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Motivation

In nanotechnologies large areas of nanopatterns are needed

fabricated today by expensive techniques, e.g. electron beam lithography or
direct writing with electron and ion beams.
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The eguatien/cClasses
Oh(x,t) = ~[Fh(x,t) + ) (Uhx))P + (x,t)

:  (smoothing) surface tension coefficient
: local growth velocity, up-down anisotropy
: roughens the surface by a zero-average, Gaussian noise field with correlator:

x,t) (x,t)>=2D 9 ?xx")(t-t)
Up-down symmetrical case: / = 0 : Edwards-Wilkinson (EW) equation/classes

Characterization of surface growth:
Interface Width:
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e KardarEPansi-Zhnaneg (KPZ)
eguatien/ClIaSSES

Exactly solvable in 1+1 d, in higher dimension even the field theory failed

being unable to access the strong coupling regime:

rough phase

Table 7.2 Scaling expo-
nents of KPZ classes.

smooth phase

FIG. 1. Schematic phase diagram of the KPZ equation
from the one-loop RG analysis. Transitions are marked by
thick lines.

Open problems :

The upper critical dimension is still debated: d =2, 4,...00 ?

2-dim numerical estimates have a spread.:
Field theoretical conjecture by L&ssig :



Mappings of KPZ onto lattice gas system in 1d

* Mapping of the 1+1 dimensional surface
growth onto the 1d ASEP model:

(with probability p) and
Detachment (with probability q) corresponds

to anisotropic diffusion of particles (bullets)
along the 1d base space (M. Plischke, Racz
and Liu, PRB 35, 3485 (1987))

The simple ASEP (Ligget '95)
is exactly solved 1d lattice gas

Many features (response to
disorder, different boundary

conditions ... ) are known.



Mappings off KPZ growthiin 2+14 dimensions

Octahedron model ~ Generalized ASEP:
Driven diffusive gas of pairs ( )

G. Odor, B. Liedke and K.-H. Heinig, PRE79,
021125 (2009) derivation of mapping

Generalized Kawasaki update:

WA(t) =0.152 In(t)+ b for t<t_
WA(L) = 0.304 In(L)+ d fort>t_
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Simulation on graphics card (GPU)

Sub-systems are loaded in shared
memory of GPUs updated with
inactive ( ) boundaries:

Origin of decomposition
moves at every MCs




EIiSt KPZ scalingesulisiwitinT GO
p=1,4=0

W(L,t) < t?, for tg <<t <<,
s L':.f,{ for. £ =1

2d KPZ simulations L=2"" Finite size scaling of 2d KPZ

t,.=70000 MCs, stat = 10

“\Field theoretical prediction by Lassig
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Sufiace difftisieni(Viclecular Beamr Epliexy/, CIasses)

Simultaneous octahedron deposition/removal:
Attracting (smoothening diffusion) or repelling (roughening diff.) dimers

X, X
G};i+1,j+2) Gx(i+2y

C>(i+1,j+1

Oy (i+1,j-2)

Two versions based on local configurations
a) Larger height octahedron model

LHOD AH=AY Y eii+Aa > 3 el
b) Larger curvature octahedron model o) i
LCOD: N\ wi_.y = 1/2[1 — a tanh(—AH?)]|
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SChematicsi eifliniiersize data collapse
Viardynamic scaling
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Scaling behavior of LCOD
Test of MH diffusion

-

0.256In(L)

W

'-1
/70 002 004 006 0.08
F 11°°

10" 102 10°

I\H wth non-cnsved noise
a=1,0=1/4,z=4

W+ gro{vs logarithmically grows logarithmically



[Patiern fermation by the octanedron model
Competing and surface diffusion (following Bradley-Harper theory):

Noisy Kuramoto-Sivashinsky (KS) equation ( + Mullins Diffusion):

in fact inverse KS is studied here: signs of couplings are reversed

Alternating application of deposition/removal (probabilities : )
and surface diffusion (probabilities: D,, D, D , D_y)

Scaling behavior of 2d Kuramoto-Sivashinsky ~ KPZ ???
Field Theoretical hypothesis 1995 (Cuerno et al.)



Dimeriatlicergas; simulaien

D, =D ~1
The wavelength A defined as the longest
uniform interval in LG grows

CH@Pimoedel scaling
Inverse MH + KPZ case

FIG. 11: (Color online) Data collapse of the L = 128, ...1024
LHOD maodel (p+: = p+y = 1) with a competing deposi-
tion (p = 1) process. One can see very a slow crossover to-
wards KPZ sealing. The right insert shows the growth of A
for L = 512. The left insert is a snapshot of the steady state,
corresponding to the smeared KPZ height distribution.

