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Power-laws & critical slow dynamics in networks

* Correlation length (&) diverges
* Brain : PL size distribution of neural avalanches Haimovici et al PRL (2013) :

G. Werner : Biosystems, 90 (2007) 496,

Brain complexity born out of criticality.
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Burstyness observed in nature

* Brain : PL inter-event time distribution of
neuron firing sequences & Autocorrelations

Y. Ikegaya et al.: Science, 304 (2004) 559,
N. Takahashi et al.: Neurosci. Res. 58 (2007) 219
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* Internet: Email sequences:
* And many more ....

* Models exist to explain internal non-Markovian
behavior of agents (Karsai et al.: Sci. Rep. 2 (2012) 397)

Can this occur by the collective behavior
of Markovian agents ?

* Mobile call: Inter-event times
and Autocorrelations

Karsai et al. PRE 83 (2013) 025102 :
Small but slow world ...
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J. Eckmann et al.: PNAS 101 (2004) 14333



Scaling in nonequilibrium system

Scaling and universality classes appear in complex systemdueto: & - o
l.e: near critical points, due to currents, ...

Basic models are classified by universal scaling behavior in Euclidean, regular system

Why don't we find these critical universality classes in dynamical
network models ?

Power laws are frequent in nature o Tuning to critical point (SOC) ?

I'll show a possible way to understand these

on quasi-static networks Sacau L




Networks models with fast dynamics

Small world networks: Expectation: mean-field type behavior with fast dynamics

7 Y

Whole brain structural
connection network

Prototype: Contact Process or Susceptible-Infected-Susceptible (SIS) two-state model:

Infect: A/ (1+A) Heal: 1/ (1+A)
\ . For SIS : Infections attempted for all nn
o o
> %
: . : I B
Order parameter : density of active (@) sites p~(—A)
Regular, Euclidean lattice: DP critical point : o [AbRorbin
A_> 0 between inactive and active phases active phase
0

!
0 A 1



Slow dynamics induced by
heterogeneities

Rare, active regions below A_with: T(A)~ e*
— slow dynamics (Griffiths Phases) ?

pt) ~ [dA, A, p(A.) exp[t/T]

M. A. Munoz, R. Juhasz, C. Castellano and G. Odor, PRL 105, 128701 (2010): Ceda T
1. Inherent disorder in couplings

2. Disorder induced by topology
Optimal fluctuation theory + simulations: YES !

Further studies imply :

* In networks with finite dimension the topological heterogeneity can induce GP

* In networks with disordered couplings (Erd0s-Rényi ... etc.) heavy tails observed:
GP or at least stretched exponentially slow dynamics

* In finite networks non-universal power-law tails appear, but their exponents depend on the
control parameter

G. Odor, R. Pastor-Satorras, Phys. Rev. E 86 (2012) 026117.
G. Odor, Phys. Rev. E (2013) 032109.
G. Odor, Phys. Rev. E 90 (2014) 032110.



Hierarchical Modular Networks
motivated by connectomes

HMN-s exhibit different clustering properties than structureless networks.
Rare region effects ?

Can we see GP-s in small-world brain network models ?

Do we need to tune the networks close to the percolation threshold to

keep finite dimension as well as connectivity ?
Moretti & Munoz, Nature Comm. 4 (2013) 2521

In finite dimensions what kind of long-range connections induce RR-s
and GP-s ?

Limited sustained activity requires localization of activity. When can
localization arise ? Kaiser-Hilgetag, Front. In Neuroinf. 4 (2010) 8

Do we see burstyness in these GP-s ?



Hierarchical Modular Network topology
motivated by connectomes

Our HMN constructions

A: HMN2d:
Exponentially decaying connection
probabilities with the levels | :

p = K2 (%) *

related to networks with long edge probabilities: .

p(R) ~ (k2R *

where GP-s are present (Juhasz et al PRE 2012)

B: Hierarchical trees :
Connectedness + finite dimension
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FIG. 1: Two lowest levels of the hierarchical network con-
struction with 4 nodes/module. Dashed lines: | = [;, dotted
lines: [ = Ila. The solid lines denoted R1 are randomly chosen
connections within the bottom level (fully connected) mod-
ules, while those denoted R2 provide random connections on
the next level. Links can be directed.



