
  

Slow dynamics of the contact processes on 
complex networks

Géza Ódor

RESEARCH INSTITUTE FOR NATURAL SCIENCES (MFA)  BUDAPEST

● Exploration of complex networks is flourishing since ~2000 (Barabási & Albert)

● Dynamical systems living on networks are of current interest

● Origin of slow (dynamic) scaling behavior in internet, brain, quantum systems,… etc. 

● Open question : Complex networks + quenched disorder ? 
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Observed slow dynamics in networks
● Brain :  Size distribution of neural avalanches                 Correlation length (diverges
   G. Werner : Biosystems, 90 (2007) 496,                                    Tagliazucchi & Chialvo (2012) : 
                                                                                                 Brain complexity born out of criticality. 

● Internet: worm recovery time is slow:
  

 Small world networks   fast dynamics→

                          What is the cause ?



  

  Scaling and universality classes appear in complex system due to :   
  i.e: near critical points 

  Basic models classified by universal scaling behavior
  G. Ódor: Universality in nonequilibrium system
   (World Scientific 2008), Rev. Mod. Phys.  2004

●  Why don't we see universal behavior in networks   ?
●  Tuning to critical point is needed !

I'll show a possible way to understand this
 

    

Slow dynamics, scaling in nonequilibrium



  

Modelling dynamics on fundamental 
(nonequilibrium) models

 Prototype: Contact Process describing “epidemic/info” propagation (1d) :

● In regular, Euclidean lattices: 
  order parameter: ρ  the density of active sites 
  phase transition between active and inactive (absorbing)
  Critical point : 

c 
> 0

● Exhibits scaling behavior belonging to the DP   
  universality class, still rarely observed in nature 

● Sensitivity to spatially/temporal (quenched)  
  disorder → The scaling behavior is slow, non-universal  



  

Rare Region argument for Q-disordered CP
● Fixed (quenched) disorder/impurity 
  changes the local birth rate  

c
 > 

c

0

●   Locally active, arbitrarily large                                                   „dirty critical point”
   Rare Regions                                                                             „clean critical point”
                                                                                                
    in the inactive phase                                                                  
    due to the  inhomogeneities                                                                         

●  Probability or RR of size L
R
:   

     w(L
R 
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d

R
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R
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d
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R
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● For    < 
c

0  : :  conventional (exponentially fast) decay

● At  
c

0 the characteristic time scales as: L
R
~ L

R
- Z   saddle point analysis:

                                            ln (t) ~ t d  /  ( d + Z)                 (stretched exponential)

● For   
c

0 <   < 
c

  :         L
R
~ exp(b L

R
):

                           
Griffiths Phase        

      saddle point analysis:  (t) ~ t - c / b                                         (continuously changing exponents)      

● At  
c 
 Ultra slow time dependences :  (t) ~ ln(t) -  


c
 


c

0 

 Act.
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Basic network models
   From regular to random networks:

                                                                                     Erdős­Rényi (p = 1)
                                                                                      
                                                                                     Degree (k) distribution in
                                                                                     N→nodelimit:
                                                                                    P(k) = e­<k> <k>k / k!

                                                                                    Topological dimension: N(r)  r ∼ d

                                                                                                       Above perc. thresh.:     d  =  
Below percolation      d = 0
Scale free networks:                                                       
                                                                                     
                                                                                     Degree distribution:
                            

                                                                                     P(k) = k ­γ  ( 2< γ < 3)  
                                                                                     Topological dimension: d =     
                                                                                     Example: Barabási­Albert
                                                                                             lin. prefetential attachment    
                                                                                       
Focus on dynamical systems living on networks:  Fast dynamics is expected



  

  Networks: fast dynamics, mean-field behavior expected

  Effect of disorder: 
  Rare active regions in the absorbing phase:    τ(A)~ eA

   → slow dynamics (Griffiths Phase) ?
  

   M. A. Munoz, R. Juhász, C. Castellano and G. Ódor, PRL 105, 128701 (2010) 

  1. Inherent disorder in couplings
  2. Disorder induced by topology 

   Optimal fluctiation theory + simulations: 

●   In Erdős-Rényi networks below the percolation threshold
●   In generalized small-world networks for finite topological dimension

A



  

 CP + Topological disorder results 
   Generalized Small World networks:    P(l) ~l 2 

       (link length probability)
   
●    Top. dim: N(r) ∼ r d          d() finite:

      
c
() decreases monotonically from 

      
c
()= 3.29785 (1d CP) to:

      lim


 
c
() = 1 towards mean-field CP value

     < 
c
() inactive, there can be 

     locally  ordered, rare regions due to more 
     than average, active, incoming links

● Griffiths phase:  dep. continuously changing 
    dynamical power laws:
    for example :  t  t ∼ 

    Logarithmic corrections !

● Ultra-slow (“activated”) scaling:  ln(t)at
c

● As   Griffiths phase shrinks/disappears

● Same results for cubic, regular random networks
                               higher dimensions  


GP

l



  

Contact process on Barabási­Albert (BA) 
network

● Heterogeneous mean-field theory: conventional critical point, with linear density decay:

   with logarithmic correction

● Extensive simulations confirm this

● No Griffiths phase observed

● Steady state density vanishes at λ
c
 =~1

  linearly,      HMF: β = 1 



  

CP on Barabási-Albert trees
hunt for GP-s, by slowing the propagation

● Lack of loops slows propagation                     Weighted  networks: 
● For 〈k〉 = 3 : 

c
 > 0                                                                      

                                        Strong size corrections                                
   Non mean-field transition :                            Power-laws for: x = 2,3

Heterogeneous mean-field theory: critical point, with linear density decay: ρ µ  1/t 
can't describe frozen disorder !



  

Do power-laws survive the thermodynamic 
limit ?

● Finite size analysis shows the disappearance of a power-law scaling:

●  Smeared phase transition: power-law → saturation:
●                               Rare sub-spaces, but infinite dimensional ? 



  

Percolation analysis of the weighted BA tree

We consider a network of a given size N,
and delete all the edges with a weight 
smaller than a threshold ω

th
. 

For small values of  ω
th
, many edges remain

in the system, and they form a connected 
network with a single cluster encompassing 
almost all the vertices in the network. 
When increasing the value of  ω

th
, the network 

breaks down into smaller subnetworks of 
connected edges, joined by weights larger 
than  ω

th
.

The size of the largest ones grows linearly 
with the network size N 
 standard percolation transition.
 
These clusters, which can become arbitrarily
large in the thermodynamic limit, play the role
of correlated RRs, sustaining independently 
activity and smearing down the phase transition.



  

Summary
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●  Quenched disorder in complex networks can cause slow dynamics :
   Rare-regions → (Griffiths) phasess  →  no tuning or self-organization needed !

●  In finite dim. (for CP) GP can occur due to topological disorder

● In infinite dim, scale-free, BA network mean-field transition of CP
 with logarithmic corrections (HMF+simulations)

● In BA trees non mean-field transition observed
 
● In weighted BA trees non-universal, slow, power-law dynamics
   can occur for finite N, but in the N →∞ limit saturation is observed

● Smeared transition can describe this, 
  percolation analysis confirms the existence of arbitrarily large dimensional
  sub-spaces with (correlated) large weights 
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