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Phase transitions of reaction-diffusion systems with a site occupation restriction, particle creation requiring
n > 2 parents, and in which explicit diffusion of single particles (A) is possible, are reviewed. Arguments
based on mean-field approximation and simulations are given which support novel kind of nonequilibrium crit-
icality. These are in contradiction with the implications of a suggested phenomenological, multiplicative noise
Langevin equation approach and with some recent numerical analyses. Simulation results for one- and two-
dimensional binary spreading model,2A → 4A, 4A → 2A, reveal a new type of mean-field criticality charac-
terized by the critical exponentsα = 1/3 andβ = 1/2, as suggested in a recent preprint [cond-mat/0210615].

I Introduction

The classification of universality classes of second order
phase transitions is still one of the most important uncom-
pleted tasks of statistical physics. Recently phase transi-
tions of genuine nonequilibrium systems have been inves-
tigated intensively in reaction-diffusion (RD) type models
exhibiting absorbing states [1-3]. There has been a hope
that in such homogeneous systems symmetries and spatial
dimensions are the most significant factors like in equilib-
rium ones, but gradually it turned out that there may be other
relevant factors as well. The best known example is the
parity conserving class (PC), which differs from the robust
universality class of directed percolation (DP). The DP hy-
pothesis stated by Janssen and Grassberger [4, 5], according
to which in one component systems exhibiting continuous
phase transitions to a single absorbing state (without extra
symmetry and inhomogeneity or disorder) short ranged in-
teractions can generate DP class transitions only. However
parity conservation itself proved to be an insufficient condi-
tion in many cases [6-9] and rather an underlyingA → 3A,
2A → ∅ (BARW2) process [10] of particles and theZ2 sym-
metry of absorbing states is necessary for this class [11]. On
the other hand parity conservation in N-component branch-
ing and annihilating random walk (N-BARW) systems [10],
or by triplet production models [12] was found to be respon-
sible for novel classes again. In one dimensional, multi-
component reaction-diffusion systemssite restrictionturned
out to be a relevant, new factor [13, 14]. Global conserva-
tion laws by directed percolation and lattice gas models were
shown to be irrelevant [15-18], while systems with multiple
absorbing states [19] or with multi-components also exhibit
DP class scaling behavior [20].

Another important puzzle has been investigated inten-
sively during the past three years that emerges at phase
transitions of binary production reaction-diffusion systems
[8,9,20-29] (PCPD). In these systems particle production by
pairs competes with pair annihilation and single particle dif-
fusion. If production wins steady states with finite parti-
cle density appear in (site restricted), while in unrestricted
(bosonic) models the density diverges. By lowering the pro-
duction/annihilation rate a doublet of absorbing states with-
out symmetries emerges. One of such states is completely
empty, the other possesses a single wandering particle. In
case of site restricted systems the transition to absorbing
state is continuous. It is important to note that these models
do not break the DP hypothesis, because they exhibit multi-
ple absorbing states which are not frozen, isolated particles
may diffuse in them. Howeverno corresponding symmetry
or conservation law has been found yet. A non-DP phase
transition in a binary production system was already men-
tioned in the early work of Grassberger [30]. A correspond-
ing bosonic field theoretical model the annihilation fission
(AF) process was introduced and studied by Howard and
Täuber [21]. These authors claim a non-DP transition in AF,
because the action does not contain a linear mass term and
the theory is not renormalizible perturbatively, unlike the
Reggeon field theory of DP. In field theories of models ex-
hibiting DP class transitions the canonicalA → ∅, A → 2A
reactions are generated by the renormalization transforma-
tion unlike here. Further facts opposing DP criticality are the
set of different mean-field exponents and the different upper
critical dimension of binary production PCPD like models
(dc = 2 vs. dc = 4)[21, 9].

Subsequent numerical studies reported somewhat differ-
ent critical exponents, but there has been a consensus for
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about two years that this model should possess novel, non-
DP transition. The first density matrix study by Carlon et
al. [22] did not support a DP transition, but reported expo-
nents near to those of the PC class. Since the PCPD does not
conserve the particle number modulo 2, neither exhibitsZ2

symmetric absorbing states, PC criticality was unfavored.
Simulation studies by Hinrichsen [23] and́Odor [24] and
coherent anomaly calculations byÓdor [24, 26] resulted in
novel kind of critical behavior, although there was an un-
certainty in the precise values of critical exponents. Expo-
nent estimates showed diffusion (D) dependence that was
supported by pair mean-field results [24], possessing two
distinct classes as a function ofD. Recently Park et al.
reported a well defined set of critical exponents in differ-
ent versions of binary production PCPD-like processes [31].
However these simulations were done at a fixed, high diffu-
sion/annihilation rate and agree with́Odor’s corresponding
results [32]. Kockelkoren and Chaté on the other hand claim
another set of critical exponents [33] that agrees withÓdor’s
low diffusion/annihilation data.

