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The phase transitions of the recently introduced 2A→3A, 4A→x reaction-diffusion model[G.Ódor, Phys.
Rev. E 69, 036112(2004)] are explored in two dimensions. This model exhibits site-occupation restriction and
explicit diffusion of isolated particles. A reentrant phase diagram in the diffusion-creation rate space is con-
firmed, in agreement with cluster mean-field and one-dimensional results. For strong diffusion, a mean-field
transition can be observed at zero branching rate characterized by ana=1/3 density decay exponent. In
contrast, for weak diffusion the effective 2A→3A→4A→x reaction becomes relevant and the mean-field
transition of the 2A→3A, 2A→x model characterized bya=1/2 also appears for nonzero branching rates.
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I. INTRODUCTION

The classification of universality classes of nonequilib-
rium systems is one of the most important tasks of statistical
physics[1,2]. Many of the known systems can be mapped
onto some reaction-diffusion-type models, the behavior of
which has been studied intensively in the past decades[3,4].
In these systems, particlesAd creation, annihilation, and dif-
fusion processes compete, and by tuning the control param-
eters, phase transition may occur from an active steady state
to an inactive, absorbing state of zero density. For a long
time, only the critical “directed percolation”(DP) type of
universality class has been known[5]. Later, other classes
were discovered related to certain conservation laws or sym-
metries[6–9], to long-range interactions[10–12], to bound-
ary conditions[13–16], or to disorder[17–21]. These find-
ings are all in agreement with the concepts of universality in
equilibrium systems.

An extraordinary family of models has triggered a long
debate among specialists recently[22–42]. The common be-
havior of these models is that for particle production and
annihilation, at least two particles are needed(henceforth
they are called binary systems) and these reactions compete
with the diffusion of isolated particles. Since for reactions at
least one pair is needed while isolated particles can diffuse,
only these models can also be regarded as coupled systems
[27]. The representative of this class is the so-called diffusive
pair contact process(PCPD) with reactions 2A→3A, 2A
→x [24]. The binary nature was also found to be relevant in
the case of reactions of multispecies[33].

The critical behavior of such models has been found to be
different from all previously known classes(however, there
is still an ongoing debate on the precise values of critical
exponents). The lack of symmetries, conservation laws, etc.,
have been motivating skepticism about the existence of a
non-DP class transition, and recently some studies suggested
DP class behavior with extremely strong correction to scal-
ings [44–46]. Field-theoretical analysis[23], on the other
hand, indicates that the absence of the mass term correspond-
ing to the direct channel to the absorbing statesA→xd
should be responsible for this “anomalous” behavior with
respect to expectations based on equilibrium statistical phys-

ics. There is another important difference between binary
systems and DP: there is no rapidity symmetry,

fsx,td → − csx,− td, csx,td → − fsx,− td s1d

between the fieldsfd and the response fieldscd variables in
the corresponding field-theoretical description, contrary the
case of the DP process. Furthermore, the lack of this relation
is not a consequence of a symmetry breaking field of some
boundary[like the t=0 boundary with a long-ranged corre-
lated order parameter field in the case of the pair contact
process(PCP) [16]] or some disorder, but it is not there in
the definition of these homogeneous, binary systems.1

Another odd feature is that bosonic(site-unrestricted) and
site-restricted versions of these models show completely dif-
ferent behavior. While site-restricted models investigated nu-
merically exhibit the above continuous phase transition, the
bosonic versions do not have steady state, but above an
abrupt transition, the density of particles diverges quickly
[23,43]. The field-theoretical renormalization-group(RG)
analysis[23] predicts an upper critical dimensiondc=2, with
logarithmic corrections atd=2 for this class(PCPD). Simu-
lations [32] have confirmed the mean-field scaling in two
dimension in the case of the 2A→4A, 2A→x binary pro-
duction model.

The site mean-field solution of general

nA→
s

sn + kdA, mA→
l

sm− ldA s2d

models(with n.1, m.1, k.0, l .0, andm− l ù0) resulted
in a series of different universality classesdepending on n
and m[47]. This shows that abovedc, n and m are relevant
parametersdetermining the type of continuous phase transi-
tions. In particular, for then=m symmetrical case the density
of particles above the critical pointssc.0d scales as

r ~ us − scub, s3d

with bMF=1, while at the critical point it decays as

1Noh et al. claim in their generalized PCPD model, a long-range
memory is generated by the diffusing isolated particles[41].
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r ~ t−a, s4d

with aMF=bMF/nuu
MF=1/n [38,39] (here MF denotes mean-

field value). On the other hand, for then,m asymmetric
case, continuous phase transitions at zero branching ratesc
=0 occur with

bMF = 1/sm− nd, aMF = 1/sm− 1d. s5d

For n.m, the mean-field solution provides a first-order tran-
sition.

