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Motivation
      In nanotechnologies large areas of nanopatterns are needed 

 fabricated today by expensive techniques, e.g. electron beam lithography or  
 direct writing with electron and ion beams.

Better understanding of basic surface 
growth phenomena is needed !

See: Phys. Rev. E 79 021125 (2009),  
Phys. Rev. E 81 031112 (2010),  
Phys. Rev. E 81 051114 (2010)



The The Kardar-Parisi-Zhang (KPZ)Kardar-Parisi-Zhang (KPZ) equation/classes equation/classes

∂
t
h(x,t) =  σ∇ 2h(x,t)  +  λ (∇  h(x,t))2  + η(x,t)

    σ :   (smoothing) surface tension coefficient
    λ :   local growth velocity, up-down anisotropy
    η :   roughens the surface by a zero-average, Gaussian noise field with correlator:
     

                                    <η(x,t) η(x',t')> = 2 D δ  d (x-x')(t-t')

Up-down symmetrical case:  λ = 0 : Edwards-Wilkinson (EW) equation/classes

Characterization of surface growth:

Interface Width:

Family-Vicsek scaling:



The Kardar-Parisi-Zhang (KPZ) The Kardar-Parisi-Zhang (KPZ) 
equation/classesequation/classes

Exactly solvable in 1+1 d, in higher dimension even the field theory failed

being unable to access the strong coupling regime:

    The upper critical dimension is still debated:     d
c
= 2, 4,...∞ ?

2-dim numerical estimates have a spread: α = 0.36 – 0.4
Field theoretical conjecture by Lässig :       z = 4/10, β  = 1/4

Open problems : 



Mappings of KPZ onto lattice gas system inMappings of KPZ onto lattice gas system in  1d1d

 Mapping of the 1+1 dimensional surface  
  growth onto the 1d ASEP model:

  Attachment (with probability p) and  
  Detachment (with probability q) corresponds 
 
  to anisotropic diffusion of particles (bullets) 
  along the 1d base space (M. Plischke, Rácz 
  and Liu, PRB 35, 3485 (1987))

               The simple ASEP (Ligget '95)
               is exactly solved 1d lattice gas

               Many features (response to
               disorder, different boundary              
                
               conditions ... ) are known.

    Kawasaki' exchange of particles



Mappings of KPZ growth in Mappings of KPZ growth in 2+12+1 dimensions dimensions

  Octahedron model ~ Generalized ASEP:  
  Driven diffusive gas of pairs (dimers)
   G. Ódor, B. Liedke and K.-H. Heinig, PRE79,  
    021125 (2009)   derivation of mapping

   Generalized Kawasaki update:

 For p = q =1 Edwards-Wilkinson (EW) scaling:

W2(t) =0.152 ln(t)+ b    for  t < t
sat

W2(L) = 0.304 ln(L)+ d  for t > t
sat

p

q

2d problem is reduced to quasi 1d
dynamics of reconstructing dimers



Simulation onSimulation on  graphics card (GPU)graphics card (GPU)  
 Checkerboard decomposition
 Sub-systems are loaded in shared 

memory of GPUs updated with 
inactive (grey) boundaries:

 Each 32-bit word stores
the slopes of 4 x 4 sites 

 Origin of decomposition
moves at every MCs

 Speedup 240 x 
with respect a 2.8 GHz CPU



  First First KPZ scalingKPZ scaling results with GPU results with GPU
p = 1, q = 0p = 1, q = 0

Effecitve β  exponent: ∂ ln(W) / ∂ ln(t) 



Surface diffusion (Surface diffusion (MMolecular olecular BBeam eam EEpitaxy classes)pitaxy classes)

 Simultaneous octahedron deposition/removal:   
   Attracting (smoothening diffusion) or repelling (roughening diff.) dimers
 
                                                                                     

 Two versions based on local configurations
 a)  Larger height octahedron model
        LHOD
 b)  Larger curvature octahedron model
         LCOD:                 /\
                     \/\/\/  → \/     \/

dimer attraction



Schematics of finite size dSchematics of finite size data collapse ata collapse 
via dynamic scalingvia dynamic scaling



Scaling behavior of LCODScaling behavior of LCOD
Test of MH diffusionTest of MH diffusion

