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Power-laws & critical slow dynamics in networks 

 Brain :  PL size distribution of neural avalanches 
   G. Werner : Biosystems, 90 (2007) 496,                                     

 Internet: worm recovery time is slow:

 How can we explain power-law
 dynamics in network models ?

 Correlation length (ξdiverges
  Haimovici et al  PRL (2013) : 
  Brain complexity born out of criticality. 



Burstyness observed in nature
 Brain : PL inter-event time distribution of 
   neuron firing sequences & Autocorrelations 
   Y. Ikegaya et al.: Science, 304 (2004) 559,
   N. Takahashi et al.: Neurosci. Res. 58 (2007) 219                                    

 Internet: Email sequences:
 And many more ….
 Models exist to explain internal non-Markovian
   behavior of agents (Karsai et al.: Sci. Rep. 2 (2012) 397)

 Can this occur by the collective behavior 
   of Markovian agents ?

 Mobile call: Inter-event times
   and Autocorrelations
  Karsai et al.  PRE 83 (2013) 025102 : 
  Small but slow world ... 

J. Eckmann et al.: PNAS 101 (2004) 14333



  

     Scaling and universality classes appear in complex system due to : ξ→ ∞ 
        i.e: near critical points, due to currents, ... 

    Basic models are classified by universal scaling behavior in Euclidean, regular system

    Why don't we find these critical universality classes in dynamical 
    network models  ?

    Power laws are frequent in nature     ↔  Tuning to critical point  (SOC) ?

   I'll show a possible way to understand these
   on quasi-static networks
 

    

Scaling in nonequilibrium system



 Small world networks: Expectation:  mean-field type behavior with  fast dynamics

Prototype: Contact Process or Susceptible-Infected-Susceptible (SIS) two-state model:
 

                                                                                   For SIS : Infections attempted for all nn

 Order parameter : density of active (  ) sites
 Regular, Euclidean lattice: DP critical point : 
λ

c
 > 0 between inactive  and active phases

Infect: λ / (1+λ) Heal: 1 / (1+λ)

Networks models with fast dynamics
 



  

 
    Rare, active regions below λ

c
 with:   τ(A)~ eA

   → slow dynamics (Griffiths Phases) ?
  

   
    M. A. Munoz, R. Juhász, C. Castellano and G. Ódor, PRL 105, 128701 (2010): 

   1. Inherent disorder in couplings
    2. Disorder induced by topology 
         Optimal fluctuation theory + simulations: YES !

   Further studies imply :   

   In networks with finite dimension the topological heterogeneity can induce GP 
   In networks with disordered couplings (Erdős-Rényi … etc.) heavy tails observed: 
    GP or at least stretched exponentially slow dynamics
   In finite networks non-universal power-law tails appear, but their exponents depend on the 
     control parameter

A

Slow dynamics induced by 
heterogeneities

ρ(t)  ~  ∫ dA
R
   A

R
  p(A

R
 )   exp [-t /τ  ]

 G. Ódor, R. Pastor-Satorras, Phys. Rev. E 86 (2012) 026117.

G. Ódor, Phys. Rev. E (2013) 032109.

 G. Ódor, Phys. Rev. E 90 (2014) 032110.



  

Hierarchical Modular Networks
motivated by connectomes

HMN-s exhibit different clustering properties than structureless networks. 
Rare region effects ?

Can we see GP-s in small-world brain network models ?

Do we need to tune the networks close to the percolation threshold to 
keep finite dimension as well as connectivity ? 
Moretti & Munoz, Nature Comm. 4 (2013) 2521

In finite dimensions what kind of long-range connections induce RR-s 
and GP-s ?

Limited sustained activity requires localization of activity. When can 
localization arise ? Kaiser-Hilgetag, Front. In Neuroinf. 4 (2010) 8

Do we see burstyness in these GP-s ?  



  

Hierarchical Modular Network topology
motivated by connectomes

Our HMN constructions                          

A: HMN2d:
Exponentially decaying connection 
probabilities with the levels l :

                p
l
 = 〈 k〉/2 (½) s l

related to networks with long edge probabilities:

             p(R) ~  〈 k〉/2 R -s 

where GP-s are present (Juhasz et al PRE 2012)

B:  Hierarchical trees :
Connectedness + finite dimension



  

Network metrics 
Topological dimension :   N(r) ~ r d

Effective dimension:

Breadth-first search results, in agreement with 
the 2d networks with power-law ranged, long 
edges:

For s = 4 : <k> dependent continuously changing 
dimension. 
Similar to the MM HMN1 construction 

For s < 4 small-world networks, similar to KH

For s > 4 finite dim., fast decaying long links
inducing quenched disorder 

A: We study this (s = 6) in more detail 
+ 2d lattice connectedness  (l = 1)

B: Hierarchical, random trees:  d ≈ 0.72

Kaiser et al
Cerb. Cort. 2009:

