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How can we understand different power-law exponents ?
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Griffiths Phase behavior is suggested 
but where are the rare regions, with 
exponentially long lifetimes ?
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Embed network in 2d substrate,
modules of decreasing sizes
recursively (continents, 
countries, cities, families) 

Connect nodes with links on 
levels (l=0, .., lm) with decreasing 
probabilities

                    pl ~ b (½) s l

Use s to control decay law and b to control <k>

SIS type!
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Topological dimension :   N(r) ~ r d

Breadth-first search algorithm:

   s < 4 :  d   network 

  s = 4 :  <k> dependent, continuously changing d 

  s > 4  d → 0

Due to the embedding  R ~ 2 l →  p(R) ~ R -s

Clustering coeff.

Average pathlength

Small world coeff                                          

~ 47  >> 1 : Small world network  (finite dimensional)
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In d = 2 critical point 
at c = 0.4059(1)
Critical   ~ DIP= 0.586
Above c    →
with overshooting
When  → L: exponential
decay : “Herd immunity”
In 3d similar situation
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Growth results for various HMN-s


Power-laws (PL) at s=4 (finite dim.)
For s < 3 faster than PL
For s > 4 slower than PL
Epidemic scales up with the
number of seeds (i0) but
PL slope invariance 
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For s=4, b=0.4: d  d 3,3, <k>=6.3
Close to the 3d Euclidean lattice
Still atc : = 0.8(1) ↔ DIP = 0.53(2) 
For: c = 0.480(5): 

 2   ~ d -1

Avalanche size: =1.05(5) ↔ DIP=1.20(2)

For other <k>-s continuously varying exponents
Topological heterogeneity changes the scaling behavior !!!
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Super-spreader hot-spot in the diffusive HMN case

At single sitei = 1 is set
Scaling exponents do not change
Size grows due to diffusion 
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Power-law distribution in the number of
confirmed COVID-19 cases

B. Blausius: Chaos 30, 093123 (2020); doi: 10.1063/5.0013031
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