    For   p=q=0                                         p=q=0.05

   MH with conserved (diffusive) noise          MH with non-conserved noise
   α = β  =0,  z=4                                                α = 1, β  = 1/4, z = 4

    W2 grows logarithmically                     λ grows logarithmically



Pattern formation Pattern formation byby the octahedron model the octahedron model
     Competing KPZ and surface diffusion (following Bradley-Harper theory):

Noisy Kuramoto-Sivashinsky (KS) equation (KPZ + Mullins Diffusion):

∂ t h(x,t) =  σ∇  2h(x,t)  + λ (∇  h(x,t))2  + η (x,t) + κ∇  4 h(x,t) 

        To generate patterns inverse (uphill) diffusion is needed !
    in fact inverse KS is studied here: signs of couplings are reversed

Alternating application of deposition/removal (probabilities : p, q) 
and surface diffusion (probabilities:  Dx, Dy, D-x

, D
-y
)

Scaling behavior of 2d Kuramoto-Sivashinsky ~ KPZ ??? 
Field Theoretical hypothesis 1995 (Cuerno et al.)



DDxx = D = Dyy=1=1,     ,     p=q=0.005p=q=0.005 DDxx = D = Dyy=1=1,     ,     p= 1, q=0p= 1, q=0

iKS  ~ KPZ in 2d

IInverse MHnverse MH  +    +  KPZKPZ   case case

                                    Isotropic surface diffusionIsotropic surface diffusion  
            Dimer lattice gas simulation   Dimer lattice gas simulation                LHOD model scaling             LHOD model scaling

The wavelength λ  defined as the longest 
uniform interval in LG grows 
logarithmicallz λ   scaling



DDxx = 0, D = 0, Dyy=1=1,     ,     p=q=0.005p=q=0.005

Anisotropic surface diffusionAnisotropic surface diffusion::
    κκxx  ∂∂xx

44h(x,t) + h(x,t) + κκy y ∂∂yy
44h(x,t) h(x,t)             Lattice gas simulationLattice gas simulation

The wavelength λ  grows 
power-law manner 
in case of DC current 



Scaling behavior: inverse-MH & KPZScaling behavior: inverse-MH & KPZ
Anisotropic diffusionAnisotropic diffusion case case  DDx x =0, =0,  D Dy y =1=1

 If the deposition is  strong:  p = 1 
                A-iKS ~ A-KPZ  ~ KPZ



KPZ + normal MullinsKPZ + normal Mullins: : 
no patterns, but crossover to mean-field no patterns, but crossover to mean-field 

 For strong diffusions:
    Smooth surface: 
    Logarithmic growth, but not EW  
    coefficients (a=0.4 ↔ 0.151)  
 Wavelength :

  



Probability distributionsProbability distributions

 Agreement with former KPZ class distribution results

KPZ in different dimensions KPZ + surface diffusion



 

MappingMapping  between between Ising Lattice GasIsing Lattice Gas
and surface growthand surface growth

Phase separeted state of LG
                ↨  
   Surface Patterns

Disordered dimer LG state
            ↨
„Smooth”, structureless surface

Exploiting analogies with LG

Handy tool to study surfaces, Langevin eqs. 



SummarySummary
  KPZ, LHOD, LCOD models exhibiting MBE, MH scaling in 2d 
  Precise numerical results for EW, KPZ, KS  scaling exponents, distributions
  Understanding of surface growth phenomena via driven lattice gases
  Efficient method to explore scaling and pattern formation -> GPUs
  For pattern formation competing reactions (KPZ & inverse MBE) needed
  For strong (power-law), coarsening:  DC current needed (otherwise log.)
  Numerical evidence for:   iKS ~ KPZ scaling

   Surface Diffusion   +    KPZ growth (deposition)
                    Ripples                               Dots 

      inv-anis. Diffusion                   inv-Diffusion                normal-Diffusion
      strong-depo    weak-depo    strong-depo   weak-depo   strong-D  weak-D

        KPZ               MBE(MH)         KPZ      MBE(MH)           KPZ-MF    KPZ

  See: Phys. Rev. E 79 021125 (2009),  81 031112 (2010),  81 051114 (2010) 
  Support from grants : DAAD/MÖB, OTKA (T77629), NVIDIA, DFG-FG845        
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