Network metrics

Topological dimension : N(r) ~r

10" L

Effective dimension: In[N(r))/N (r)]

deff = —

In(r/r’)

Breadth-first search results, in agreement with =" | e ]
the 2d networks with power-law ranged, long | ' 3 s
edges: 10 —— 306

For s = 4 : <k> dependent continuously changing m’@-: BT~ e
dimension. r

Similar to the MM HMNZ1 construction

FIG. 3: Number of nodes within chemical distance r in
HMN2d networks with 8 = 4 and [ = 9 levels. Different

For s < 4 small-world networks, similar to KH  curves correspond to different (k)-s. Inset: local slopes d.;f

of the N(r) curves, defined in Eq. 4.

For s > 4 finite dim., fast decaying long links
inducing quenched disorder

02
A: We study this (s = 6) in more detail
+ 2d lattice connectedness (/ = 1) 0.15
0.1
B: Hierarchical, random trees: d =0.72 o
0 " .
0 20 40

Connection length [mm)]

Kaiser et al
Cerb. Cort. 2009:

Axon length distribution:
Initial large peak +
exponential tail



Dynamic simulations of the CP
on asymmetric HMN2d

Density decay from fully active
Initial state:

Network size (/=8, 9, 10) independent

power-laws for 2.45 < A< 2.53

Local slopes of the curves:

In[p(t)/p(t')]
B In(t/t")

Logarithmic corrections (GP)

AtA =253(1):a, - 1

axefll) —

Above this A the a curves of larger
systems veerup ast - o

Mean-field critical point instead of
activated scaling
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Similar results fors =4 and s = 3
at the percolation threshold

For symmetric HMNZ2d-s power-laws
with size dependency



Dynamic simulations of the CP
on random hierarchical trees (RHT)

Density decay from fully active
Initial state:

For single tree: no GP !

If we average over many independent
network realizations:

Power-laws for: 2.6 < A < 2.75

GP In case of a modular networks
composed of loosely coupled
RHT-s ?

Or time dependent networks, where
we average over runs of many
RHT-s ?

In p

Inp

In t




Dynamic simulations of threshold models
on HMN2d-s

More realistic neuron model:
kA - (k+1)A with: k> 1

Proposed by KH and LSA found

First order transition (no GP) is
expected, however due to disorder
rounding of transition (see P.V.Martin
et al JSTAT 2015 P01003)

Stochastic CA simulations

Size independent (/=8,9) power-law
decays for: k=2,3

Simple connectedness is not enough
to provide infinite activity
propagation

K=6 v=8.9000002-01 I=2048 D=2048

FIG. 13: Decay of activity at different branching rates and
v = 0.7 fixed in the threshold model with m = 2, 8 = 6,
and (k) = 24. Levels: [, = 8,9 (thin, thick lines). Size-
independent power-laws, reflecting a GP are observed.



Burstyness of CP in the GP

* Density decay and seed
simulations of CP on HMN2d

Wlth S = 6 107 ——

* Power-law inter-event time — s
. . . 25 L

distribution among subsequent IO NN

o o f < (.01 002 :].[EIHE 0.04 005

interaction attempts = R U

a

* A dependent slopes + log. 00 L5

periodic oscillations due to the S

modularity T AT

T T T 10 10

* The tail distribution decays as Al

the aUtO-COITEIatIOH funCtlon FIG. 9: CP on asymmetric HMN2d networks with s = 6: proba-
fOI‘ t - 00 near d :1 bility distribution, P(At), of inter-event times for A values as in-

dicated; system size [, = 10. Power-law tails are evident for
2.46 < A < 2.6, with continnously changing exponents. The dashed

