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» Exploration of complex networks is flourishing since ~2000 (Barabasi & Albert)

* Dynamical systems living on networks are of current interest

* Origin of slow (dynamic) scaling behavior in internet, brain, quantum systems,... etc.

* Open question : Complex networks + quenched disorder ?
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Observed slow dynamicsin networks

e Brain: Sizedistribution of neural avalanches
G. Werner : Biosystems, 90 (2007) 496,
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 Internet: worm recovery time is slow: -
Small world networks — fast dynamics £

What is the cause ?

Correlation length (&) diverges
Tagliazucchi & Chialvo (2012) :
Brain complexity born out of criticality.

'ﬂ' I T I T I T I T 5} E T
0.8 Exp. .
i ] 25p e
04 % . 7] i
02 W = - e
L | i ] -
of f“"* £ ———1 20 " 'ni., & -
A gzl Y N eemtee 3 ..
=4 = T r o O L,
O osfk Modet ] Qe -
v osfl 1 15re®**c® 5
0.4:—5!':"- E 3
o2 Bl 0 ] o
oF T\-,'fu _ ] o
e - s & Exp
-G.E__ 1 .| o --l G 1 | 1 g 1 IDI r'-:1l::ﬂ:3!
b 30 40 60 80 'do ) 100
r(mm) Size (N)
0.40 - T . . - .
| iby 84
h o f
0.30 - | = H
\ =4 )
| = |
\ = \
Il ::2 \
G20 S INALAL
| &
1] L g g
| O4/00 0900 02/01 0701 1201
| date
0.10 | \
!
Ill\\r
0.00 [ SN i
0 5 10 15 20 25

time (months)



Slow dynamics, scaling in nonequilibrium

Scaling and universality classes appear in complex system due to : & —
l.e: near critical points

Basic models classified by universal scaling behavior

G. Odor: Universality in nonequilibrium system
(World Scientific 2008), Rev. Mod. Phys. 2004

'I'Ini.versality_ in

 Why don't we see universal behavior in networks ?
 Tuning to critical point is needed !

I'll show a possible way to understand this



Modelling dynamics on fundamental
(nonequilibrium) models

Prototype: Contact Process describing “epidemic/info” propagation (1d) :
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* In regular, Euclidean lattices:
order parameter: p the density of active sites |
phase transition between active and inactive (absorbing) b~ =\ ¥
Critical point: 4 >0 absorbin )
¢ < | phase
active phase
 Exhibits scaling behavior belonging to the DP 0
universality class, still rarely observed in nature 0 A |

« Sensitivity to spatially/temporal (quenched)
disorder — The scaling behavior is slow, non-universal



Rare Region argument for CP

 Fixed (quenched) disorder/impurity
changes the local birth rate = 1 _> ACO

,airty critical point” GP
~clean critical point” ‘

* Locally active, arbitrarily large
Rare Regions

A% >
in the inactive phase ’
due to the inhomogeneities v
. Probability or RR of size L - Abs
w(L_)~exp(cL’ )
Contribute to the density:  p(t) ~ fdL_ L' w(l_) exp[-t/z(L")]
«For A < xc" . conventional (exponentially fast) decay
o At xc° the characteristic time scales as: 7 (L_)~ L ¢ = saddle point analysis:
Inp (t)~t/(9+2 (stretched exponential)
. For xc°< A <A T(L,)~exp(bL): Griffiths Phase
= saddle point analysis: p(t) ~t °’" (continuously changing exponents)

« At A,C Ultra slow time dependences : p(t) ~ In(t) “



Basic nhetwork models

From regular to random networks:

Regular Small-world

Increasing randomness

Scale free networks:

Random

Erdds-Rényi (p = 1)

Degree (k) distribution in
N - co node limit:

P(k) =e "<l> /!

Topological dimension: N(r) ~ r °
Above perc. thresh.: d = o
Below percolation d=0

Degree distribution:

Plk)=kv(2<y<3)
Topological dimension: d = oo
Example: Barabasi-Albert
lin. prefetential attachment

Focus on dynamical systems living on networks: Fast dynamics is expected



Networks: fast dynamics, mean-field behavior expected

Effect of disorder:
Rare active regions in the absorbing phase: t(A)~ e”*
— slow dynamics (Griffiths Phase) ?

M. A. Munoz, R. Juhasz, C. Castellano and G. Odor, PRL 105, 128701 (2010)
1. Inherent disorder in couplings
2. Disorder induced by topology

Optimal fluctiation theory + simulations:

* In Erdds-Rényi networks below the percolation threshold
* In generalized small-world networks for finite topological dimension



Generalized Small World networks: P(l) ~ 3/ ~2 ._.s_._._m_._._._._._._._._._.
(link length probability) 35 !
* Top.dim:N(r) ~r  d(p) finite: > e

i)

A () decreases monotonically from
A(0)=3.29785 (1d CP) to:
lim A (p)=1towards mean-field CP value

p—

A< A () inactive, there can be

A
GP
e . . \J
e Griffiths phase: A —dep. continuously changing —
dynamical power laws: - .
for example : pt) ~t *®* - J

Logarithmic corrections !

