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Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its

effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we

analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex

networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously

slow (algebraic, logarithmic, . . .) relaxation, on Erdős-Rényi networks. Similar effects are predicted to

exist for other topologies with a finite percolation threshold. More surprisingly, we find that Griffiths

phases can also emerge in the absence of quenched disorder, as a consequence of topological heteroge-

neity in networks with finite topological dimension. These results have a broad spectrum of implications

for propagation phenomena and other dynamical processes on networks.
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Networks have become a paradigm in the study of
complex systems [1]. After initial efforts devoted to un-
cover their nontrivial topological features, the focus shifted
to dynamical processes occurring on them [2]. Models of
epidemics [3], such as the ’’susceptible infected recovered
(SIR)’’, the ‘‘susceptible infected susceptible (SIS)’’, or the
‘‘contact process’’ (CP), have played a prominent role [2].
The concept of ‘‘epidemics’’ covers a broad variety of
processes including real epidemics, computer viruses, ru-
mor spreading, or signal propagation in neural nets. A
remarkable finding is the absence of a finite infection
threshold for the SIS process in heterogeneous scale-free
networks; i.e., in contrast with regular lattices, where a
critical point separates an active from an absorbing phase
[3], these networks host endemic states even for arbitrarily
small infection rates [2]; i.e., topological disorder crucially
affects dynamical processes on networks.

Quenched disorder is well known to induce novel behav-
ior (such as, universality changes) in phase transitions both
in equilibrium and away from it. Under some circumstan-
ces, it may also generate phases unheard of in pure systems.
Consider, for illustration, the quenched contact process
(QCP) [4], characterized by a site-dependent quenched
infection rate, on a lattice. Even if the system is globally
in its absorbing phase, disorder fluctuations can generate
rare active regions with over-average infection rates. In
these, activity lingers for extremely long periods; however,
being finite, they ineluctably end up falling into the absorb-
ing state. The convolution of exponentially rare regionswith
exponentially large surviving times gives rise (see below) to
a region in the absorbing phase, characterized by a generic
algebraic decay of activity, i.e., aGriffiths phase (GP) [4–6].

This is just an example of a generic phenomenon, thor-
oughly studied in the disordered systems literature in

classical, quantum, and nonequilibrium systems [5], occur-
ring whenever exponentially distributed cluster sizes,
PðsÞ � expð�csÞ, have exponentially long activity times,
�ðsÞ � expðbsÞ; this leads to a GP with algebraic decay

�� ��c=b with a continuously varying exponent (see [5]
for analytical approaches, further details and applications,
and [6] for a recent review). Observe that, on the opposite
to usual critical points, in GPs one observes scale-
invariance generically, i.e., without the need of parameter
fine-tuning. Similarly, other size distributions (as power
laws) do lead to different functional forms of slow relaxa-
tion. Let us stress that many disorder effects appear rather
similarly in equilibrium and away from it; for instance, the
(strong disorder) critical point of the (nonequilibrium)
QCP is in the same universality class as the (equilibrium)
random transverse-field Ising model [7]; i.e., rare-region
effects transcend the frontier between equilibrium and
nonequilibrium.
From this broad perspective, it is surprising that very

little attention has been paid so far to the effect of quenched
disorder on dynamical processes on complex networks.
Heterogeneity in the intrinsic properties of nodes is a
very natural (not to say, unavoidable) feature of real net-
works: node-dependent rates appear in all the examples
above, owing to the specificity of the individual immune
response, presence of antivirus software, and so forth. Our
aim here is twofold: (i) we tackle the study of quenched
node disorder in dynamical processes on complex net-
works, and look for rare-region effects in the simplest
possible epidemic model, i.e., the QCP on Erdős-Rényi
(ER) random networks; (ii) we explore whether network
topological disorder on its own can induce rare-region
effects. We report on the existence of Griffiths effects,
including various nontrivial regimes with generic slow
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decay of activity, for different networks with quenched
node disorder and/or topological disorder. Our main con-
clusion is that disorder, either quenched or topological,
may induce under the conditions studied here, slow relaxa-
tion on network dynamics; this is expected to go beyond
the considered examples, and to apply to different models,
dynamics, and topologies.

In the pure contact process, infected or active nodes heal
at rate � and infect a randomly chosen nearest neighbor
(provided it was uninfected) at rate �. A simple (one-site)
mean-field treatment of the average activity density �
predicts an absorbing phase transition at �1

c ¼ �, i.e.,
where the infection and healing rate compensate each other
[8]. This prediction for the threshold value is not correct for
finitely connected networks since in that case activity
appears in localized regions, reducing the effective infec-
tion rate (i.e., the probability of having an already infected
neighbor is larger than in the perfect mean-field mixing),
i.e., �c > �1

c. A lengthy but standard [3] two-site or ‘‘pair’’
approximation leads to �2

c ¼ �hki=ðhki � 1Þ, where hki is
the average network degree [9]. Observe that the correction
factor with respect to �1

c converges to 1 when hki ! 1
(i.e., where mean-field holds) and diverges at the percola-
tion threshold hki ¼ 1 below which the network is frag-
mented [2,10], it cannot sustain activity and the phase
transition disappears.

