PHYSICAL REVIEW E 70, 026119(2004

Critical behavior of the two-dimensional 2A —3A, 4A—@ binary system
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The phase transitions of the recently introducéd-23A, 4A— @ reaction-diffusion modelG.Odor, Phys.
Rev. E 69, 036112(2004)] are explored in two dimensions. This model exhibits site-occupation restriction and
explicit diffusion of isolated particles. A reentrant phase diagram in the diffusion-creation rate space is con-
firmed, in agreement with cluster mean-field and one-dimensional results. For strong diffusion, a mean-field
transition can be observed at zero branching rate characterized by &h3 density decay exponent. In
contrast, for weak diffusion the effectiveA2-3A— 4A— @ reaction becomes relevant and the mean-field
transition of the 2— 3A, 2A— @ model characterized by=1/2 also appears for nonzero branching rates.
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[. INTRODUCTION ics. There is another important difference between binary
systems and DP: there is no rapidity symmetry,
The classification of universality classes of nonequilib-
rium systems is one of the most important tasks of statistical dX ) — = (X, 1), PX) — = (X~ 1) 1)

physics[1,2]. Many of the known systems can be mapped i i . .
onto some reaction-diffusion-type models, the behavior Opetween the field¢) and the response field)) variables in

which has been studied intensively in the past decé@idk the corresponding field-theoretical description, contrary the
In these systems, partici@) creation, annihilation, and dif- C@S€ of the DP process. Furthermore, the lack of this relation

fusion processes compete, and by tuning the control paranlu§ not a consequence of a symmetry breaking field of some

eters, phase transition may occur from an active steady sta undarylike the t=0 b(_)und_ary with a Iong-rangeq corre-
to an inactive, absorbing state of zero density. For a lon ated order parameter field in the case of the pair contact

time, only the critical “directed percolation(DP) type of tr:oc(jesfs(l?tCF) [%?2]] or shome disorder, gPt Itis notLthere n
universality class has been knowA]. Later, other classes eA etlrr1" 'ondgf etse _orphoq[ebneous','t inary s¥§tms. d
were discovered related to certain conservation laws or sym- nother odd feature is that bosor(&ite-unrestricteplan

metries[6-9]. to long-range interaction&.0—12, to bound- site-restricted versions of these models show completely dif-
ary clon[ditigjns[13—1% orgto Idisordelr[rlg—ZJ] aThese ijind- ferent behavior. While site-restricted models investigated nu-

ings are all in agreement with the concepts of universality i enca}lly exh!b|t th; abo;/ehcontlntuo%s pr}[atse tsr;sn:n, the
equilibrium systems. osonic versions do not have steady state, but above an

An extraordinary family of models has triggered a long abrupt transition, the density of particles diverges quickly

debate among specialists recerf@2—43. The common be- [23,43. The field-theoretical renormalization-grouRG)

havior of these models is that for particle production andanaly5|s[23] pred|c§s an up_per cr|t|9a| dimensial=2, .W'th
annihilation, at least two particles are needéenceforth Ioganthmlc corrections al=2 for this cla.ss(PCPDl. Slmu-
they are called binary systeinand these reactions compete Iqt|ons £32] .have confirmed the mean-field sc_ahng In two
with the diffusion of isolated particles. Since for reactions atd'me.nSIon in the case of theAZ>4A, 2A— @ binary pro-
least one pair is needed while isolated particles can di1’“fuseq'JCtlon r_nodel. i .

