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Power vs. Exponential outbreak in various
countries

COVID-19 epidemic data of more than 174 countries
(excluding China) in the period between 22 January and 28 March 2020
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Figure 4. Examples of three error graph configurations. (a) USA, exponential; a log plot of the data is presented with the exponential fit. (b) Italy, power law; a log-
log plot of the data is presented with the best fitting power law and exponential fits. (c) Greece, exponential-like; as in (), a log-log plot is presented.

Komarova Natalia L., Schang Luis M. and Wodarz Dominik
2020 Patterns of the COVID- 19 gandemzc spread around the world: exponential versus power laws
J. R. Soc. Interface. 17 20200518 http://doi.org/10.1098/rsif.2020.0518
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How can we understand different power-law exponents ?
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FIG. 2. (a) Time evolutions of 51 = Z',-'L, I; for N = 1000 (solid
line) and N = 200 (dotted line) at Dg =1, Dy =1, and y =1 in
the double-logarithmic scale. The infection rate is g; = g, = 0.9 for
i#N/2and §; =3 at i = N/2. The straight dashed line denotes a
power law of 1/t'/2. (b) Time evolutions of ST = ¥ I, for N =
1000 (solid line) and N = 200 (dotted line) in the double-logarthmic
scale. The infection rate is f; =3 for N/2 —7 < i < N/2+7 and
By = 0.9 for the other region. Other parameters are the same as in
Fig. 2(a).
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Griffiths Phase behavior is suggested
but where are the rare regions, with
exponentially long lifetimes ?
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Grl'Fﬁths phases and localization in
: hierarchical modular networks

Géza Odor?, Ronald Dickman® & Gergely Odor?
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Growth results on homogeneous 2d, 3D lattices
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FIG. 3: Effective exponents n.g(t) in 2d for A = 0.4, 0.406,
0.407, 0.408, 0.41, 0.42, 0.44, 0.5 (bottom to top curves). In-
set: initial time evolution of I(t), averaged over runs from
10* randomly selected initial random sites. The two distict
fixed point behavior can be seen at A, = 0.4059(1), with
1 = 0.59(1) and the supercitical phase, characterzed by n = 1.
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Growth results for various HMN-s

A

FIG. 4: Density of infected sites in different graphs for iy = 2,
by varyving s and the size with b = 1 and A = v = 1 fixed.
Thin lines l,,.. = 7, thick lines [,,.. = 8 data, multiplied by
a factor of 4. Only the s = 4 curves exhibit PL initially and
exponential decay is observable following finite size cutoff, cor-
responding to heard immunity. The dashed line corresponds
to the single seed case: 19 = 1, multiplied by a factor 2.



Growth results for various HMN-s

A

14

1

10" S
Power-laws (PL) at s=4 (finite dim.) ?

FIG. 4: Density of infected sites in different graphs for iy = 2,
by varyving s and the size with b = 1 and A = v = 1 fixed.
Thin lines l,,.. = 7, thick lines [,,.. = 8 data, multiplied by
a factor of 4. Only the s = 4 curves exhibit PL initially and
exponential decay is observable following finite size cutoff, cor-
responding to heard immunity. The dashed line corresponds
to the single seed case: ig = 1, multiplied by a factor 2.



Growth results for various HMN-s

Power-laws (PL) at s=4 (finite dim.)

For s < 3 faster than PL

A

10 _- -
— 53 =7
+—+5-31-8 .
ID-1 L ——— s=4 =7 e I"-_ E
---- 5=4 iﬂ=| T-\"'. \ I", ]
—— s=4 =8 /
o —— 8517 \ -Ii- I
10° | —— s5=617 e RRE E
— ! I'- !
= _ T—
= S I
10 | R
|I | | Il'xm
) |
10 | '. .
L
| '.
1o : : ' '

FIG. 4: Density of infected sites in different graphs for iy = 2,
by varyving s and the size with b = 1 and A = v = 1 fixed.
Thin lines l,,.. = 7, thick lines [,,.. = 8 data, multiplied by
a factor of 4. Only the s = 4 curves exhibit PL initially and
exponential decay is observable following finite size cutoff, cor-
responding to heard immunity. The dashed line corresponds
to the single seed case: 19 = 1, multiplied by a factor 2.



Growth results for
A = v

Power-laws (PL) at s=4 (finite dim.)
For s < 3 faster than PL

various HMN-s

For s > 4 slower than PL.

