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From neurons in a brain [1] to fish in a school [2] to ants in a colony [3] to primates in a society [4],
we are captivated by the emergent behavior of collectives. In particular, collective behavior often displays
distinct aggregate states, with evident transitions among these states. How do living systems deal with
and use these collective transitions in optimizing biological function?

There has been lots of speculation that living collectives address challenges of emergent behavior
by making use of phase transitions. These challenges include navigating tradeoffs such as speed versus
accuracy and robustness versus adaptability. Collectives also face a challenge of distributed control, since
agency and adaptation are often shared across many individuals and their local interactions.

Much existing work in this area has focused on continuous phase transitions, as they create increased
collective sensitivity and distributed correlations. Continuous transitions also have known connections to
scale invariance and universality. We expand from this type of work in two ways: (1) we focus on not
just the adaptive benefits from being near critical, but more broadly on the advantages and challenges of
collectives adaptively tuning their location with respect to such transitions [5]; (2) we find and analyze
not just continuous but also discontinuous transitions, which are likely just as biologically relevant.

To better consider the adaptive requirements of navigating the space of collective transitions, we make
use of bifurcation theory. We argue that the language of bifurcations is a powerful way to characterize
collective transitions that still maintains aspects of universality while avoiding problems with taking
thermodynamic limits in adaptive systems.

Across the examples we study — neurons, fish, ants, primates — we find that collective transitions
correspond to transcritical, saddle-node, and cusp bifurcations, with the co-dimension setting the number
of parameters that must be adaptively tuned to make use of the transition. We also connect back to the
theory of continuous phase transitions, with the simplest mean-field Ising phase transition corresponding
to a cusp bifurcation when incorporating nonequilibrium dynamics.
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Figure 1: Collective transitions correspond to bifurcations in both a simple model from
physics and in a more complicated ant foraging model. Plotting the variability in behavior across
initial conditions (colors) highlights transitions between monostable and bistable collective dynamics.
Increasing interaction strength (horizontal axis) creates bistability in both cases, but only when individual
biases or thresholds (vertical axis) are tuned to the correct region. In the Ising model, dashed curves
indicate the location of saddle-node bifurcations that create discontinuous jumps, and these curves join
at the co-dimension 2 cusp bifurcation that corresponds to a continuous phase transition. Analogous
dynamics are seen across many types of models of collective behavior, including the ant foraging model
analyzed here.



