PHYSICAL REVIEW E 85, 066125 (2012)

Rare-region effects in the contact process on networks

Rébert Juhész
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49, Hungary

Géza Odor
Research Centre for Natural Sciences, Hungarian Academy of Sciences, MTA TTK MFA, H-1525 Budapest, P.O. Box 49, Hungary

Claudio Castellano
Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, I-00185 Roma, Italy and Dipartimento di Fisica,
“Sapienza” Universita di Roma, P.le A. Moro 2, [-00185 Roma, Italy

Miguel A. Muiioz
Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teérica y Computacional Carlos I. Facultad de
Ciencias, Universidad de Granada, E-18071 Granada, Spain
(Received 22 December 2011; published 20 June 2012)

Networks and dynamical processes occurring on them have become a paradigmatic representation of complex
systems. Studying the role of quenched disorder, both intrinsic to nodes and topological, is a key challenge.
With this in mind, here we analyze the contact process (i.e., the simplest model for propagation phenomena)
with node-dependent infection rates (i.e., intrinsic quenched disorder) on complex networks. We find Griffiths
phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic,
etc.) relaxation, on Erds-Rényi networks. We predict similar effects to exist for other topologies as long as a
nonvanishing percolation threshold exists. More strikingly, we find that Griffiths phases can also emerge—even
with constant epidemic rates—as a consequence of mere topological heterogeneity. In particular, we find Griffiths
phases in finite-dimensional networks as, for instance, a family of generalized small-world networks. These results
have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks,
and are relevant for the analysis of both models and empirical data.
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I. INTRODUCTION

Complex networks constitute a useful unifying concept
with many interdisciplinary realizations ranging from the
World Wide Web and other technological or infrastructure net-
works to genetic, metabolic, ecological, or social networks [1].
Many efforts have been devoted to elucidate nontrivial topo-
logical traits of network architectures; in particular, networks
with scale-free and/or small-world properties received a vast
amount of attention. In recent years, the research focus shifted
to dynamical processes occurring on them [2—4]. Particularly
interesting are spreading or transport processes, which repre-
sent a vast variety of propagation phenomena occurring on net-
works: microbial epidemics, computer viruses, rumor spread-
ing, or signal propagation in neural nets are some examples.

As it is well known in statistical physics, the presence
of quenched disorder usually affects the universal behavior
of phase transitions. Quenched disorder may also generate
novel phases unheard of in pure systems (both in equilibrium
and nonequilibrium situations), as is the case of Griffiths
phases (GPs). These are extended regions appearing within the
disordered phase and characterized, among some other promi-
nent features, by generic anomalously slow dynamics and
logarithmic or activated scaling at the transition point [5-8].
These effects stem from the fact that different rare regions,
which can be in the ordered phase even if the system is globally
disordered, emerge in such systems. These regions have a
broad distribution of relaxation times and the convolution of
them gives rise generically to slow dynamics.
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Heterogeneity in the intrinsic properties of nodes (i.e.,
quenched disorder) is a natural feature of real networks: node-
dependent rates appear in all the examples of spreading above
(owing to the specificity of the individual immune response,
presence of antivirus software, and so forth). Networks with
node-dependent intrinsic properties (or “fitnesses”) have been
previously studied in the literature [9], but not from the point of
view that interests us here. Apart from intrinsic node disorder,
networks have a structural or topological disorder, since nodes
are in general topologically not equivalent. One can then
wonder whether topological disorder by itself may induce
Griffith phases or similar rare-regions effects.

The role of intrinsic and topological disorder on the
overall properties of dynamical processes taking place on
networks has not been much studied so far. In which ways can
the node-to-node variability affect the overall probability of
epidemics to propagate or to become extinct? Does disorder in
the topology of the network modify the basic phenomenology
of epidemics? Can novel phases or new qualitative behaviors
appear?

In this paper we tackle the study of quenched disorder,
both intrinsic and topological, in dynamical processes on
complex networks. For this, we look for rare-region effects
in the simplest possible epidemic model (i.e., the contact
process [10]). By using different types of disorder and various
network topologies we report on the existence of Griffiths
effects, including various nontrivial regimes with generic slow
decay of activity. In particular, we first study a contact process
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with node-dependent rates on Erdés-Rényi networks [11] and
find strong rare-region effects below the percolation threshold.
Then we study a contact process with constant rates but in
disordered topologies. We also report on the existence of
strong rare-region effects in cases in which the underlying
topology has a finite topological dimension. Our conclusions
are expected to go beyond the specific examples under
consideration, and to apply to different models, dynamics, and
topologies, obeying some minimal requirements. We believe
that the nontrivial effects of disorder uncovered here can
shed light on anomalous effects observed in many different
dynamical problems on networks.

The paper is organized as follows. In Sec. II we first
define the models under investigation, the pure contact process,
and the disordered quenched contact process. We present a
theoretical analysis of the behavior of the latter on networks,
based on optimal fluctuations arguments, and compare it
with the results of numerical simulations. In Sec. III we
introduce the generalized small-world (GSW) networks and
the three-regular random networks and illustrate the results
of numerical simulations of the contact process on such
topologies. Concluding remarks are in Sec. [V. A preliminary
account of this work has been published in Ref. [12].

II. QUENCHED CONTACT PROCESS ON ERDOS-RENYI
AND SCALE-FREE NETWORKS

A. Contact process on networks

Let us consider the pure contact process (CP) [10,13]
defined on a generic topology. Each node can be in one of
two states, either infected (active, 1) or healthy (inactive, 0).
An infected node heals at rate i and, with rate A, it infects a
randomly selected neighbor. If the selected neighbor is already
infected nothing happens. In the following u will be fixed to
1, with no loss of generality.