Bustyness around the critical point ;.. coresent fits : ~ At 2500 Tnser: Pr(Af) = (AT P(AL)
in an extended Griffiths Phase  for »=25.252



Quenched Mean-Field (QMF) theory for SIS

Rate equation of SIS for occupancy prob. at site i:

N
dp;(t) :
= —pilt) + AL — i) ) Aijwip; (1)
i=1
Weighted (real symmetric) Adjacency matrix: Bij = Aujidij,

For t —= oo the system evolves into a steady state, with
the probabilities expressed as

’]"EJ' 'r:'1'2'_1.|7"_;'

A TeA, B 5)
Express p. on orthonormal eigenvector ( f.(A) ) basis: i Z clA) fi(A). (6]
A
Mean-field critical point estimate A 1 /Ay
p(A) e 0T + aeam 4 L, (8]

Total infection density vanishes near A, as :

To describe the localization of the components of f{A1)
[19] used the inverse participation ratio

N N N
o =Y filAj)/IN Y FR(A)) (9) IPR(A) =) Fi(0), (10)
i=1 i=1 =

where 7 = AA—1<1 with the coefficients



Localization of SIS in HMN2d-s

Weakly coupled case <k> =4

In small world case (s=3/2) KH
no localization

For s=3, s=4 signs"“a‘(&‘)f localization
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FIG. 14: Finite size scaling of the inverse participation ra-
tio in weakly coupled HMN2d models, with maximum levels
lar = 4,5,..9. The s = 3 (bullets) and s = 4 (boxes) results
suggest localization (finite I) in the infinite-size limit. Lines
are power-law fits to the data. For s = 1.5, corresponding
to the symmetrized, small-world network (model-6 of [41]) no
evidenee of localization is seen.

For <k> =50 and s=3,4 localization goes away
For weighted links (uniform distributed
quenched diso.) localization can be see again
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FIG. 15: Finite size scaling of the inverse participation ratio
in HMN2d models with higher average degree ({k} ~ 50) for

maximum levels: [, = 4.5.6.7.8. B

ullets: s = 3 with uni-

form randomly distributed weights; boxes: without weights.
Diamonds: s = 4 with randomly distributed weights. Lines
show power-law fits to the data. In the unweighted case, no
localization effect can be seen, and I decays linearly with N.
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Conclusions

Heterogeneities in HMN networks can cause slow (PL) dynamics :
a working memory mechanism in brain
Rare-regions — Griffiths Phases - even without tuning or self-organization mechanism !

GP-s arise Iin case of purely topological disorder, in finite topological dimensions,
if we average over many independent network realizations
- time dependent nets, modules of weakly coupled modules, ...

Heterogeneities in the interaction strengths improves GP effects and cause localization

Relation to real brain networks: embedded in 2d space of a short-ranged connected
substrate + fast decaying long link connections, disorder in the weights and directions

Bursty behavior in extended GP-s, where 17 - o
Complexity induces non-Markovian behavior of the individual neurons

Géza Odor, Ron Dickman, Gergely Odor, arXiv:1503.06307
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Rare Region theory for CP

Fixed (quenched) disorder/impurity Act.
changes the local birthrate [J A _>A° ,airty critical point” A —»
Locally active, but arbitrarily large 1 GP
are egions N NN
in the inactive phase 2 ~clean critical point ’
due to the inhomogeneities ! v
— Abs.

Probability of RR of size L :

w(L,)~exp(cL,)

contribute to the density:  p(t) ~ J'dLR L, w(L,) exp[-t/T (L)]
For A <A : conventional (exponentially fast) decay

At A° the characteristic time scales as: 1T (L,)~L.% [ saddle point analysis:

In p(t) ~td/(d+2) stretched exponential
For A< A<A_: T(L,)~exp(bL,): Griffiths Phase
p(t) ~t-c’P continuously changing exponents

At A_: b maydiverge —  p(t) ~In(t) < Infinite randomness fixed point scaling

In case of correlated -S with dimension > d - : smeared transition