: : _ FIG. 3: Density decay in Benjamini-Berger networks with

(11 1 . (04 it L
« Ultra-slow ( activated ) scallng. pOCII’)(l) atﬂ’c s = 2 and # = 0.2 for different values of A (from
. i : ; top to bottom: 2.81,2.795,2.782,2.77,2.75,2.73,2.71,2.70,
AS ’B — 1 Grifiiths phase shrlnks/dlsappears 2.69,2.67,2.65,2.6). Straight lines lie in the Griffiths phase.
Inset: Corresponding effective exponents, illustrating the

« Same results for cubic, regular random netwotSence of corrections to scaling.
higher dimensions



Contact process on Barabasi-Albert (BA)
hetwork

» Heterogeneous mean-field theory: conventional critical point, with linear density decay:

p(t) ~ [tln(t)] L.

with logarithmic correction
* Extensive simulations confirm this

» No Giriffiths phase observed

« Steady state density vanishes at A_=~1

linearly, HMF: =1
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FIG. 1. Density decay (tp(t)) as a function of In(t) for
the CP on unweighted looped BA networks with m = 3
of size N = 8 x 107. The different curves correspond to
A =1.2068,....1.24 (bottom to top). Inset: Steady state den-
sity, showing agreement with HMF theory scaling. The full
line shows a power-law fitting to the data points in the form
—0.36(5)z"**1).



CP on Barabasi-Albert trees
hunt for GP-s, by slowing the propagation

 Lack of loops slows propagation
«Fork[=3:14 >0

Weighted networks:
Wi = m[}{k-'-k.f }—r Wij —

Strong size corrections
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Non mean-field transition :

Power-laws for: x = 2,3
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FIG. 1: Density decay in a pure BA CP model, m = 1, my

10, N = 4% 107 for A = 2.756, ..., 2.759 (bottom to top). Right
insert: the corresponding effective exponents. Left insert:

steady state density in the active phase.

FIG. 5: Density decay in model B m = 1, m0_20, N = 10°
for A = 6.8, ..., 156 (top to bottom). Inset: corresponding local

slopes in the GP region.

Heterogeneous mean-field theory: critical point, with linear density decay: p u 1/t

can't describe frozen disorder !



Do power-laws survive the thermodynamic
limit ?

* Finite size analysis shows the disappearance of a power-law scaling:
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FIG. 5. Density decay as a function of time p(t) for the CP
on weighted BA trees with a multiplicative weighting scheme
(WBAT-I) with exponent v = 1.5. Plots correspond to two
sets of A (upper branch: A = 144, lower branch A = 140)
at different network sizes V. Dashed lines represent PL fit-
tings. Inset: Initial time region of the same data, showing an
stretched exponential behavior.
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FIG. 8 Finite-size scaling analysis of the density decay ex-
ponent for A = 6.75 (triangles), A = 6.8 (boxes), A = 6.82
(triangles), A = 6.85 (bullets), A = 6.9 (rhombes) in the CP
on weighted BA trees with a age-dependent weighting scheme
(WBAT-1T) with exponent = = 2. Top inset: p(t) for A = 6.82
(N = 10°, N = 4210°, N = 10° top to bottom). Bottom in-
set: Initial time density.

« Smeared phase transition: power-law - saturation:
Rare sub-spaces, but infinite dimensional ?



Percolation analysis of the weighted BA tree

We consider a network of a given size N,
and delete all the edges with a weight

smaller than a threshold W, .

For small values of w , many edges remain E T g
in the system, and they form a connected W' [ ~
network with a single cluster encompassing s
almost all the vertices in the network. S0k ?ﬁ
1 : F - e #_T_,:_-;;;;f
When increasing the value of W, , the network f;,;’;“;fw‘“
10" ;_?_.;3*"

breaks down into smaller subnetworks of ¥ =
connected edges, joined by weights larger 0 h] o
than mth. FIG. 6. Size S; of the 5 largest clusters in a percolation anal
The size of the largest ones grows linearly veis of the WBAT-I model with » — 15 for w — 1000,
W|th the network S|Ze N (hollow symbols) and wip = 1000wmin (full symbols), where

i . Wmin 18 the minimum weight in the network. The size of all
&~ Standard perCOIaUOI’] transition. components grows linearly with network size N, and 1s there-

fore infinite in the thermodynamic limit.

These clusters, which can become arbitrarily
large in the thermodynamic limit, play the role
of correlated RRs, sustaining independently
activity and smearing down the phase transition.



Summary

* Quenched disorder in complex networks can cause slow dynamics :
Rare-regions — (Griffiths) phasess - no tuning or self-organization needed !

* In finite dim. (for CP) GP can occur due to topological disorder

 In infinite dim, scale-free, BA network mean-field transition of CP
with logarithmic corrections (HMF+simulations)

* In BA trees non mean-field transition observed

 In weighted BA trees non-universal, slow, power-law dynamics
can occur for finite N, but in the N - oo limit saturation is observed

« Smeared transition can describe this,
percolation analysis confirms the existence of arbitrarily large dimensional
sub-spaces with (correlated) large weights

» Acknowledgements to : HPC-EuropaZ2, OTKA, Osiris FP7
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