A zeroth order homogeneous mean-field equation for the
average activity density,

p(t) = —p(t) + 2p(O[1 — p(0)], (1

predicts an absorbing phase transition where the infection and
healing rates compensate each other [i.e., A’ = 1] and a decay
o(t) ~ t~! at criticality. A slightly more refined calculation
(heterogeneous mean-field approach [14]) takes into account
the fact that the average activity density p; depends on
the number of connections k (degree) of the corresponding
vertex. This again predicts a transition at A) =1 if the
underlying network is uncorrelated (i.e., vanishing degree-
degree correlations). These results are expected to be exact
for infinite dimensional lattices as well as for fully connected
networks. Instead for finitely connected networks the threshold
is shifted to A. > 1 (as shown in simulations below). This
occurs because when activity is low it appears in localized
regions, and this decreases the effective rate of infection (i.e.,
the probability to choose an occupied nearest neighbor is larger
than for random mixing). This effect can be taken into account
by using a pair approximation (as described in Appendix A).
In the case of a regular graph (with all vertices having degree
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k) it yields an improved estimate of the critical point

o _ _k

¢ k—1
Observe that A?) converges to A = 1 when k — oo (i.e., for
infinite connectivity, for which simple mean-field holds) and
diverges at the percolation threshold £ = 1 below which the
network becomes fragmented [2,15,16] and, consequently, ac-
tivity cannot be sustained and the phase transition disappears.
If the network under consideration is not regular but has some
nontrivial degree distribution P(k) it is reasonable to expect
that the expression

@
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where (k) is the average network connectivity, gives a good
approximation for the threshold, provided the network is not
very heterogeneous [i.e., that P(k) is narrow]. In the case
considered in our numerical studies below, (k) = 3 and, hence,
the critical point for the pure CP is predicted to be around
)ng) = 3/2, in rather good agreement with numerical results.

3

B. Quenched contact process on networks

We now consider the quenched contact process (QCP) [7]
(i.e., a contact process with quenched disordered infection
rate): a fraction 1 — ¢ of the nodes (type-I) take a value A and
the remaining fraction g (type-II nodes) take a reduced value
ra, with0<r < 1:

P(y) = (1 —q)d(hi —A) +q8(xi —rd). “)

Obviously, for ¢ =0 and g =1 the model is nondisor-
dered with A.(g = 1) = A.(g =0)/r, while for 0 < g < 1
one expects A, to interpolate between these limits. In the
general disordered case the density can be expressed as p =
(1 — g)p1 + gp2, where the subindex refers to the node type
and p; are the corresponding densities. At the homogeneous
mean-field level,

pi(t) = —pi + (1 — p)[A(l — g)p1 + rigp:] )

for i = 1,2. A standard linear stability analysis leads to
)\i(q) =1—¢g(1 —r)~'. As in the pure case, this zeroth order
result, multiplied by the factor (k)/({k) — 1) to account for
correlations, provides a good estimate for the threshold in
generic networks with narrow degree distribution

A2 = (k) ! .

¢ {k-11-g1—-r)

Observe that type-I sites exhibit a percolation transition where

their intrinsic connectivity, (1 —¢)(k) =1 [2,15] (i.e., at

Gperc = 1 — (k)~"). For larger values of ¢ the network cannot

sustain activity if r = 0: type-I clusters are finite and type-II

ones do not propagate activity. Hence, for » = 0, Eq. (6) is
valid only for g < gperc, While for r > 0 it holds generically.

(6)

C. Understanding the quenched contact process behavior
on Erdos-Rényi networks

The behavior of the QCP model on Erdds-Rényi (ER)
random networks [11] can be predicted by using, as often
done in disordered systems (see [6—8,17]), optimal fluctuation
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FIG. 1. (Color online) Phase diagram for (k) =3 andr =0 as a
function of the spreading rate A and of the fraction of type-I nodes,
1 — g. See main text for a detailed description of the different phases.

arguments. These allow us to derive the phase diagram
depending on the value of the spreading rate A and of the
fraction ¢ of nodes with reduced infection rate, rA (see Fig. 1
for » = 0 and Fig. 4 for r > 0).

In what follows, the theoretical predictions for different
phases are presented and checked against the results of
numerical simulations of the QCP on ER networks with
(k) = 3 (implying gpere = 2/3), and sizes up to N = 10".
Simulations are performed in the standard way [18,19]: a
list of type-I and type-II occupied nodes is kept and the
total rates r; and ry; are calculated. At each time step with
probability r;/(r; + ryp) a site of type j is randomly selected
and it either heals [with probability 1/(1 + A ;)] or infects a
single randomly selected neighbor provided it was empty [with
probability A;/(1 + A;)]. Time is increased by 1/(r; + 1)
and the procedure is iterated. All sites are active initially and
the global density of active nodes p(t), averaged over many
runs, is monitored.

The basic idea of the optimal fluctuation analysis is that
the long-time decay of p(#) is controlled by the convolution of
different rare regions of type-I sites with different relaxation
time. The overall decay can be written as the following
convolution integral

p(t) ~ fdssP(S)GXP[—t/T(S)], (7

where P(s) is the probability of having a rare region of size s
and 7(s) is the decay time of activity in such a region.

1. Caser =0

We start considering the case r = 0. Based on the different
possible functional forms of P(s) and the cluster density-decay
function in the various regions of the phase diagram the
following regimes can be predicted (see Fig. 1).

(i) Griffiths phase: A > Ac(qperc) and g > Gperc. For g >
Gperc the network of type-I nodes is fragmented and consists of
finite clusters, whose size distribution is given by [20]

S*3/26*3[P*1*1H(P)]’ (8)

P ~
) V2 p
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where p is the average number of links per node, which
in our case is p = (k),—o(1 — g) for type-I nodes. Within
any given connected cluster of type-I nodes, let us define
Ploc as the local average number of links per node, and,
from it, an effective local value of g, gioc = 1 — pioc/{k)g=0-
Obviously, for connected type-I clusters, gioc < Gperc [i.€., they
are locally above the percolation threshold and hence, provided
that A > A.(gperc), they are active rare regions where activity
survives until a coherent random fluctuation extinguishes
it]. The characteristic decay time t(s) grows exponentially
(Arrhenius law) with cluster size (i.e., T(s) = fp exp[A(A)s])
where 7y and A(X) do not depend on s. Plugging Eq. (8) into
Eq. (7) and using a saddle-point approximation, one obtains
p(t) ~ 179P with (p,A) = —[p — 1 —In(p)]/A(V) (ie.,
there is a generic power-law decay with continuously varying
exponents) that is, a Griffiths phase, emerging as the result of
strong rare-region effects. It is noteworthy that next-to-leading
corrections provide logarithmic corrections to the power laws.
Numerical evidence of this GP regime is shown in Fig. 1(b) of
Ref. [12].

(ii) Right at the percolation threshold, ¢ = gperec, p — 1
and the distribution of finite clusters, Eq. (8), becomes a
power law. When plugged into Eq. (7) the contribution of finite
clusters leads to alogarithmic decay with exponent 1 /2, p(t) ~
[In(z /)]~ '/?, expected to hold forany A > A.(gperc), for which
rare regions are active. Observe that a finite fraction of sites
belongs to the (infinite) percolation cluster, where activity
can survive indefinitely, therefore, the actual behavior is
o(t) ~ c(}) + [In(¢/1)]~"/?, where (1) is a constant, meaning
a discontinuous phase transition here. Strong evidence of such
a logarithmic decay behavior is given by the inset of Fig. 1(a)
of Ref. [12].