Axon length distribution:
Initial large peak + 
exponential tail



  

Dynamic simulations of the CP
on asymmetric HMN2d

Density decay from fully active 
initial state:

Network size (l=8, 9, 10) independent 
power-laws for 2.45 < λ < 2.53

Local slopes of the curves:

Logarithmic corrections (GP)

At λ
c
 = 2.53(1) : α

eff
 → 1 

Above this λ the α
eff
 curves of larger 

systems veer up as t → ∞

Mean-field critical point instead of
activated scaling

Similar results for s = 4 and s = 3 
at the percolation threshold

For symmetric HMN2d-s power-laws
with size dependency



  

Dynamic simulations of the CP
on random hierarchical trees (RHT)

Density decay from fully active 
initial state:

For single tree: no GP !

If we average over many independent 
network realizations:

Power-laws for: 2.6 < λ < 2.75 

GP in case of a modular networks
composed of loosely coupled 
RHT-s ?

Or time dependent networks, where 
we average over runs of many 
RHT-s ?



  

Dynamic simulations of threshold models 
on HMN2d-s

More realistic neuron model:
k A →(k+1)A       with:  k > 1 

Proposed by KH and LSA found

First order transition (no GP) is 
expected, however due to disorder 
rounding of transition (see  P.V.Martin 
et al JSTAT 2015 P01003)

Stochastic CA simulations

Size independent (l=8,9) power-law 
decays for:  k = 2,3 

Simple connectedness is not enough 
to provide infinite activity 
propagation



 Density decay and seed 
simulations of CP on HMN2d 
with s = 6

 Power-law inter-event time 
distribution among subsequent 
interaction attempts

 λ dependent slopes + log. 
periodic oscillations due to the 
modularity

 The tail distribution decays as 
the auto-correlation function 
for t → ∞  near d =1

Bustyness around the critical point 
in an extended Griffiths Phase
  

Burstyness of CP in the GP 



Quenched Mean-Field (QMF) theory for SIS

Weighted (real symmetric) Adjacency matrix:

Express ρ
i 
 on orthonormal eigenvector ( f

i 
(Λ) ) basis:

Rate equation of SIS for occupancy prob. at site i:

Total infection density vanishes near  λ
c
  as :

Mean-field critical point estimate



Localization of SIS in HMN2d-s
Weakly coupled case <k> = 4

In small world case (s=3/2) KH
no localization 

For s=3, s=4 signs of localization

For <k> = 50  and s=3,4 localization goes away

For weighted links (uniform distributed 

quenched diso.) localization can be see again   



  

Conclusions

Géza Ódor, Ron Dickman, Gergely Ódor, arXiv:1503.06307

  Heterogeneities in HMN networks can cause slow (PL) dynamics : 
                                      a working memory mechanism in brain
    Rare-regions → Griffiths Phases  →  even without tuning or self-organization mechanism !

  GP-s arise in case of purely topological disorder, in finite topological dimensions,  
       if we average over many independent network realizations 
   → time dependent nets, modules of weakly coupled modules, ... 

  Heterogeneities in the interaction strengths improves GP effects and cause localization

  Relation to real brain networks: embedded in 2d space of a short-ranged connected 
    substrate + fast decaying long link connections, disorder in the weights and directions

  Bursty behavior in extended GP-s, where  τ → ∞
    Complexity induces non-Markovian behavior of the individual neurons
     

„Infocommunication technologies and the society of future (FuturICT.hu)” TÁMOP-4.2.2.C-
11/1/KONV-2012-0013



Rare Region theory for quench disordered CP

 Fixed (quenched) disorder/impurity 

  changes the local birth rate  ⇒ λ 
c
 > λ

c
0                                                                         

   Locally active,  but arbitrarily large
                                                   
   Rare Regions                                                                             
                                                                                                
    in the inactive phase                                                                  
    due to the  inhomogeneities                                                                         
  Probability of RR of size L

R
:

   
     w(L

R
 ) ~ exp (-c L

R
 )  

     contribute to the density:     ρ(t)  ~  ∫ dL
R
   L

R
  w(L

R
 )   exp [-t /τ  (L

R
)]

  For  λ  < λ
c

0  :   conventional (exponentially fast) decay

  At  λ
c

0  the characteristic time scales as:  τ (L
R
) ~ L

R
 Z    ⇒        saddle point analysis:

                                                ln ρ(t) ~ t d  /  ( d + Z)                            stretched exponential
  For   λ

c
0 <  λ < λ

c
  :                                   τ (L

R
) ~ exp(b L

R
):     Griffiths Phase  

            ρ(t) ~ t - c / b                         continuously changing exponents      
  At  λ

c
 : b may diverge  →     ρ(t) ~ ln(t)  −α    Infinite randomness fixed point scaling

  In case of correlated RR-s with dimension  > d - : smeared transition

λ
c

λ
c

0

Act.

Abs.

GP

„dirty critical point”

„clean critical point”