The site mean-field solution of general

only these models can also be regarded as coupled systems

[27]. The representative of this class is the so-called diffusive P A

pair contact proces$PCPD with reactions 2— 3A, 2A nA—(n+ kA, mA—(m-DHA (2
— @ [24]. The binary nature was also found to be relevant in

the case of reactions of multispecigs]. models(with n>1, m>1,k>0,1>0, andm-1=0) resulted

The critical behavior of such models has been found to bé a series of different universality classdspending on n
different from all previously known classéhowever, there and m[47]. This shows that above,, n and m are relevant
is still an ongoing debate on the precise values of criticaparametersdetermining the type of continuous phase transi-
exponents The lack of symmetries, conservation laws, etc. tions. In particular, for the@=m symmetrical case the density
have been motivating skepticism about the existence of af particles above the critical poiritr.>0) scales as
non-DP class transition, and recently some studies suggested
DP class behavior with extremely strong correction to scal- polo—of’, 3)
ings [44—-44. Field-theoretical analysi§23], on the other
hand, indicates that the absence of the mass term correspo
ing to the direct channel to the absorbing stéfe— @)
should be responsible for this “anomalous” behavior with Noh et al. claim in their generalized PCPD model, a long-range
respect to expectations based on equilibrium statistical physnemory is generated by the diffusing isolated partig#s.

Jgith BYF=1, while at the critical point it decays as
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pot®, (4) ! ' ' ' '
; MF — oMF /  MF _ T ———
with & =p""/1"=1/n [38,39 (here MF denotes mean- 4 —-——_
field value. On the other hand, for the<<m asymmetric 08 t‘\:\\ - ACTIVE _
case, continuous phase transitions at zero branchingrtate n A \\
=0 occur with | \\. N N
ﬁMF - l/(m_ n), CYMF - 1/(m_ 1) (5) a\ 0.6 ;ﬁ l“ \“ \X \\\ i
| | \ \
Forn>m, the mean-field solution provides a first-order tran- & [1 \ : ‘l ’\
sition. © 4l “. o | | _
By going beyond site mean-field approximations, it turns : ! ,‘ A/ }
out that the above classification is not completely satisfying. | ! ;] !
In a previous papef40], | investigated the 8—3A, 4A 02 I 18 / . |
— @ model by cluster mean-field approximations and simu- 4; L/ / P
lations in 1D and showed that thlffusion plays an impor- H e //// Mean-field
tant role: it introduces a different critical point besides the oMW o e 111 transition |
0 0.2 0.4 0.6 0.8 1

one at theo=0 branching rate with Eq5) exponents. The

nontrivial critical point, obtained for low diffusion rate, ex-

hibits the unlver_sal behavior of t_heA2L>3A, ZAH,@ FIG. 1. Phase diagram of theA2»3A— 4A— @ model. Stars

(PCPD model owing to the generation of the effectivé 2 . resnond taN=2, boxes tdN=3, bullets toN=4, and triangles to

— @ reaction via A—3A—4A— O [48]. _ N=5 cluster mean-field approximations. Diamonds denote 1D; +
In this work, | continue the study of this model in two signs denote 2D simulation data, where PCPD class transitions are

dimension (2D) and show that a similar phase-transition found. The lines serve to guide the eye. At the0 line, asymmet-
structure and critical behavior can be obtained. This is som&ric, Eq. (5) type mean-field transition occurs.

what surprising, since one may expect that the diffusion is

less relevant in higher dimensions due to its short interactiofowing processes. A particle and a numbere (0,1) are
range. A very recent study using exact methpt] showed  selected randomly; ik, <D, a site exchange is attempted
that the particle density fluctuation and density correlationyith one of the randomly selected empty nearest neighbors
function are diffusion-dependent in the bosonic PCPD mode{NN). The time is updated by h/ wheren is the total num-

for d>2. In this work, | give numerical evidence for diffu- per of particles. A particle and a numbere (0,1) are se-

D

sion dependence in a site-restricted, binary model=2. lected randomly. I&,< o and if the number of NN particles
is- 1 or 2 or 3, one new patrticle is created at an empty site
Il. THE 2 A—3A, 4A—@ MODEL selected randomly. k,= o and the number of NN particles

o ) ) o ) is greater than 2, four randomly selected neighboring par-
_ This binary pro_ducuon reaction-diffusion model is de- jjcles are removed. The tim@ is updated by 1rf again. The
fined by the following rules: density of particles was followed up tt,,<10" Monte
2A — 3A with rateo, Carlo stepg[throughout the whole paper, the time is mea-
sured by Monte Carlo steg#1CS)].