(iii) For g < gpere there is a giant component of type-I
nodes, which, above the critical point given by Eq. (6), is
able to sustain activity in the steady state. At criticality,
a standard mean-field-like contact-process behavior [p(t) ~
t~!1is expected and has been numerically verified (Fig. 1(a)
in Ref. [12]). On the other hand, in the active region, the
existence of a percolating cluster implies a stationary density
o(q,)). Besides this giant component some other finite type-I
clusters do exist: The relaxation in such clusters gives rise to
anomalously slow relaxation toward p(q,A), analogous to that
of regime (i) [17].

(iv) Below the GP [region (i)], at some value of A, and for
any value g > gperc = 2/3, starts a different region. Here, the
finite clusters, which were locally supercritical in phase (i)
become typically subcritical. Nevertheless, the connectedness
of finite clusters (as well as the local control parameter) varies
from cluster to cluster and, although most of them are locally
subcritical, there still may form rare clusters with an over-
average mean degree, which (themselves or parts of them) are
locally supercritical at a given A. The extension and the char-
acteristic extinction time of these rare regions is unbounded
(although large extinction times are very improbable) and this
circumstance is sufficient to induce a slower-than-exponential
decay of the global density. The distribution of extinction
times, which are related to the geometry of rare regions is
extremely difficult to estimate analytically. Nevertheless it is
expected to decay much more rapidly than the power law
characteristic of phase (i) and, correspondingly, the density
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FIG. 2. (Color online) Stretched-exponential decay of p vs ¢
in region (iv) for N = 10°, g = 0.9, r = 0, and various values of
A (which increase from top to bottom curves in the figure). As a
reference, straight lines correspond to p(t) ~ exp(—ct*/?) (top) and
o(t) ~ exp(—ct'/?) (bottom).

is expected to decay faster than any power of ¢ (but slower
than exponentially). In this case we speak of weak rare-region
effects.

Numerical results, as shown in Figs. 2 and 3 indicate a
stretched-exponential decay, p(t) ~ e~*°™>!" with exponents
a varying from values close to 1, for small A, to very small
values (converging to 0) for A approaching the GP. Note, that
in the limit of vanishing exponent the stretched exponential
becomes a power law.

We can use Eq. (7) the other way around and estimate
the kernel as a function of the resulting convolution. Indeed,
writing the integral in Eq. (7) in terms of extinction times rather
than the size s of rare regions and applying the saddle-point
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FIG. 3. (Color online) Stretched-exponential decay of p vs ¢ in
region (iv) for N = 10°, A = 4.2, and various values of ¢ (which
decrease from top to bottom curves in the figure). As a reference,
straight lines correspond to p(t) ~ exp(—t*?) (bottom) and p(t) ~
exp(—t) (top), respectively. The closer ¢ to the percolation threshold,
the larger the probability to have long surviving clusters, and hence
the slower the decay.
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FIG. 4. (Color online) Phase diagram for » > 0. In contrast to the
r = 0 case, the active phase extends all the way to ¢ = 1. Otherwise,
the phase diagram is very similar to the one for » = 0, including a
Griffiths phase and a region of weak rare-region effects.

approximation we obtain that an overall stretched-exponential
decay for p(¢) (as measured numerically) implies the asymp-
totic form P(t) ~ exp(—const x 7%/(1~) for the distribution
of extinction times.

For values of g < 2/3, above the percolation threshold, the
density decay towards the absorbing state is still expected to be
dominated by the rare finite clusters, which are present beside
the spanning cluster, and to be of stretched-exponential type,
as indeed observed numerically (results not shown).

(v) For A <A(g =0) and any ¢, no cluster can be
supercritical, but still different effective values of T compete,
giving rise, again, to stretched-exponential behavior. For very
small values of A (i.e., deep into the absorbing phase) the decay
for all clusters is so fast that the distribution of T becomes very
narrow and the decay is very close to purely exponential (and
therefore the exponent of the stretched exponential becomes
very close to unity).

2. Caser >0

When nodes of type II conserve some reduced spreading
capability (» > 0) the features of the phase diagram remain
essentially unchanged (see Fig. 4), except for an important
qualitative modification: even in the phase where type-I nodes
do not percolate a global percolation is guaranteed by type-1I
nodes. One consequence is that an active phase exists even
when g > gperc for values of A larger than A..(q) approximately
given by Eq. (6). The Griffiths phase is limited by such a line
above and A(gperc) below. For smaller values of the spreading
rate A one still expects a stretched-exponential decay and,
below A.(g = 0) a pure exponential behavior. In Fig. 5 results
of numerical simulations for » = 0.05 and ¢ = 0.9 confirm
these expectations. Observe the existence of some curvature
for the decaying curves in the double logarithmic plot; this is
due to the existence of logarithmic corrections to scaling.

Summing up, optimal fluctuation arguments explain all
numerical findings for both » = 0 and r > 0. Rare regions
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FIG. 5. (Color online) Decay of p(r) for ¢ = 0.9 and r = 0.05
(N = 107). The top plot highlights the presence of a generic power-
law decay. Values of A are (from top to bottom curves) 11, 10.34, 10.2,
10,9.5,9,8,7,6,4.5,2.7, 1. The bottom plot reveals the presence of a
stretched-exponential regime for A < 4.5. Values of A increase from
top to bottom curves. The straight line corresponds to the exponential
decay p(t) = exp(—t).

play an important role in almost all phase space, giving rise to
generic slow decay of activity.

The nature of the transition between the active phase and
the Griffiths phase is expected to be of activated scaling
type (i.e., logarithmic decay is expected) (see Sect. Il B1).
Indeed, our simulation results suggest activated critical be-
havior but computing accurately the corresponding exponents
remains an open challenge. Let us remark that recently, a
strong disorder renormalization group calculation has been
performed for Erdds-Rényi networks, with the conclusion
that a strong-disorder fixed point emerges even in this
infinite-dimensional topology [21]. Comparing numerical
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FIG. 6. (Color online) Time decay of the average activity p
for the QCP on a scale-free network built using the uncorrelated
configuration model [23]. The degree distribution decays as P (k) ~
k=23, Solid lines are for N = 107, dashed lines are for N = 10*.
Values of A decrease from top to bottom curves. Notice that, while
for N = 10* a slow decay occurs at the transition, as the system size
is increased (N = 107) the typical behavior of the pure systems is
observed.

results with the theoretical predictions in Ref. [21] is left for
future work.