We consider a QCP [4] with � ¼ 1 and a quenched
disordered infection rate: a fraction 1� q of the nodes
(type-I) take value � and the remaining fraction q (type-
II nodes) take a reduced value �r, with 0 � r < 1.
Obviously, for q ¼ 0 and q ¼ 1 the model is pure, �cðq ¼
1Þ ¼ �cðq ¼ 0Þ=r, while for 0< q< 1 one expects �c to
interpolate between these limits. For simplicity, we fix
r ¼ 0 from now on. The average activity density is � ¼
ð1� qÞ�1 þ q�2 (subscripts standing for node type) and
the one-site mean-field equations are _�iðtÞ ¼ ��i þ
�ð1� �1 � �2Þðð1� qÞ�1Þ for i ¼ 1, 2, whose stationary
solution has a critical point at �1

cðqÞ ¼ 1=ð1� qÞ. As
above, the one-site result needs to be corrected by a factor
hki=ðhki � 1Þ to account for activity clustering, leading to

�2
cðqÞ ¼ hki

hki � 1

1

1� q
: (1)

Relevant for what follows is that type-I nodes experience a
percolation transition where the type I-to-type I average
degree is 1 [2,10], i.e., at qperc ¼ 1� hki�1. For q > qperc
activity cannot be sustained: type-I clusters are finite and
type-II ones do not propagate activity.

We now present the results of a numerical investigation
of the QCP on ER networks with hki ¼ 3 (implying qperc ¼
2=3), and sizes up to N ¼ 107. Simulations are performed
in a standard way: all sites are declared active initially and
the dynamics proceeds as follows [3]. A site, i, is randomly
selected and it either heals (with prob. 1=ð1þ �iÞ) or
infects a randomly selected neighbor provided it was emp-
ty (with prob. �i=ð1þ �iÞ, where �i ¼ � or 0 depending

on site type). We monitor the activity decay averaged over
many runs. Numerical results are synthesized in Fig. 1 and
the inferred phase-diagram is summarized in Fig. 2.
For q < 2=3 a critical line �cðqÞ, which is very well fitted
by Eq. (1) (implying that the pair approximation captures
the most relevant correlations), separates an active phase
from an absorbing one [Fig. 1(a)]. Instead for the frag-
mented case, q > 2=3 there is no active phase, as predicted
above [Fig. 1(b)]. The absorbing phase can be divided
into various subphases. For q > 2=3 and �ðqÞ> �cðq ¼
qpercÞ � 4:5 we observe [Fig. 1(b)] a power-law decay

with continuously varying exponents: �ðtÞ � t��ðq;�Þ, with
� ! 0 q ! q ¼ 2=3, i.e., a GP. Right at q ¼ 2=3

we find a logarithmic decay �ðtÞ � lnðtÞ�1=2 for
� > �cðqpercÞ � 4:5 [Fig. 1(a) (inset)]. For q > 2=3 and

�cðq ¼ 0Þ< �< �cðqpercÞ, as well as for q < 2=3 and

�cðq ¼ 0Þ< �< �cðqÞ (see Fig. 2), we can fit a stretched
exponential (not shown). Finally, below the threshold
of the pure system �cðq ¼ 0Þ � 1:5 the decay is purely
exponential.
Let us now rationalize these observations by using, as

customarily done in disordered systems (see [4–6,11]),
optimal fluctuation arguments. The following regimes
can be predicted: (i) Griffiths phase: � > �cðqpercÞ and
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FIG. 1 (color online). Average activity density �ðtÞ vs time t
for ER networks with hki ¼ 3, r ¼ 0, and N ¼ 105. �’s are
ordered from top to bottom in all panels. (a) Upper panel: q ¼
0:6, and � ¼ 5, 3.8, 3.6, 3.55, 3.5, 3.3; the dashed line is
proportional to t�1. (a) Inset: � vs lnðtÞ for q ¼ 2=3; � ¼ 10,
7, 5, 4.5, 4; the dashed line is proportional to lnðtÞ�1=2. (b) Lower
panel: q ¼ 0:9, and � ¼ 50, 30, 20, 15, 10, 9, 7,5, 4.5, 2.7.
Straight lines lie in the Griffiths phase.
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q > qperc. The cluster size distribution for ER networks in

the fragmented case is [12]