The PCPD model can be mapped onto a two-component
model [25] in which pairs are identified as a particle species
following DP process and single particles as another, cou-
pled species following annihilating random walk. Simula-
tions of such a two-component system atD = 0.5 showed
a continuous phase transition with exponents agreeing with
those of the PCPD for high diffusions. This model is simi-
lar to another one [34], which exhibits global particle num-
ber conservation as well. Field theory [34] and simulations
[35, 36] for the latter model reported two different univer-
sality classes as the function ofD. It would be interesting to
see if this conservation law is relevant or not like in case of
the DP [18].

Interestingly, higher level cluster mean-field approxima-
tions result in a single class behavior by varyingD and
it turned out that by assuming logarithmic corrections the
single class scenario can be supported by simulations too
[32]. The origin of such logarithmic corrections may be a
marginal perturbation between pairs and single particles in
a coupled system description. A field theoretical explana-
tion would be necessary.

Two more recent studies [37, 38] reported non-
universality in the dynamical behavior of the PCPD. While
in the former one Dickman and Menezes explored different
sectors (a reactive and a diffusive one) in the time evolu-
tion and gave non-DP exponent estimates, in the latter one
Hinrichsen set afloat a speculative conjecture that the ulti-
mate long time behavior might be characterized by DP scal-
ing behavior. In a subsequent preprint [39] Hinrichsen pro-
vided a discussion about the possibility of the DP transition
based on a series of assumptions. His starting point is a
Langevin equation that is mapped onto a wetting process by
Cole-Hopf transformation. By analyzing this process within
a certain potential he gave arguments for a DP transition.
While this Langevin equation with real noise is valid for the
bosonic version of PCPD at and above the critical point, its
usage in case of site occupancy restricted models is hypo-

thetical, as the noise can be complex at the transition point
and may even change sign at the transformation. Further-
more the diffusive field of solitary particles is neglected.

In a very recent preprint [40] Barkema and Carlon con-
tinue this line and show that some simulation and density
matrix renormalization results may also be interpreted as a
signal of a phase transition belonging to the DP class. By as-
suming correction to scaling exponents that are equal to DP
exponents and relevant up to quadratic or 3-rd order in the
asymptotic limit they fitted their numerical results in case
of two independent exponents. The extrapolated results are
close to DP values forD = 0.5. However for smallerD-s
and by surface critical exponents this technique gave expo-
nent estimates which are out of the error margin of DP.

Another novel class that may appear in triplet production
systems was proposed in [33, 41] (TCPD). This reaction-
diffusion model differs from the PCPD in that for new par-
ticle generation at least three particles have to meet. For
such generalizations Park et al. proposed a phenomeno-
logical Langevin equation that exhibits real, multiplicative
noise [41]. By simple power counting they found that the
triplet model exhibits distinct mean-field exponents and up-
per critical dimension4/3 ≤ dc ≤ 8/3. The simula-
tions in 1d [41] indeed showed non-trivial critical expo-
nents, which do not seem to correspond to any known uni-
versality classes. Kockelkoren and Chaté reported similar
results in stochastic cellular automata (SCA) versions of
generalnA → (n + k)A, mA → (m − l)A type mod-
els [33], where multiple particle creation on a given site is
suppressed by an exponentially decreasing creation proba-
bility (pN/2) of the particle number. They claim that their
simulation results in 1d are in agreement with the fully oc-
cupation number restriction counterparts and set up a gen-
eral table of universality classes, where as a function ofn
andm only 4 non-mean-field classes exist, namely the DP
class, the PC class, the PCPD and TCPD classes. However
more extensive simulations of 1 and 2 dimensional site re-
stricted lattice models [12] do not support some of these re-
sults in case of different triplet and quadruplet models. In
the3A → 4A 3A → ∅ triplet model 1d numerical data can
be interpreted as mean-field behavior with logarithmic cor-
rections and in two dimensions clear mean-field exponents
appear, hence the upper critical dimension isdc = 1, which
contradicts the Langevin equation prediction. Surprisingly
other non-trivial critical behavior were also detected in the
3A → 5A 3A → A parity conserving triplet model and
in some quadruplet models [12]. The cause of differences
between the results of these studies is subject of further in-
vestigations. Again proper field theoretical treatment would
be important.