By going beyond site mean-field approximations, it turns
out that the above classification is not completely satisfying.
In a previous paper[40], I investigated the 2A→3A, 4A
→x model by cluster mean-field approximations and simu-
lations in 1D and showed that thediffusionplays an impor-
tant role: it introduces a different critical point besides the
one at thes=0 branching rate with Eq.(5) exponents. The
nontrivial critical point, obtained for low diffusion rate, ex-
hibits the universal behavior of the 2A→3A, 2A→x
(PCPD) model owing to the generation of the effective 2A
→x reaction via 2A→3A→4A→x [48].

In this work, I continue the study of this model in two
dimension (2D) and show that a similar phase-transition
structure and critical behavior can be obtained. This is some-
what surprising, since one may expect that the diffusion is
less relevant in higher dimensions due to its short interaction
range. A very recent study using exact methods[49] showed
that the particle density fluctuation and density correlation
function are diffusion-dependent in the bosonic PCPD model
for d.2. In this work, I give numerical evidence for diffu-
sion dependence in a site-restricted, binary model ind=2.

II. THE 2 A\3A, 4A\X MODEL

This binary production reaction-diffusion model is de-
fined by the following rules:

2A → 3A with rates,

4A → x with ratel = 1 −s,

Ax ↔ xA with rateD. s6d

Here D denotes the diffusion probability ands is the pro-
duction probability of the particles. The site occupancy is
restricted to 0 or 1 particle. In[40], the cluster mean-field
approximations were determined on 1D lattices forN
=1,2, . . . ,5cluster sizes. The corresponding reentrant phase
diagram is shown in Fig. 1. Although cluster mean-field ap-
proximations based ond.1 lattices may result in transition
points at other locations, the universal features are expected
to be the same. Therefore, I compare the simulation results
with this approximation.

A. Simulation results

I performed simulations in two dimensions inL=s1–7d
3103 linear-sized systems with periodic boundary condi-
tions. The simulations were started from fully occupied lat-
tices. One elementary Monte Carlo step consists of the fol-

lowing processes. A particle and a numberx1P s0,1d are
selected randomly; ifx1,D, a site exchange is attempted
with one of the randomly selected empty nearest neighbors
sNNd. The time is updated by 1/n, wheren is the total num-
ber of particles. A particle and a numberx2P s0,1d are se-
lected randomly. Ifx2,s and if the number of NN particles
is- 1 or 2 or 3, one new particle is created at an empty site
selected randomly. Ifx2ùs and the number of NN particles
is greater than 2, four randomly selected neighboring par-
ticles are removed. The timestd is updated by 1/n again. The
density of particles was followed up totmaxø107 Monte
Carlo steps[throughout the whole paper, the time is mea-
sured by Monte Carlo steps(MCS)].

As one can see in Fig. 2, simulation data and the five-
point approximations fit qualitatively well. In both cases, for
weak diffusion rates(for D&0.1 in 2D simulations) reen-
trant phase transitions occur withsc.0, while for strong
diffusions a single phase transition atsc=0 branching rate
can be found. The transition lines of the cluster mean-field
approximations do not converge towards the simulation line
as in 1D(see Fig. 1), but the 2D MC curve occurs at lower
diffusions. But this is not surprising, since the cluster mean-
field calculations are performed on 1D lattices.

I explored the scaling behavior in more detail atD
=0.05 diffusion near the rightmost transition of Fig. 2(at s
,0.27). By approachingsc from the active phase, the
rstdt1/2 curves bend down rapidly for long times(beyond
,106 MCS). However, this proved to be a finite-size effect:
the breakdown of the density curves can be eliminated by
increasingL. The largest system I could simulate had a linear
sizeL=7000. In this case, no rapid and premature curvatures
were observed fort,23106 MCS. As one can see in Fig. 3,
for s.0.2673 all curves veer up, while fors,0.2673 they
veer down. A clear straight line—indicating scaling with the

FIG. 1. Phase diagram of the 2A→3A→4A→x model. Stars
correspond toN=2, boxes toN=3, bullets toN=4, and triangles to
N=5 cluster mean-field approximations. Diamonds denote 1D; +
signs denote 2D simulation data, where PCPD class transitions are
found. The lines serve to guide the eye. At thes=0 line, asymmet-
ric, Eq. (5) type mean-field transition occurs.
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expected logarithmic correction—cannot be seen clearly.
Even thes=0.2673 curve shows some up and down curva-
tures in the last decade of the simulations. However, as can
be seen on the local slopes figure(see the inset of Fig. 3)
defined as

aeffstd =
− lnfrstd/rst/mdg

lnsmd
, s7d

(where I usedm=2), the transition is around the expected
mean-field value of the PCPD class:a=0.5 [23,47]. Other

curves exhibit strong curvatures for long times, i.e., for
s.0.2673 they veer up(active phase), while for s,0.2673
they veer down(absorbing phase).