PðsÞ � 1
ffiffiffiffiffiffiffi

2�
p

p
s�3=2e�sðp�1�lnðpÞÞ; (2)

where s is the cluster size and p is the average number of
links per node, which in our case is p ¼ hkiq¼0ð1� qÞ for
type-I nodes. Within any given cluster of type-I nodes,
let us define ploc as the local average number of links
per node; and from it, a local value of q, qloc ¼
1� ploc=hkiq¼0. Obviously, connected type-I clusters are

above the percolation threshold, i.e. qloc < qperc, and hence,

if � > �cðqpercÞ, they are active rare regions where activity
survives until a coherent fluctuation extinguishes it. This
occurs after a characteristic time �ðsÞ which grows expo-
nentially with cluster size, i.e., � ’ t0 expðAð�ÞsÞ, where t0
and Að�Þ do not depend on s. Hence, the overall activity
decays as

�ðtÞ �
Z

dssPðsÞ exp½�t=ðt0eAð�ÞsÞ�: (3)

Plugging Eq. (2) into Eq. (3) and using a saddle point

approximation, one obtains �ðtÞ � t��ðp;�Þ, with �ðp; �Þ ¼
�ðp� 1� lnðpÞÞ=Að�Þ; i.e., there is a generic power-law
decay with continuously varying exponents, i.e., a GP. Note
that � ! 0when p ! 1, suggesting a crossover to logarith-
mic decay. (ii) Indeed, right at the percolation threshold,
q ¼ qperc, the cluster size distribution, Eq. (2), becomes a

power-law leading, when plugged in Eq. (3), to a logarith-

mic decay, �ðtÞ � ½lnðt=t0Þ��1=2, for any � larger than
�cðqpercÞ (for which rare regions are active). (iii) For q <

qperc there is a giant component of type-I nodes and, hence,

standard mean-field like contact-process behavior is ex-
pected; i.e., power-law decay, �ðtÞ � t�1 at criticality.
Similar arguments lead to (iv) In the absorbing region
with �cðq ¼ 0Þ< �< �cðqpercÞ, rare regions with qloc <

qperc exist but, in contrast to previous cases, they are sub-

critical (activity decays exponentially fast in each of them);
a stretched exponential fits the decay. Active rare clusters
can also appear; but they require qloc to be smaller that the

critical value of q for the given �, a stringent condition,
leading [in all the region (iv) in Fig. 2] to weak rare-region
effects (as opposed to the previous strong effects) [9].
Finally, region (v) with � < �cðq ¼ 0Þ is free from rare-
region effects: all clusters are subcritical with exponential
decay.
Summing up, optimal fluctuation arguments explain all

numerical findings. Rare regions play a key role giving rise
to generic slow decay of activity. Similar results hold for
any value of r, i.e., when activity flows out of any site.
Hence, strong rare-region effects are expected to occur in
generic networks with a finite percolation threshold (e.g.,
structured scale-free networks [13] or networks with com-
munities), while if the percolation threshold vanishes (e.g.,
Barabási-Albert scale-free nets [1]) only weak rare-region
effects are predicted.
In what follows, we investigate whether GPs induced

merely by topological disorder can exist. Let us first recall
that Eq. (1) provides an excellent approximation to the
(hki-dependent) critical point. As a consequence, networks
with heterogeneous degree may, in principle, exhibit topo-
logical rare regions: clusters with local degree, k, above
average would have a smaller percolation threshold and
could be locally active even if the whole network is absorb-
ing. For argument’s sake, let us consider the CP on a
network with bimodal degree distribution, PðkÞ ¼
p�ðk� k1Þ þ ð1� pÞ�ðk� k2Þ with k1 � k2; a priori,
one could expect rare active regions (with over-density of
k1 nodes) to exist. However, numerically we find just con-
ventional, nondisordered, exponential decay. Why is it so?
In d-dimensional lattices disorder is known to be irrelevant
for large d; the number of nearest neighbors is so high that
the central limit theorem precludes rare regions (i.e., devia-
tions from normality) from existing. An extension of the
concept of Euclidean dimension to arbitrary graphs is the
topological dimension,D, which measures how the number
of nodes in a neighborhood grows as a function of the
topological distance from an arbitrary origin: NðlÞ � lD

[10]. In parallel with the result for lattices, we conjecture
that GPs and similar rare-region effects do not typically
exist for the CP in networks with an infinite topological
dimension (such as ER graphs above their percolation
threshold or the discussed bimodal graphs), justifying our
numerical findings. Instead, for ER below the percolation
threshold, which are characterized by a vanishing effective
topological dimension,D ¼ 0 (i.e., the number of nodes in
any neighborhood or cluster converges to a constant for
large values of l) GPs can exist. This suggests to explore CP
on networks with finite D. As an example, we take the
generalized random small-world networks defined in [14]
as follows. Starting with a ring of L nodes, one defines the
distance between nodes i and j as l ¼ minðji� jj; L� ji�
jjÞ; all nearest neighbors are connected and any pair
with l > 1 is connected with probability PðlÞ ¼
1� expð��l�	Þ. We have identified three different cases:
(i) For 	< 2 the network diameter grows poly-
logarithmically with N, hence, formally D ¼ 1; indeed,