The classification of universality classes of nonequilib-
rium systems by the exponentµ of a multiplicative noise
in the Langevin equation was suggested some time ago by
Grinstein et al. [42]. However it turned out that there may
not be particle systems corresponding to real multiplicative
noise cases [21] and an imaginary part appears as well if
one derives the Langevin equation of a RD system start-
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ing from the master equation in a proper way. Furthermore
for higher-order processes the emerging nonlinearities in the
master equation action do not allow a rewriting in terms
of Langevin-type stochastic equations of motion, hence for
high-order processes like those of the TCPD a Langevin rep-
resentation may not exist.

This situation resembles to some extent the decade-long
debate over the critical phase transition of driven diffusive
systems [43-45]. The latest papers on this topic suggest that
the phenomenological Langevin equation originally set up
for such systems does not correspond exactly to the lattice
models investigated. Simulations for different lattice mod-
els show that instead of an external current, anisotropy is the
real cause of the critical behavior observed in simulations
[46, 47].

II Mean-field classes

In this section I show that mean-field classes of site re-
stricted lattice models with general microscopic processes
of the form

nA
σ→ (n + k)A, mA

λ→ (m− l)A, (1)

with n > 1, m > 1, k > 0, l > 0 andm−l ≥ 0 are different
from those of the DP and PC processes backing numerical
results which claim novel type of criticality belowdc. The
mean-field equation that can be set up for the lattice version
of these processes (with creation probabilityσ and annihila-
tion or coagulation probabilityλ = 1− σ) is

∂ρ

∂t
= akσρn(1− ρ)k − al(1− σ)ρm, (2)

whereρ denotes the site occupancy probability anda is a
dimension dependent coordination number. Each empty site
has a probability (1-ρ) in mean-field approximation, hence
the need fork empty sites at a creation brings in a(1− ρ)k

probability factor. By expanding(1 − ρ)k and keeping the
lowest order contribution one can see that for site restricted
lattice systems aρn+1-th order term appears with negative
coefficient that regulates eq.(2) in the active phase. In the
inactive phase one expects a dynamical behavior dominated
by themA → ∅ process, for which the particle density de-
cay law is knownρ(t) ∝ t1/(m−1) [10]. The steady state
solutions were determined in [12] analytically and one can
distinguish three different situations at the phase transition:
(a)n = m, (b) n > m and (c)n < m .

A. The n = m symmetric case

As discussed in [12] the leading order singularities of
steady state solution can be obtained. By approaching the
the critical pointσc = l/k + l in the active phase the steady
state density vanishes continuously as

ρ ∝ |σ − σc|β
MF

, (3)

with the order parameter exponent exponentβMF = 1. At
the critical point the density decays with a power-law

ρ ∝ t−αMF , (4)

with αMF = βMF /νMF
|| = 1/n, henceνMF

|| = n, pro-
viding a series of mean-field universality classes forn > 1
(besides DP an PC whereνMF

|| = 1) and backing the re-
sults, which claim novel non-trivial transitions below the
critical dimension. Unfortunately determining the the value
of dc is a non-trivial task without a proper Langevin equa-
tion. These scaling exponents can be obtained from bosonic,
coarse grained formulation too [41], where aρn+1-th order
term, with negative coefficient has to be added by hand to
suppress multiple site occupancy. It is known however that
hard-core particle blocking may be a relevant perturbation in
d = 1 dimension [14], so for cases where the upper critical
dimension isdc ≥ 1 the site restricted,N > 1 cluster mean-
field approximation that takes into account diffusion would
be a more adequate description of the model (see [48]).

B. The n > m case
In this case the mean-field solution provides first order

transition (see [12]), hence it does not imply anything with
respect to possible classes for models below the critical di-
mension (d < dc). Note however, that by higher order
cluster mean-field approximations, where diffusion plays a
role the transition may turn continuous (see for example [49-
51]). The simulations by Kockelkoren and Chaté report DP
class transition for such models in one dimension [33].