D. Quenched contact process behavior on scale-free networks

It is possible to predict what happens when the QCP
dynamics takes place on some other, more complex, topology.
We hypothesize that strong rare-region effects (i.e., GP) occur
in the fragmented phase of networks with a finite percolation
threshold: if over-active sites cannot form rare isolated regions,
then rare-region effects do not appear. Example of such
networks are the ransom ER or structured scale-free networks
[22]. On the other hand, if the percolation threshold decreases
with system size and vanishes in the thermodynamic limit
(as is the case in standard scale-free networks [1]) only weak
rare-region effects are expected.

Numerical evidence of this last assertion is provided in
Fig. 6. It corresponds to a simulation of the QCP on scale-
free networks (generated using the uncorrelated configuration
model [23]). Apparently, power-law generic decay is observed
when the network is small (N = 10*); however, as the size
is increased (N = 107) the transition becomes similar to the
usual transition for the pure contact process, with no track
of generic power-law decay (i.e., no evidence of a Griffiths
phase).

III. EFFECTS OF TOPOLOGICAL DISORDER

A. General considerations

In what follows, we assume that the infection rate A; for site
i is identical for all sites and explore the possibility of rare-
region effects induced solely by the topological irregularities.
It is important to remark that, still, the infection rate through
any given link is nonhomogeneous if the degrees of sites are
heterogeneous.
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The local critical control parameter in any given region
depends on the connectedness of sites in that region [see
Eq. (2)], and therefore heterogeneous networks are susceptible
to exhibit rare-region effects: clusters with an over-average
local connectedness would have a lower local critical control
parameter and hence they could be locally active even if the
system is globally in the absorbing phase.

The effects of topological disorder are less clear than those
of intrinsic node disorder. See, for instance, the contradiction
between numerical results and the Harris-Luck criterion for
CP on two-dimensional (2D) Voronoi-Delaunay network (the
latter predicting topological disorder to be relevant and the
former showing the contrary [24]).

To shed some light on these problems, let us first consider
the CP on a network with bimodal degree distribution, P (k) =
pS(k — ki) + (1 — p)8(k — ki) with k; > ky, where a priori
one could expect rare active regions (with an over-density
of ki nodes) to exist. However, numerically we find just
conventional, nondisordered behavior with no evidence of
anomalous effects for such networks. What is the reason for
this apparent contradiction?

In d-dimensional lattices, disorder is known to be irrelevant
for sufficiently high d, where each node has a large number
of neighbors and the law of large numbers precludes rare
regions from existing: each site effectively sees a well-defined
mean field, homogenous across the system. The topological
dimension is an extension of the concept of Euclidean
dimension to arbitrary graphs. It measures how the total
number of nodes in a local neighborhood grows as a function of
the topological distance from an arbitrary root: N(I) ~ 1P [15].
For small-world networks (like the ER graph), where N(I)
grows (at least) exponentially with [, the topological
dimension is formally infinite. On the other hand, for
disconnected graphs with no macroscopic (giant) component,
like the ER graph below the percolation threshold, D = 0.

For networks with D = oo (as ER graphs above the
percolation threshold or the bimodal graphs above), the
number of nodes in a local neighborhood is large. Therefore we
conjecture, in analogy with the case of lattices, that GPs cannot
exist. In such networks, the locality (i.e., the very existence
of local neighborhoods), which is a basic component of the
phenomenology of rare regions is broken. This means that the
exponentially growing neighborhood reduces the possibility
of forming well-separated rare regions. In other words, the
surface of these regions is proportional to their volume if
D = oo and the number of external links through this large
surface has to be below average such that the region is isolated
from the rest. As opposed to this, GPs may exist for ER
below the percolation threshold, where D = 0 and the finite
components of the network are isolated from each other.

In order to get more insight into the effects of topological
disorder we have studied the CP on several types of networks
with finite D by numerical simulation. We have studied
generalized small-world (GSW) networks [25-33], which
consist of a one-dimensional lattice and an additional set
of long-range edges of arbitrary, unbounded length. The
probability that a pair of sites separated by a distance / is
connected by an edge decays with [ as

Py~ NBI™* ©)]
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for large I, where N is a normalization factor enforcing the
mean degree to be finite.

These networks interpolate between the case s = 0, which
is similar to ER graphs in the sense that long edges exist with
a uniform (/-independent) probability (note, however, that the
underlying one-dimensional lattice ensures that the networks
are always connected) and the quasi-one-dimensional network
with certain fraction of next-to-nearest neighbor edges corre-
sponding to s = o0o. In general, P(l) decreasing with the edge
length, [, results in an overall tendency toward forming clusters
of consecutive sites possessing an over-average number of
internal links, as occurs in the extremal case s = oo. In the
latter model simple considerations predict the existence of a
GP. Clearly, for s > 2, links have a strong tendency to be local;
actually the probability that a site belongs to a subgraph that
contains many internal links' and has no external long edge is
finite in the limit N — oo. This probability is exponentially
small in the subgraph size, suggesting the possibility of strong
rare-region effects. On the other hand, for 0 < s < 2, the
number of subgraphs specified above is only sublinear in
the system size, and hence they are more likely to become
irrelevant in the limit N — oo.

In the following two subsections we study two different
families of networks, nonregular and regular, respectively,
within this class of generalized small-world networks.

B. Nonregular generalized small-world networks

We have studied nonregular GSW networks, which were
proposed in the context of long-range percolation [25]. Con-
sider N nodes, labeled 1,2, ...,N and let us define a distance
betweennodesi and j,! = min(|i — j|,N — |i — j|). All pairs
of sites at distance / = 1 are connected with probability 1,
while pairs with / > 1 are connected with a probability

P(l) = NT1 — exp(—BI™")] (10)

obeying Eq. (9) for large values of /.

The topological dimension of these graphs has been shown
to depend on s. If s > 2, the average length of edges is finite,
consequently, D = 1, whereas for s < 2, the average length
diverges, implying that the topological dimension is formally
D = oo [27,30,34]. In the marginal case s = 2, D is finite
and depends on the prefactor 8 (actually D grows with 8; see
below) [27,30,35].