The steady-state density in the active phase near the criti-
cal phase transition point is expected to scale asrs`d~ us
−scub. Using the local slopes method, one can get a precise
estimate forb and see the corrections to scaling,

beffspid =
ln rs`,sid − ln rs`,si−1d

lnssid − lnssi−1d
. s8d

The steady-state behavior at thesc.0 transition for D
=0.05 was investigated usingsc=0.2673s2d from the density
decay analysis. Here the local slopes tend tobeff=0.98s2d
without showing any relevant correction to scaling(see Fig.
4). This agrees with the mean-field value of the PCPD model
again[23,47].

One may expect the same kind of transition all along the
sc.0 transition line. Indeed, simulations showed that the
density decays in a similar way at transitions withD=0.01,
0.05, and 0.09.

To see the transition nearsc=0 (horizontal axis in Fig. 1),
I determined the steady-state value ofrs` ,sd for severals’s
at D=0.05 diffusion. The steady-state density was deter-
mined by running the simulations in the active phase near
s=0, by averaging over,100 samples in a time window
following the level off that is achieved. The smallest value I
tested wass=10−5, when I had to go up tot=107 MCS to
reach a steady state(on anL=2000-sized system). By look-
ing at the data, it is quite obvious that the transition is at
sc=0, as the cluster mean-field approximations predicted.

The effective order-parameter exponent(Fig. 5) tends to
b=0.505s5d as s→0, corroborating the cluster mean-field
prediction: Eq.(5). Assuming a correction to scaling of the
form

FIG. 2. Simulation results for the steady-state density at diffu-
sionsD=0.5, 0.35, 0.1, 0.05(solid lines from top to bottom) and
N=5 level cluster mean-field approximation data forD=0.5, 0.05
(dashed lines from top to bottom). The inset shows the region near
s=0 magnified.

FIG. 3. Density decay timest0.5 in the two-dimensional 2A
→3A, 4A→x model atD=0.05. Different curves correspond to
s=0.2715, 0.2708, 0.2704, 0.27, 0.2695, 0.269, 0.2685, 0.268,
0.2677, 0.2675, 0.2673, 0.26715, 0.267, 0.2665, and 0.26(top to
bottom). The inset shows the corresponding local slopes.

FIG. 4. beff as the function ofs−sc in the two-dimensional
2A→3A, 4A→x model near thesc=0.2673 critical point forD
=0.05. The solid line shows a linear fitting.
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beff = b − at−b1, s9d

fitting results inb1=0.5 as can be read off from Fig. 5.

III. CONCLUSIONS

In conclusion, I have investigated the(D-s) phase dia-
gram of the two-dimensional 2A→3A, 4A→x model with
site restriction and explicit particle diffusion. Extensive
simulations gave numerical evidence that a reentrant phase
diagram emerges as in one dimension and predicted by clus-
ter mean-field approximations[40]. This somewhat surpris-
ing result means that diffusion plays a relevant role even in
d=2 dimension. For high diffusion rates, only a mean-field
transition ats=0 branching rate can be found, while for low
diffusion another transition type atsc.0 appears. This latter
transition shows the mean-field characteristics of the PCPD
model because the effective 2A→x reaction(via 2A→3A

→4A→x) becomes relevant. The understanding of this dif-
fusion dependence is a challenge for field theory. Existing
perturbative field theory does not predict such behavior.

A similar reentrant phase diagram has been observed in
the case of a unary production, triplet annihilation model,
A→2A, 3A→x [50]; in a quadruplet model,A→2A, 4A
→x [51]; and in a variant of the NEKIM model[52]. In all
cases, the diffusion competes with particle reaction pro-
cesses, and the bare parameters should somehow form renor-
malized reaction rates which govern the evolution over long
times and distances. An interesting question is whether this
scenario extends aboved=2 dimensions as the cluster mean-
field approximation predicts. Two very recent nonperturba-
tive RG studies[53,54] find a similar phase diagram in the
case of theA→2A, 2A→x model for dù3 dimensions.
These works point out that nonperturbative effects arise and
there is a thresholdsl /Ddthsdd above which DP occurs, while
below it a type(5) mean-field transition atsc=0 appears.

The simulations also showed that at thesc.0 transition,
the finite-size effects and corrections to scaling are very
strong. I had to go up tos700037000d-sized systems and
tmax=23106 MCS to see the appearance of the expected
mean-field scaling with exponentsa=0.5, b=1. Showing
clear scaling for more than a decade with the predicted loga-
rithmic corrections[23] is beyond the scope of this study, yet
these simulation results for a 2D binary system are by far the
largest scale published so far. On the contrary, the scaling at
the sc=0 critical point is clear withb=0.505s5d and correc-
tion to the scaling exponentb1=0.5.
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