As one can see in Fig. 2, simulation data and the five-
point approximations fit qualitatively well. In both cases, for
) weak diffusion rategfor D=<0.1 in 2D simulation} reen-
AD — DA with rateD. (6)  trant phase transitions occur with,>0, while for strong

Here D denotes the diffusion probability and is the pro- ~ diffusions a single phase transition @=0 branching rate
duction probability of the particles. The site occupancy iscan be found. The transition lines of the cluster mean-field
restricted to O or 1 particle. If40], the cluster mean-field apprOX|mat|ons_ do not converge towards the simulation line
approximations were determined on 1D lattices fdr @S in 1D(see Fig. ], but the 2D MC curve occurs at lower
=1,2,...,5cluster sizes. The corresponding reentrant phasglffusmns. But this is not surprising, since the cluster mean-
diagram is shown in Fig. 1. Although cluster mean-field ap-field calculations are performed on 1D lattices.
proximations based od> 1 lattices may result in transition | explored the scaling behavior in more detail Bt
points at other locations, the universal features are expected0-05 diffusion near the rightmost transition of Fig(et o

to be the same. Therefore, | compare the simulation results 0-27). By approachingo, from the active phase, the
with this approximation. p(Ht2 curves bend down rapidly for long timgdeyond

~10° MCS). However, this proved to be a finite-size effect:
the breakdown of the density curves can be eliminated by
increasing-. The largest system | could simulate had a linear
| performed simulations in two dimensions irF(1-7)  sizeL=7000. In this case, no rapid and premature curvatures
X 10° linear-sized systems with periodic boundary condi-were observed for< 2 x 10° MCS. As one can see in Fig. 3,
tions. The simulations were started from fully occupied lat-for o> 0.2673 all curves veer up, while fer<0.2673 they
tices. One elementary Monte Carlo step consists of the folveer down. A clear straight line—indicating scaling with the

A4A — @  withratex=1-o,

A. Simulation results

026119-2



CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL... PHYSICAL REVIEW E 70, 026119(2004)

0.08
0.06
08 -
= 0.04
0.02 &
06 f o 1 E E
a 0 001 002 003 « 1_}
o Q.

0.4

0.2

\/ | 1 1 0.8

FIG. 2. Simulation results for the steady-state density at diffu- FIG. 4. B, as the function ofe—o in the two-dimensional
sionsD=0.5, 0.35, 0.1, 0.0%solid lines from top to bottomand 2A—3A, 4A— & model near ther.,=0.2673 critical point forD
N=5 level cluster mean-field approximation data ®+0.5, 0.05  =0.05. The solid line shows a linear fitting.

(dashed lines from top to bottgmThe inset shows the region near

=0 magnified. curves exhibit strong curvatures for long times, i.e., for

o . 0>0.2673 they veer upactive phasg while for 0<0.2673
expected logarithmic correction—cannot be seen clearlyhey veer down(absorbing phage

Even theoc=0.2673 curve shows some up and down curva- The steady-state density in the active phase near the criti-

tures in the last decade of the simulations. However, as cagg| phase transition point is expected to scale@s)«|c
be seen on the local slopes figusee the inset of Fig.)3  _ 8 Using the local slopes method, one can get a precise

defined as estimate for8 and see the corrections to scaling,

— In[p(t)/p(t/m)]
In(m) Bur(p) = In p(,07) = In p(,0i-9) _ ®

In(ay) = In(oi-1)

(where | usedmn=2), the transition is around the expected
mean-field value of the PCPD class#=0.5 [23,47. Other
The steady-state behavior at the>0 transition for D

45 : : : : : =0.05 was investigated using.=0.26732) from the density
0.4 - decay analysis. Here the local slopes tenddtg=0.982)
without showing any relevant correction to scalisge Fig.
0.45 [ ] 4). This agrees with the mean-field value of the PCPD model
35 - \k\/, — 1 again[23,47).

0.5 : One may expect the same kind of transition all along the
o:.>0 transition line. Indeed, simulations showed that the
density decays in a similar way at transitions widlx0.01,
0.05, and 0.09.