D, = D~1
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FIG. 8 (Color online) The wavelength growth in the LHOD
maodel for anisotropic diffusion with steady DC current p, = 1,
p =g = 0.0056 for sizes [, = 32,64, 128 (top to bottom at the
beginning). Dashed line: power-law fit with the exponent
G = 0.24(1). The left insert shows the corresponding pattern.
The right insert corresponds the isotropic diffusion case p+. =
P+y = 1, where A(t) grows logarithmically.

The wavelength A grows

D =0.D =1 power-law manner
° in case of



Scaling behavior: Inverse-MH & KPZ
ARISeLrepIC diiftSIen CaSE b, =0, b) =1
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FIG. 9: (Color online) Data collapse for deposition (p

1, g = 0) and anisotropic, inverse diffusion p+> = 1
in the LHOD model with KPZ class exponents for L
64, 128, 256, 512, 1024 (top to bottom curves at the right side).
Right insert: A(r) for L = 1024, left insert the blurred ripple
structure.

If the deposition is strong: p =1
A-iKS ~ A-KPZ ~ KPZ




KPZ + normal Mullins:

ho patterns, but crossover to mean-field
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FIG. 13: (Color online) Data collapse of KPZ deposition (p =
1) and weak, isotropic normal LHOD (higher curves) for L =
64,128, ... 2048 (top to bottom). In ecase of strong diffusion
(lower curves) the KPZ scaling disappears and as the insert
shows logarithmie growth can be observed.

FIG. 14: (Color online) The wavelength saturates quickly for
KPZ + weak LHOD (higher curve) and KPZ + strong LHOD
(lower curve) diffusion (L = 2048). The insert shows Amasz
versus L.




Probability distributions

KPZ in different dimensions KPZ + surface diffusion
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FIG. 16: (Color online) Comparison of P(W?) of the
KPZ+LHOD (black boxes); KPZ+inverse LHOD (blue
dots); KPZ+inverse, anisotropic LHOD (pink rhombuses);
KPZ+inverse LCOD (orange triangles) with that of the KPZ
from ref.[60] (solid line).

FIG. 15: (Color online) Comparison of the P(W?) of the
higher dimensional octahedron model results (symbols) with
those of [60] (lines) in d = 2, 3, 4, 5 spatial dimensions (bottom
to top).

Agreement with former KPZ class distribution results



PElWeenSIng [Latlice Gas
and surface growitn

Disordered dimer LG state
0
,Smooth”, structureless surface

Phase separeted state of LG
)
Surface Patterns

Exploiting analogies with LG

Handy tool to study surfaces, Langevin egs.




SUmmeny.

KPZ, LHOD, LCOD models exhibiting MBE, MH scaling in 2d

Precise numerical results for EW, KPZ, KS scaling exponents, distributions
Understanding of surface growth phenomena via driven lattice gases
Efficient method to explore scaling and pattern formation ->

For pattern formation competing reactions (KPZ & inverse MBE) needed
For strong (power-law), coarsening: (otherwise log.)
Numerical evidence for: scaling

Surface Diffusion + KPZ growth (deposition)

inv-anis. Diffusion inv-Diffusion normal-Diffusion
strong-depo weak-depo strong-depo weak-depo strong-1) weak-
KPZ MBE(MH) KPZ  MBE(MH) KPZ-MF KPZ

See: Phys. Rev. E 79 021125 (2009), 81 031112 (2010), 81 051114 (2010)
Support from grants : DAAD/MOB, OTKA (T77629), NVIDIA, DFG-FG845



	Ripples and dots generated by lattice gases Géza Ódor, MTA-MFA, Budapest Bartosz Liedke, K.-H. Heinig, J. Kelling, HZDR Dresden  
	The Kardar-Parisi-Zhang (KPZ) equation/classes
	Slide 3
	Mappings of KPZ onto lattice gas system in 1d
	Mappings of KPZ growth in 2+1 dimensions 
	Simulation on graphics card (GPU) 
	 First KPZ scaling results with GPU p = 1, q = 0
	Surface diffusion (Molecular Beam Epitaxy classes)‏
	Schematics of finite size data collapse  via dynamic scaling
	Scaling behavior (LCOD) Test of MH diffusion
	Pattern formation by the octahedron model
	                  Isotropic surface diffusion        Dimer lattice gas simulation                LHOD model scaling
	Anisotropic surface diffusion:   x x4h(x,t) + y y4h(x,t)       Lattice gas simulation
	Scaling behavior: inverse-MH & KPZ Anisotropic diffusion case Dx =0,  Dy =1
	KPZ + normal Mullins:  no patterns, but crossover to mean-field 
	Probability distributions
	Mapping between Ising Lattice Gas and surface growth
	Summary