C. The n < m case
In this case the critical point is at zero branching rate

σc = 0, where the density decays withαMF = 1/(m − 1)
as in case of then = 1 branching andm = l annihilating
models studied by Cardy and Täuber [10] (BkARW classes).
However the steady state solution for particle production
with n > 1 parents gives differentβ exponents than those
of BkARW classes, namelyβMF = 1/(m − n), defining a
new series of mean-field classes [12], for a simplicity I shall
call them PkARW classes. It is important to note that one
has not found a symmetry or conservation law correspond-
ing to these classes. These mean-field classes imply novel
kinds of critical behavior ford < dc. For n = 2, m = 3
the mean-field exponents areβ = 1 andα = 1/2 agreeing
with the mean-field exponents of the PCPD class. Indeed
for n = 2, m = 3 [33] reports PCPD class dynamical crit-
icality. This supports the expectation that non-mean-field
classes follow the distinctions observed in the correspond-
ing mean-field classes. To go further in sections III and IV
I investigate the phase transition of the simplest unexplored
PkARW classes, in then = 2, m = 4 model.

D. The role of k and l

In the mean-field approximationk andl do not affect the
universal properties, however simulations in one dimension
showed [12] that in case of them = n = k = l = 3 model
the critical point was shifted to zero branching rate and a
BkARW class transition emerged there contrary to what was
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expected forn = m. For a stochastic cellular automaton
version of these reactions [33] reported a non-trivial critical
transition. In general one may expect such effects for large
k and l values, for which N-cluster mean-field approxima-
tion – that takes into account diffusion – would give a better
description.

III Simulations of the 2A → 4A,
4A → 2A model in two dimen-
sions

In Sec. II, I introduced PkARW mean-field classes for
n < m. Here I explore the phase transition in the sim-
plest model from this class, in the2A → 4A, 4A → 2A
model with diffusion rateD = 0.5. Two dimensional sim-
ulations were performed onL = 1000 linear sized lattices
with periodic boundary conditions. One Monte Carlo step
(MCS) — corresponding todt = 1/P (whereP is the num-
ber of particles) — is built up from the following processes.
A particle and a numberx ∈ (0, 1) are selected randomly;
if x < D = 0.5 a site exchange is attempted with one
of the randomly selected empty nearest neighbors (nn); if
x ≥ D = 0.5 two particles are created with probabilityσ
at randomly selected empty nn sites provided the number of
nn particles is≥ 2; or if x ≥ 0.5 two particles are removed
with probability1 − σ. The simulations were started from
fully occupied lattices and the particle density (ρ(t)) decay
was followed up to4× 105 MCS.
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Figure 1. αeff (1/t) in the two dimensional2A → 4A,
4A → 2A model atσc = 0. The dashed line shows a linear
fitting for t > 105 MCS resulting inα = 0.334(1).

First the critical point was located by measuring the dy-
namic behavior ofρ(t). It turned out that the transition is
at zero branching rate (σc = 0). The density decay was
analyzed by the local slopes defined as

αeff (t) =
− ln [ρ(t)/ρ(t/m)]

ln(m)
(5)

where I usedm = 4. As Fig.1 shows, the local slope
curve fort > 105 MCS extrapolates to the mean-field value
α = 0.334(1). This value agrees with the mean-field value
αMF = 1/3.

Density decays for severalσ-s in the active phase
(0.0002 ≤ σ ≤ 0.05) were followed on logarithmic time
scales and averaging was done over∼ 100 independent runs
in a time window which exceeds the level-off time by a
decade. The steady state density in the active phase near
the critical phase transition point is expected to scale as

ρ(∞, σ) ∝ |σ − σc|β . (6)

Using the local slopes method one can get a precise es-
timate forβ as well as for the corrections to scaling

βeff (σi) =
ln ρ(∞, σi)− ln ρ(∞, σi−1)

ln(σi)− ln(σi−1)
. (7)

As one can see in Fig.2 the effective exponent clearly tends
to the expected mean-field valueβ = 0.5 asσ → 0. Assum-
ing a correction to scaling of the form

βeff = β − at−δ (8)

nonlinear fitting results inδ = 0.44(1) correction to scaling
exponent.
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Figure 2.βeff as a function ofσ−δ in the two dimensional
2A → 4A, 4A → 2A model (bullets). The dashed line
shows a fitting of the form (8).

Besides these corrections to scaling assumptions I also
tried to apply different, lowest order logarithmic corrections
to the data, but these fits gave exponents slightly away from
mean-field values and the corresponding coefficients proved
to be very small, therefore I concluded thatdc < 2. In the
next section I perform the same analysis ind = 1.