To see the transition neat.=0 (horizontal axis in Fig. },
| determined the steady-state valuept®, o) for severalo’s
15 L , i at D=0.05 diffusion. The steady-state density was deter-
— mined by running the simulations in the active phase near
0=0, by averaging over-100 samples in a time window
following the level off that is achieved. The smallest value |
05 L L : : . : tested wasr=10"°, when | had to go up té=10" MCS to
10 10 i reach a steady staten anL=2000-sized systemBy look-
ing at the data, it is quite obvious that the transition is at
FIG. 3. Density decay timet®5 in the two-dimensional & 0.=0, as the cluster mean-field approximations predicted.
—.3A, 4A— @ model atD=0.05. Different curves correspond to  1he effective order-parameter exponéhtg. 5 tends to
0=0.2715, 0.2708, 0.2704, 0.27, 0.2695, 0.269, 0.2685, 0.26863:0.5035) as o—0, corroborating the cluster mean-field
0.2677, 0.2675, 0.2673, 0.26715, 0.267, 0.2665, and Qdt6to  prediction: Eq.(5). Assuming a correction to scaling of the
bottom). The inset shows the corresponding local slopes. form
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FIG. 5. Bes as the function ofs%® in the two-dimensional &
—3A, 4A— @ model near ther.=0 phase transition @ =0.05.
The solid line shows a linear fitting.

Bet =B~ at‘ﬁl, (9)
fitting results inB;=0.5 as can be read off from Fig. 5.

Ill. CONCLUSIONS

In conclusion, | have investigated ti®-o) phase dia-
gram of the two-dimensional®— 3A, 4A— @ model with

PHYSICAL REVIEW E 70, 026119(2004)

—4A— @) becomes relevant. The understanding of this dif-
fusion dependence is a challenge for field theory. Existing
perturbative field theory does not predict such behavior.

A similar reentrant phase diagram has been observed in
the case of a unary production, triplet annihilation model,
A—2A, 3A— @ [50]; in a quadruplet modelA— 2A, 4A
— @ [51]; and in a variant of the NEKIM modgb2]. In all
cases, the diffusion competes with particle reaction pro-
cesses, and the bare parameters should somehow form renor-
malized reaction rates which govern the evolution over long
times and distances. An interesting question is whether this
scenario extends abowdk=2 dimensions as the cluster mean-
field approximation predicts. Two very recent nonperturba-
tive RG studieg53,54 find a similar phase diagram in the
case of theA—2A, 2A— @ model for d=3 dimensions.
These works point out that nonperturbative effects arise and
there is a thresholth /D),,(d) above which DP occurs, while
below it a type(5) mean-field transition at.=0 appears.

The simulations also showed that at ie>0 transition,
the finite-size effects and corrections to scaling are very
strong. | had to go up t¢7000x 7000-sized systems and
tmax=2X 1P MCS to see the appearance of the expected
mean-field scaling with exponent®=0.5, 8=1. Showing
clear scaling for more than a decade with the predicted loga-
rithmic correctiong23] is beyond the scope of this study, yet
these simulation results for a 2D binary system are by far the
largest scale published so far. On the contrary, the scaling at
the o,=0 critical point is clear with3=0.5055) and correc-
tion to the scaling exponerg;=0.5.

site restriction and explicit particle diffusion. Extensive
simulations gave numerical evidence that a reentrant phase
diagram emerges as in one dimension and predicted by clus-
ter mean-field approximation€0]. This somewhat surpris-

ing result means that diffusion plays a relevant role even in  The author thanks M. Henkel, |. Georgiev, and U. Tauber
d=2 dimension. For high diffusion rates, only a mean-fieldfor useful comments. Support from the Hungarian research
transition ato=0 branching rate can be found, while for low fund OTKA (Grant No. T-04612pis acknowledged. Access
diffusion another transition type at.>0 appears. This latter to the NIIFI Cluster-GRID, LCG-GRID, and to the Super-
transition shows the mean-field characteristics of the PCPBomputer Center of Hungary is acknowledged with apprecia-
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