, 3.6, 3.55.3.5, 3.3$. The dashed line is proportional to t^{-1} . (a) **Inset**: ρ vs $\ln(t)$ for q = 2/3; $\lambda = 10, 7, 5, 4.5, 4$; the dashed line is proportional to $\ln(t)^{-1/2}$. (b) **Lower panel**: q = 0.9, and $\lambda = 50, 30, 20, 15, 10, 9, 7, 5, 4.5, 2.7$. Straight lines lie in the Griffiths phase.

r > 0: similar phase diagram, active phase goes up to q = 1

Summary

- Quenched disorder increases the occurrences of non-universal scaling behavior: Extended Griffiths Phases must occur in nature
- **Slow** (algebraic, logarithmic) dependence is expected in many dynamical systems defined on networks (← **Fast** dynamics in **pure** network models)

Understanding algebraic slow forgetting times of working memory in a **simple model of brain** (see the paper/talk by Johnson et al)

In other epidemic/information spreading models living on heterogeneous random networks with **finite topological dimensions**,

 New Hungarian-Spanish-Italian collaboration has been set up with the first results:

Griffiths phases on complex networks: **M. A. Munoz, R. Juhász, C. Castellano** and G. Ódor arXiv:1009.0395, PRL in press.

• Acknowledgments: HPC2 Europe, OTKA, OSIRIS FP7