IV Simulations of the 2A → 4A,
4A → 2A model in one dimension

The simulations in one dimension were carried out onL =
20000 sized systems with periodic boundary conditions.
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The initial states were again fully occupied lattices, and the
density of particles is followed up to4× 106 MCS. An ele-
mentary MCS consists of the following processes:

(a) A∅ ↔ ∅A with probability D,

(b) AAAA → ∅AA∅ with probability(1− σ)(1−D),

(c) AA∅∅ → AAAA or ∅∅AA → AAAA with probability
σ(1−D),

The critical point was again located atσc = 0. As one can
see in Fig. 3 there is a crossover of the local slopes for
t > 5 × 105 MCS and a linear extrapolation for this re-
gion results inα = 0.329(5), agreeing with the mean-field
value.
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Figure 3. αeff (t−1/3) in the one dimensional2A → 4A,
4A → 2A model atσc = 0. The dashed line shows a linear
fitting for t > 5× 105 MCS resulting inα = 0.32(2).

The steady state data were analyzed in the active region
for 0.0003 ≤ σ ≤ 0.5 as in two dimensions, by the local
slopes method (eq. 7) and assuming a correction to scaling
of the form (8). This resulted in a correction to scaling ex-
ponent ofδ′ = 0.332. The local slope plotted as a function
of σ−δ, shown on Fig. 4, extrapolates toβ = 0.49(1) in
agreement with the mean-field exponent.

V Conclusions

In this paper I reviewed and discussed the state of the art
of phase transitions of reaction-diffusion systems exhibiting
explicit diffusion and production byn > 1 parents. Ar-
guments are given against the DP criticality recently sug-
gested in some papers. These are supported by a series of
mean-field classes that can be classified by the existence of
an = m symmetry in the system and by then andm values.
The need for a proper field theoretical treatment is empha-
sized. The upper critical dimension in these models is not
known. I showed simulation results indicating that for the
binary production model,2A → 4A, 4A → 2A, the upper
critical dimension isdc < 1.
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Figure 4.βeff as a function ofσ−δ in the one dimensional
2A → 4A, 4A → 2A model (bullets). The dashed line
shows a fitting of the form (8).

Note that while the density decay results in one dimen-
sion are in agreement with those of Kockelkoren and Chaté
[33], the off-critical order parameter exponent isβMF =
1/(m − n) which shows that more classes exist at zero
branching rate besides the BkARW universality classes. It is
still an open question if there is any variant of the PkARW
models that exhibits non-mean-field criticality in physical
dimensions (d ≥ 1).
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[15] T. Tomé and M. J. de Oliveira, Phys. Rev. Lett.86, 5643
(2001).

[16] M.M.S. Sabag and M. J. de Oliveira, Phys. Rev. E66, 036115
(2002).

[17] H. Hilhorst and F. Van Vijland, Phys. Rev.E65, 035103
(2002).

[18] M. J. de Oliveira, Phys. Rev. E67, 027104 (2003).

[19] I. Jensen and R. Dickman, Phys. Rev. E48, 1710 (1993); I.
Jensen, Phys. Rev. Lett.70, 1465 (1993).
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(2003).

[34] F. van Wijland, K. Oerding and H. J. Hilhorst, Physica A251,
179 (1998).

[35] J. E. de Freitas, L. S. Lucena, L. R. da Silva and H. J. Hil-
horst, Phys. Rev. E61, 6330 (2000).

[36] U. L. Fulco, D. N. Messias and M. L. Lyra, Phys. Rev. E63,
066118 (2001).

[37] R. Dickman and M. A. F. de Menenzes, Phys. Rev. E66,
045101 (2002).

[38] H. Hinrichsen, Physica A320, 249 (2003).

[39] H. Hinrichsen, cond-mat/0302381.

[40] G. T. Barkema and E. Carlon, cond-mat/0302151.

[41] K. Park, H. Hinrichsen and I. Kim, Phys. Rev. E66, 025101
(2002).
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Rev. Lett.78, 274 (1997).

[43] J. L. Vallés and J. Marro, J. Stat. Phys.49, 89 (1989).

[44] K.-t. Leung, Phys. Rev. Lett.66, 453 (1991).

[45] R.K.P. Zia, L.B.Shaw and B. Schmittman, Physica A279, 60
(2000).

[46] A. Achahbar, Pedro L. Garrido, J. Marro, Miguel A. Munoz,
Phys. Rev. Lett.87, 195702 (2001).

[47] E. V. Albano and G. Saracco, Phys. Rev. Lett.88, 145701
(2002).
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