1. The case s > 2

For s > 2, long edges are irrelevant, D = 1, and their net
effect is to induce an over-density of links for some nodes (i.e.,
to induce a form of local quenched disorder).

For the one-dimensional QCP a strong disorder renor-
malization group analysis shows that the critical behavior is
governed by an infinite-randomness fixed point (IRFP) where
the dynamics is logarithmically slow [36,37]. These results
have been extended to higher dimensions [21,38]. In particular,
for spreading dynamics (i.e., starting from a single active

"For example, a subgraph consisting of consecutive sites and all
next-to-nearest neighbor links.
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site [39]) the survival probability P(¢) and the number N (¢) of
active sites, which are averaged over the initial site behave as

P(t) ~In(t/t9)"%, N(t) ~ In(t/to)". (11)

Instead, initializing the system from the fully active state,
the density of active sites decays as

p(t) ~ In(t/19)"°. (12)

At the IRFP in one dimension the critical exponents are exactly
known: § =@ = (3 — /5)/2, ii = /5 — 1 [36].

On the grounds of universality we expect the same
critical dynamics as for the one-dimensional QCP with
node-dependent transition rates [8,36]. In order to check this
conjecture we have investigated the model with s = 3 and
B = 2 with extremely long simulations (22 Monte Carlo steps)
on lattices of size N = 10°. We measured the density decay
starting from the fully active state and determined the effective
decay exponent (by assuming it is a power law and using local
slopes in a log-log plot) as

_In[p@)/p(1")]
In(z/t")

where p(t) and p(t’) are neighboring data points. Other
effective exponents are measured analogously. Numerical
simulations in the subcritical region confirm the presence of
a Griffiths phase with algebraic dependence on time in the
range: A = 2.70-2.78 (Fig. 7).

Results at the transition point are found to be compatible
with Eq. (12) with the 1d QCP exponent & = (3 — \/g)/Z ~
0.382 in the critical point at A, = 2.783(1). Indeed, in Fig. 9
the effective exponents (local slopes) @(¢) show this for
t — 00. As a comparison we also plot the effective exponents
Sefi(?) obtained for the one-dimensional QCP on lattices of
size L = 10° with bimodal disorder distribution (4) (» = 0.3,
q = 0.2; observe that this comparison makes sense since for
the QCP the exact relation o = 6 holds, i.e., the rapidity
reversal symmetry is not broken [13]). The critical point of the
1d QCP is found to be located at L. = 5.24(1), in agreement
with [40]. As can be seen, the convergence towards a value
compatible with the expected asymptotic value is very slow
(see red dot on the ordinate in the inset of Fig. 9, corresponding
to the + — oo limit) owing to the considerable time scale 7 in
Egs. (11)and (12). As a consequence, in case of an activated
scaling, if neither A, nor the critical exponents are known a
priori the usual method of inspecting the local slopes in order
to estimate exponents is mostly useless and one has to resort
to more complex methods [38].

Finally, results for N(¢) and P(¢) shown in Fig. 8§ are also
compatible with Egs. (11) with the IRFP exponent values.

tef (1) = ; 13)

2. The marginal case s = 2

For s = 2 the topological dimension increases continuously
with B. In Ref. [35], D(B) has been estimated for different
values of . For the values of § studied in this paper 0.1,0.2,1
the dimensions are 1.104(3),1.212(5),2.35(2), respectively.
We have studied the CP in these cases, expecting an absorbing
phase transition at some B-dependent critical point A.(8). It is
reasonable to assume that the addition of edges to a network
lowers A, [i.e., A.(B) is monotonically decreasing with f].

PHYSICAL REVIEW E 85, 066125 (2012)
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FIG. 7. (Color online) Top: Local slopes of the density decay in
networks with s = 3 and 8 = 2 for different values of A in the Griffiths
phase Bottom: Time dependence of the survival probability in the
same networks. Numbers shown correspond to lines from bottom to
top.

Consequently, the model with some fixed 8 (0 < 8 < 00)
must be in the active phase, if A > A.(0) = 3.297848(22) (the
critical point of the one-dimensional CP, see Ref. [13]) and
must be inactive, if A < 1 [the critical point of the complete
graph described by the mean-field equations, see Eq. (2)].
Therefore one can predict: 1 < A.(8) < A.(0), with a possible
GP also in this range. Note that the range [1,A.(8)] where a
GP can emerge on the inactive side of the critical point shrinks
upon enlarging 8, making it difficult to numerically observe
GPs for large values of 8. On the other hand, the smaller the
value of § (and hence the smaller the mean degree of nodes)
is, the stronger is the influence of the pure system fixed point
and the larger times are needed in the simulations in order to
see the true asymptotic behavior.

We have studied the dynamics of CP on these networks via
density decay as well as spreading simulations from a single
active seed for different 8 values around the corresponding
phase transition points (system sizes L = 10°> — 10° and up to
tmax < 108 Monte Carlo steps).
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FIG. 8. (Color online) Top: Time dependence of the survival
probability in seed simulations in the network with s = 3 and 8 = 2
(numbers shown correspond to lines from top to bottom). Bottom: The
corresponding number of active sites in (numbers shown correspond
to lines from bottom to top). A straight line in these plots correspond
to the critical point as with activated scaling with § ~ 0.382 and
il ~ 1.236.

As can be seen in Fig. 10 for 8 = 0.1, the density decays
algebraically with A-dependent exponents in an extended range
of A [results of seed simulations for 8 = 0.2 also support the
existence of a GP in agreement with the results for density
decay (see Fig. 3 of Ref. [12])].

The calculated effective exponents «.s(¢) for § = 0.1 do
not level off for large times (see insets of Fig. 10) instead a slow
drift proportional to 1/ In(¢) can be observed. The functional
dependence of the effective exponent can be well fitted by

eft(t) = @ — a/In(r) (14)

suggesting the presence of logarithmic corrections of the
form: p(t) =t~ In“(¢). The possibility of such logarithmic
corrections to power laws in the GP was already pointed out
in case of the QCP [7] and arises naturally using optimal
fluctuation arguments (see above). The relation ¢ = § seems to
hold in accordance with the rapidity reversal symmetry of the
CP [41]. The phenomenological theory of the GP (see Ref. [7])
predicts that the number of active sites in surviving samples
[i.e., N(t)/ P(t)] grows as apower of In¢,implying n = —6 [7].
By extrapolating the effective exponents to t — 0o we have
found that this relation is satisfactorily fulfilled.