FIG. 2 (color online). Phase diagram for r ¼ 0. See main text
for details.
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as conjectured, no Griffiths phases are observed in our
numerics (not shown). The critical behavior seems to cor-
respond to that of the contact process with Lévy-flight
jumps [3]. (ii) For 	> 2, hli is finite, and correspondingly
D ¼ 1; long edges do not alter the system dimensionality
but they do introduce quenched disorder and a GP. We
conjecture the critical behavior to coincide with that of
the one-dimensional infinite randomness fixed point of the
quenched contact process [6,7], as indeed verified numeri-
cally (not shown); topological and quenched disorder can
lead to the same universal behavior. (iii) In the marginal
case 	 ¼ 2, D has been conjectured to be � dependent,
D ¼ Dð�Þ [14,15]. We have checked that D is indeed an
increasing function of � (Dð0Þ ¼ 1, Dð0:2Þ � 1:21,
Dð0:5Þ � 2:3). We expect the critical point �cð�Þ to de-
crease when � grows [i.e., when hki increases; see Eq. (1)].
Hence, for a given �, the model must be in the active phase
if � > �cð0Þ ¼ 3:297 848ð22Þ (critical point in the one-
dimensional lattice [3]) and must be inactive if � <

lim�!1�cð�Þ ¼ 1 (critical point for the fully connected

graph). Therefore, �cð1Þ � �cð�Þ � �cð0Þ and the pos-
sible GP is bounded by this interval. Numerical simulations
for � ¼ 0:2 confirm (Fig. 3) the existence of a GP with
generic power-law decay for � in [2.65,2.81]. The width of
the GP decreases with increasing � (i.e., the larger D the
smaller the rare-region effects); actually, preliminary re-
sults, suggests the existence of a finite upper critical dimen-
sion above which the GP disappears [9]. We have found
similar topological GPs for other small-world nets, and we
predict them to emerge in many other networks, such as
spatially embedded networks or fractal [16] scale-free ones,
with finite topological dimension.

In summary, taking the contact process as an example
we have shown that quenched disorder can induce GPs and
other rare-region effects leading to generic slow relaxation
for dynamical processes on ER networks. Similar effects
are argued to appear on other topologies with a finite

percolation threshold. Furthermore, heterogeneity in the
topology may suffice to generate GPs on its own. This can
occur only if the network topological dimension is not
infinite allowing for rare regions to exist. Our results are
expected to apply to dynamical processes other than the CP
(even if each case should be carefully examined). An
inspiring application, illustrating Griffiths effects at play,
is provided by a recent work reporting on algebraic ‘‘for-
getting’’ times (reproducing experimental findings) in a
simple model of memory [17]; this generic slow decay
crucially depends on the neural network topological dis-
order. Social networks with heterogeneous communities
have also reported to exhibit generic slow decay and, what
we interpret as, severe rare-region effects [18].
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FIG. 3 (color online). Density decay in generalized small-
world networks with 	 ¼ 2 and � ¼ 0:2 for different values
of � (from top to bottom: 2.81, 2.795, 2.782, 2.77, 2.75, 2.73,
2.71, 2.70, 2.69, 2.67, 2.65, 2.6). Straight lines lie in the Griffiths
phase.

PRL 105, 128701 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 SEPTEMBER 2010

128701-4

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.76.663
http://dx.doi.org/10.1103/RevModPhys.76.663
http://dx.doi.org/10.1103/PhysRevLett.57.90
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1103/PhysRevLett.59.586
http://dx.doi.org/10.1209/0295-5075/5/6/002
http://dx.doi.org/10.1103/PhysRevB.54.3328
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1088/0305-4470/39/22/R01
http://dx.doi.org/10.1103/PhysRevLett.90.100601
http://dx.doi.org/10.1103/PhysRevLett.90.100601
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevE.79.041112
http://dx.doi.org/10.1103/PhysRevB.38.11461
http://dx.doi.org/10.1103/PhysRevLett.89.108701
http://dx.doi.org/10.1103/PhysRevLett.89.108701
http://dx.doi.org/10.1002/rsa.1022
http://dx.doi.org/10.1002/rsa.1022
http://dx.doi.org/10.1002/rsa.10042
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://arXiv.org/abs/1007.3122
http://dx.doi.org/10.1209/0295-5075/79/66006
http://dx.doi.org/10.1103/PhysRevE.79.016109
http://dx.doi.org/10.1126/science.1184819
http://arXiv.org/abs/1006.2125