PHYSICAL REVIEW E 85, 066125 (2012)
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FIG. 9. (Color online) Density decay results in the network with
s = 3 and B = 2 illustrating the existence of activated (logarithmic)
scaling at criticality (numbers shown correspond to lines from top to
bottom). Inset: local slopes of the same data (lower curves), and local
slopes of the survival probability in the critical 1d QCP simulations.
Slow convergence towards a value compatible with the IRFP value
of the 1d QCP can be observed.

As discussed above a Griffiths phase is usually accompa-
nied by logarithmically slow (activated) dynamics at criticality
[see in Egs. (11)and (12)]. We expect this scenario to hold for
B > 0, with possibly modified critical exponents compared to
the case s > 2. Results of numerical simulations for § = 0.2
are in accordance with these expectations but without knowing
the critical exponents it is hard to accurately estimate the
critical point location. We applied a method of Ref. [38],
based on the assumption that the leading correction to scaling

107

-5
10
10° 10? 10* 10° 108

FIG. 10. (Color online) Density decay in the 8 = 0.1 network of
linear size L = 10° for » = 1.287, 1.29, 1.291, 1.293, 1.295, 1.297,
1.3, 1.302, 1.303, 1.304, 1.3048, 1.306, 1.307 (from bottom to top),
illustrating the existence of a Griffiths phase. The inset shows the
corresponding continuously varying local slopes.
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5 time:

Bur() =3 (1 4+ 000 (15)

4t 1 et = In(t/10))
As can be seen, the deviation from the true value is
= 3t | considerable whenever Int is not much greater than Inz,. A
Z similar form can be obtained for o and 77 as well. We have
= 2 1 calculated the effective exponents from numerical data and
fitted the formin Eq. (15) to them in the domain 1/ In(#) < 0.12
1t 1 where the other corrections are expected to be negligible.
These numerical data and the fitted curves can be seen in
0 ‘ ‘ Fig. 12. The extrapolated critical exponents, which can be read
-2 -1 0 off from the intersection with the y axis express considerable
In[P()] error, due to the uncertainty of the location of the critical point

FIG. 11. (Color online) The logarithm of the number of particles
plotted against the logarithm of survival probability for different
values of A in networks of size N =10° for s =2 and 8 =0.2
(numbers shown correspond to lines from bottom to top) A straight
line in this plot signals the transition point.

comes from the time scale 7y in Eqs. (11) and (12), which is the
same for different quantities. At criticality both In[P(¢)] and
In[N(¢)] are thus asymptotically proportional to In[In(z/1y)].
Plotting In[N ()] against In[ P(¢)] the data at the critical point
must fit to a straight line with a slope —77/8 (see Fig. 11). On
the other hand in the GP (actually in all the absorbing phase)
the slope tends to +1 whereas in the active phase it tends to
—oo. This allows us to obtain a rough estimate of the critical
point: A, = 2.85(1).

Unfortunately, the ratio 77/8 varies rather sensitively with
A around the suggested critical point. The data at A =
2.84,2.85,2.86 give the ratio estimates 1.5(1),1.9(1),2.6(1),
respectively, making it very difficult to obtain reliable esti-
mates (for comparison, remind that the corresponding ratio of
the 1d QCP is 77/8 ~ 3.236).

Having an estimate of A, at our disposal, we turned to
the estimation of @&, 8, and 7 separately. Assuming that
the survival probability has the asymptotic time depen-
dence P(Q ~ const x [In(t/15)]~%, we obtain that the effective

even though great simulation efforts have been applied.

The exponent § is found to increase with B, leaving the
value g(ﬂ = 0) =~ 0.382 of QCP, whereas 7 is less accurate,
decreasing from the value 7(8 = 0) &~ 1.236 of the QCP.

We have also studied the evolution of the growing clus-
ter in seed simulations by measuring its diameter: R(t) =
\/(Zi ni(HI3(t)/ Y, ni(t)), where the occupation number n; (¢)
is 1(0) if site i at time ¢ is active(inactive), /; is the length
of shortest path between site i and the initial site and (-)
denotes disorder average over samples where the process is
surviving up to time 7. According to the phenomenological
theory of the GP, the spread R(¢) grows as a power of In ¢.
Actually, in the critical point of the 1D QCP, the strong disorder
renormalization group predicts that R(¢) ~ (Int)"/¥ with the
exponent Y = 1/2 [36]. Indeed, we have found the behavior

R(t) ~ (Int)'/¥ (16)

at criticality with ¢ not far from 1/2 for 8 = 0.2.

The picture above changes as g is further increased. Indeed,
our numerical observations show that, as argued above, the size
of the GP shrinks upon enlarging 8. Actually, for 8 > 1 we can
no longer observe a GP and we obtain conventional power-law
dynamics at the suggested critical point rather than activated
dynamics. At a numerical level, however, we cannot rule out
the possibility of the presence of a GP of vanishing width,
which persists to exist for any finite 8, and is accompanied

exponent 8q(1) = —j}ﬁ(ﬁfg has the following dependence on by activated critical dynamics, which can be observed only

04| 04| —
c T~ c
S 08} g 0.8
X x
(0] (0]
o ,2=3.06 o 5,2-2.83
L —— o, A=3.065 TR — §,A=2.84
o —— 0, A=3.07 s —— o, A=2.84
o i 8, 1=3.07 © 10l — 012853
% 128 s 2 — §,A=2855
k5] —— 58,2308 3 — 58,2287
50— ~0.4768 (1+1.564/(In(t)-5.64)) = - ~0.6586(1+4.52/(In(t)-4.52))

- _0.6275(1+4.721/(In(t)-4.721)) -~ _0.534(1+4.66/(In(t) —4.66))
1.6 : w s 1.6 ‘ ‘ ‘
0 0.04 0.08 0.12 0 0.04 0.08 0.12

1/In(t)

1/In(t)

FIG. 12. (Color online) Numerically calculated effective exponents 8.() and @ (¢) (solid lines) plotted against 1/1n¢ and the curves
given in Eq. (15) fitted to them (dotted lines) in the vicinity of the critical point for g = 0.1 (left) and 8 = 0.2 (right) (parameters shown

correspond to lines from bottom to top).
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at time scales that are well beyond the realm of numerically
attainable ones.

With increasing S, the mean degree increases and it is
tempting to compare the numerical results with those for a
related model, which can be regarded as the annealed coun-
terpart of networks with quenched topological irregularities.
In that model, referred to as CP with Lévy flights [42,43],
activation is possible not only at adjacent sites but at any site,
chosen at any time step (annealed links) with a probability
decaying with the distance as

P(r)~r4. (17)

Field theoretical analyses proved that for dimensions above
d. = 20, the critical exponents vary continuously with o,
while below such a critical dimension they coincide with
mean-field critical exponents (up to logarithmic corrections
at d = d_) [44]. In one dimension, this means that nontrivial,
o-dependent exponents are expected if o > 1/2, whereas
they are stuck to the mean-field values if o < 1/2. So,
it is reasonable to compare the quenched model to the
annealed one with the same decay exponent (i.e., s = o + 1).
For 0 =1 corresponding to s = 2, the numerical estimate
of the density-decay exponent is o = 0.52(3) [45]. This
is quite close to the estimated critical exponents of the
corresponding quenched model with large B (see Fig. 13).
At B =5, for which we have the most accurate estimates,
o = 0.515(20).

As can be seen from the numerical results, the behavior
of the quenched model is similar to that of the annealed one
for large enough B. This similarity is, however, deteriorates
for small B, which is easy to understand on an intuitive level,
since for 8 < 1, there is a diverging number of backbone links
(O[N'#]) [25,27], over which no long-range activation can
occur, hence the approximation by an effective CP with Lévy
flight must be inappropriate.

3. Thecases <2

In the case s < 2 we choose the normalization factor N
in Eq. (9) such that the mean degree is (k) = 3 for all values
of s. Simulations show that the trend observed for s = 2 and
large values of B is continued. Namely, no signs of a GP

0
""""""""" -0.587*x+0.763 —— |
1.96
— > 1.07
2 1.971
= < 1.973
57 s=2, B=1

5 Int)
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can be found and the critical dynamics are of conventional
power-law type. Taking into account the strong finite-size
corrections as well as the possibility of logarithmic corrections
at s = 3/2 (which corresponds to d = d, in the annealed
model) the results (not shown) for s < 3/2 are compatible
with the mean-field value o« =1 of the decay exponent
in the contact process with Lévy flights. As expected, the
estimated critical exponents do not seem to depend on the
mean degree (k) but on the index s. For example at s = 1.75,
the estimated value is ¢ = 0.75(1) (not shown) in agreement
with the decay exponent of the annealed model at this point is
a ~ 0.72(5) [45].

C. Three-regular random networks

In the networks studied so far the degree of nodes is
heterogeneous. In the following we consider networks with
a topological disorder that is even weaker in the sense that the
degree of all nodes is the same (three in our case).

In order to keep the topological dimension finite we need the
probability of long edges to decay according to Eq. (9) with s =
2. Such three-regular random networks can be constructed in
the following way [33]. Initially, let us have a one-dimensional
periodic lattice with N vertices, all of them are of degree 2.
Vertices of degree 2 will be briefly called “free vertices”. Let
us assume that N is even and k is a fixed positive integer.
Now, a pair of free vertices between which the number of
free vertices is k — 1 (the number of nonfree vertices can take
any value) is selected randomly with uniform probability from
the set of all such pairs and this pair is then connected by
a link. That means, for k = 1, neighboring free vertices are
connected, for k = 2 next-to-neighboring ones, etc. This step,
which raises the degree of two free vertices to three is then
iterated until all vertices become of degree 3. [The last 2(k — 1)
free vertices are paired in an arbitrary way.] Remarkably, as
shown in Appendix B, the probability of long-distance edges
is given by Eq. (9) with s = 2 for all k£ and the prefactor is
B = k/2.The topological dimension for k = 1 has been shown
to be D(k = 1) = 2 while for k = 2 the numerical estimate is
D(k =2)=2.27(2) [33].

0.45

0.47 -

0.49 1

0.51

053"

0.55

0 01 02 03 04
11°°

FIG. 13. (Color online) Left: Density time decay in MC simulations started from the fully active state in networks with s = 2 and g = 1.
Right: Effective exponents g (f) for s = 2, = 5 in the vicinity of the transition point (parameters shown correspond to lines from bottom to

top).
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FIG. 14. (Color online) Density decay in the k£ = 1 network of
size L =10° from A = 2.53, 2.535, 2.537, 2.541, 2.543, 2.548,
2.554, 2.558, 2.562, 2.57 (from bottom to top). The inset shows
the corresponding local slopes.

1. Results

As expected, simulation results obtained for k = 1,2 are in
line with those obtained for nonregular random networks with
s =2 and different values of 8. For k = 1 (corresponding
to B = 0.5 above) we can observe a GP, where the density
decays algebraically (up to possible logarithmic corrections)
with exponents continuously varying with A (see Fig. 14) and
activated scaling (not shown) at criticality.

For k =2 (corresponding to B8 =1 above), finite-size
effects are stronger because the diameters of the networks
are smaller. The density decay results are shown in Fig. 15.

p(H)

"0.00 0.01 0.02

10 10 10 10 10°

FIG. 15. (Color online) Density decay in the k = 2 network for
L =107 for A = from A = 2.156, 2.157, 2.1575, 2.1581, 2.1583,
2.1584, 2.1586, 2.1588, 2.1593, 2.1598 (from bottom to top). The
inset shows the corresponding local slopes.
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As can be seen from the local slopes, the existence of a
GP is questionable, instead a conventional critical phase
transition appears at A, = 2.1583(1) with the decay exponent
a >~ 0.52(5), which is again close to the corresponding value
of the annealed model.

IV. DISCUSSION

In summary, aimed at studying the effect of disorder on
propagation phenomena occurring on networks, we have
investigated the simple contact process on top of different
network architectures. First, we have considered a quenched
contact process, in which the infection rate is node dependent,
and we have analyzed it on Erdés-Rényi random graphs. As a
simple example we have taken a bimodal disorder distribution
in which nodes infect their neighbors either with high or low
(even vanishing) probability. Localized rare regions, with
an over-average infection rate can emerge in the network
when their probability is below the network percolation
threshold. In such a case strong rare-region effects appear.
These include a Griffiths phase and a rich phase diagram
characterized by generically slow decay of activity. The main
reason behind such anomalous behavior is that rare regions
are exponentially rare, but being locally active, they survive
for exponentially large times. The convolution of these
two effects lead generically to slow decay. Simple optimal
fluctuation arguments have allowed us to understand the rich
emerging phase diagram and to characterize analytically the
different regimes. In particular, we distinguish between strong
rare-region effects appearing when the process is locally
supercritical, and weak rare-region effects, occurring when
the process is predominantly locally subcritical.

Similar effects may appear on other topologies as long as the
percolation threshold is finite. For instance, for standard scale-
free networks in which the percolation threshold is known to
vanish in the large system-size limit, no GP can exist.

In the second part of the paper we keep the infection rate
constant at all nodes, and focus the attention on the effect of
network topological heterogeneity. We conjecture that, at least
for the dynamical processes we have studied, Griffiths phases
and other rare-region effects can appear if the network topolog-
ical dimension is finite. Otherwise (i.e., for infinite dimensional
architectures) the very concept of local neighborhood does not
make sense; the frontier of any cluster covers almost com-
pletely the whole network. We have carefully analyzed differ-
ent generalized small-world networks with finite topological
dimension: They consist of a one-dimensional lattice, with ad-
ditional long-distance links, which exist with a probability that
decays with their length [ as §1~°. For effectively short-ranged
links (i.e., s > 2) long-distance edges are mostly irrelevant:
the topological dimension remains D = 1. Their main effect
is to create quenched disorder. It is therefore not surprising that
the results of our computer simulations are compatible with
the one-dimensional contact process with quenched disorder.

For s < 2, however, no Griffiths phase emerges, and the
critical behavior is of the conventional type with exponents
close to those of the one-dimensional CP with Lévy flights. In
the marginal case, s = 2 and for small value of § we observe
a GP and an activated critical behavior with S-dependent
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exponents. By increasing f the width of GP shrinks and for
large enough g it seems to disappear and the critical behavior
is found to be conventional.

It would be interesting to study if slow relaxation and other
rare-region effects appear for dynamical processes other than
the CP, such as the voter model [19] or in GSWs built on
higher-dimensional regular lattices.

The general aspects of the results obtained in this work
might be relevant for recent developments in dynamical
processes on complex networks such as the simple model of
working memory [46], social networks with heterogeneous
communities [47], or slow relaxation in glassy systems [48].
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APPENDIX A: PAIR APPROXIMATION FOR THE PURE
CONTACT PROCESS

Using the notation of Ref. [18], let us call p the probability
to have an occupied site, u = p(1,1) the probability to find a
pair of occupied sites, z = p(0,0) the probability to find a pair
of empty sites, and w = p(1,0) = p(0,1) the probability to
have in a pair one occupied and one empty site. Normalization
imposes

u+z+4+2w=1. (AD)

Using the Bayesrule P(1|1) = u/p; P(0]1) = w/p, P(1]0) =
w/(1 — p), and P(0|0) = z/(1 — p) for the conditional prob-
abilities. Equivalently,

=p(L,0) =1 - p)P(1]0) = (1 — p)[1 — p — P(0]0)]
=0-pM—-p—-z/0-p)]

=1—-p—14u+2w, (A2)

from which, again, we obtain w = p —
unknowns, say p and u.

The death rate of any occupied site is fixed to 1, while
the infection rate of a given site with j occupied neighbors is
proportional to Aj/k. More specifically, the transition rate for
a state with a central empty site and j occupied neighbors is
given by

u, leaving only two

J k—
X——PIO 11P0 PO
K 71tk = )[ (L0 [P(0]0)] 0)
J k! k- k-1
k—]‘(k—])' w/Z"7(1 - p) (A3)

and a similar expression for the death rate. Using this, it is
straightforward to obtain

k!

k.
. J : P k—i
0= T L

A k—1

(1 —p)
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where the combinatorial factor stands for the number of ways
in which an empty site can be infected by j occupied neighbors
(with j € [1,k]). The factor j/k stems from the infection rate.
On the other hand, the negative term represents death events
(notice that the term — p could also be obtained by adding up all
the possible contributions from all the possible configurations
of its neighbors). Using that w +z =1 — p, we obtain the
final expression

pt)=Aw —p=Ap—u)— (AS)
Similarly, for u,
L
o1 I~ Vo ik
o = Ek '(k—n' v
1 k! ) )
i Jopk—J
Pl ;’j!ac—j)!” v B9

where the extra factor j reflects the fact that every time a site
(having j occupied neighbors) becomes occupied (empty), j
pairs are created (annihilated).

For the first term in the right-hand side we have not found
any closed expression accounting for the sum, while, for the
second one, using that u + w = p, it is possible to obtain a
simplified form

k.
. ] ! _i
u(t) = E_ F ‘(k—])' X — ku.

Despite the cumbersome aspect of Eq. (A7), it is possible to
perform a linear stability analysis of the steady-state solution
of the set of equations Eqs. (AS5) and (A7) without finding
explicitly their analytical solution. Actually, from Eq. (AS),
the steady state obeys A(p — u) = p,and hence, p —u = p/A,
and

(AT)

r—1
U=——2pn.
) 1Y

Evaluating Eq. (A7) at linear order in p, only the term [ = 1
contributes to the series

(A8)

1
)\%szk’I = ku
il (A9)
AMp—u)l =2p4u)y " =k
Plugging in here the result above
A—1
p=k——p (A10)
A
from which
kA—1)=A (A11)
indicating that the critical point is located at
k
Ae = —— Al12
1 (A12)

APPENDIX B: PREFACTORS OF THREE-REGULAR
GRAPHS

Here we calculate the prefactor S(k) appearing in the
asymptotic expression of the probability P (/) for three-regular
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random graphs. Consider the constructing procedure described
in the text and assume that the initial one-dimensional lattice
is infinitely large. When a new edge is created, the number
of free vertices is reduced by 2. So when the fraction of
free vertices is reduced by an infinitesimal amount from ¢ to
¢ — dc, this corresponds to the generation of a fraction dc/2
of the long edges. The mean length of effective short edges
(€) (.e., distances between neighboring free vertices) is 1/c,
so it is plausible to assume that the probability distribution of
& has the scaling property 7.(§) = c7(€c) when ¢ — 0. The
length / of a generated new link is the sum of k short edges,
therefore

() =k/c (B1)
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and its probability P, (!) has the same scaling property as ().
We can write for the probability that in the network (after
finishing the construction procedure) two sites at large distance
[ are connected by a link

co d 1 o ~
P(l):/ PC(I)TC ~ 5/ cPc)de
0 0

212

where 1/] < ¢y < 1 and we have used Eq. (B1). Thus, we
obtain

1 [lo 1 k.,
= ﬁ/ xP(x)dx ~ —(x) = El , (B2
0

k
s=2 and =7, (B3)
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