10 | |
— 5=3 =7
+——+5=31=8
ID-1 L ——— s5=4|=7 5
---- 5=4 iﬂ= 1 E
— 5=4 |=8
b 5517
107k §=f o7 J
—
—
10~
10"
10~

FIG. 4: Density of infected sites in different graphs for iy = 2,
by varyving s and the size with b = 1 and A = v = 1 fixed.
Thin lines l,,.. = 7, thick lines [,,.. = 8 data, multiplied by
a factor of 4. Only the s = 4 curves exhibit PL initially and
exponential decay is observable following finite size cutoff, cor-
responding to heard immunity. The dashed line corresponds
to the single seed case: ig = 1, multiplied by a factor 2.



Growth results for various HMN-s

A

Power-laws (PL) at s=4 (finite dim.)
For s < 3 faster than PL

For s > 4 slower than PL.

Epidemic scales up with the

= v = ]
10" : . | _
F —— 5317
+—+s=31=8 o~
0" b —— s=4k7 ]
---- 5=4 iﬂ=l > ¢ T-\“-, "_. II'. E
S
— §=5 =7 /\/ -I1r o
0 et A A D ]
s | ity
................................. l D-J . | | 'II -I. -IIIII .

number of seeds (i ) but
PL slope invariance

FIG. 4: Density of infected sites in different graphs for iy = 2,
by varyving s and the size with b = 1 and A = v = 1 fixed.
Thin lines l,,.. = 7, thick lines [,,.. = 8 data, multiplied by
a factor of 4. Only the s = 4 curves exhibit PL initially and
exponential decay is observable following finite size cutoff, cor-
responding to heard immunity. The dashed line corresponds
to the single seed case: 19 = 1, multiplied by a factor 2.



Results for s =4 HMN
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FIG. 6: Effective exponents n.g as in Fig. 5, for s = 4 and
b = 04 for A= 0.47, 0.473, 0.475, 0.48, 0.49, 0.5, 0.55. 0.6,
0.7, 0.8 (bottom to top curves). The two distinct fixed point
behavior can be seen at A, = 0.480(5), with 5 = 0.8(1) and
the supercritical phase, characterized by n ~ 2.
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Results for s =4 HMN

For other <k>-s continuously varying exponents
Topological heterogeneity changes the scaling behavior !!!
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The effect of diffusion on the SIR model

SIR reactions in a bosonic representation (with soft particle restrictions):
A
=21, 1550, IR, I+R5R.
H

The non-diffusive SIR process on a lattice: dynamical isotropic percolation

(DIP) class.
@ Rs diffuse: DSIR = field action (S < 0)

A= [a%a{Z |oc=Ds (r=v2) + £ (2R 1) | T+ (0 - DaV?) R - RT}.

-

DIP
@ DIP (SIR)® displays duality symmetry?:
I(z, t) <> —R(z, —1) —f_ dt/I(z, t')

@ Diffusion of R renders violation of the symmetry

IR = DpV’R +T = L(z i e=—R{E 1)

2P. Grassberger, Math. Biosci. 63, 157-172 (1983).
"H-K. Janssen et al, Ann. Phys. 315, 147-192 (2005).
°Géza Odor, Phys. Rev. E. 103, 062112 (2021).




Seed simulation

Exponents (two species):
o Initial slip exponent: Npp ~ tonr
e Survival probability: Pguy ~ t_‘s;

o Mean square spreading: R? ~ tZ1r = {2/21r
D=0
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Finite-size scaling analysis for the static case
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@ Freeze the system once the border is hit;
@ At criticality ': mean cluster size (Npoo) ~ LY/¥, percolation
prob. Peo ~ L=B/V U= (N%_Y/{NRoo)? ~ LA/ = UPy ~ const.;

@ DSIR: scaling regime is only reached for large L;
@ 0=p3/vy=pZ/2v, (2B +7)/vd=1X

B/v v /v V)
DIP Refs.? 0.1042 1.792 1.5057
D=0 0.1040(2)  1.810(2) 1.51(1)
D=0.5 0.096(2)  1.764(4)  1.46(1)
D=1.0 0.093(3)  1.755(3)  1.47(1)

1 D. de Souza et al., JSAT, 2011 (3), P03006 (2011).
2 hteps:/ /en.wikipedia.org /wiki/Percolation critical exponents



Super-spreader hot-spot in the diffusive HMN case

FIG. 11: The effect of a single hot-spot for the diffusive mode
in graphs with s =4, b =1 and A = 0.22, 0.23, 0.235, 0.24
0.245, 0.25, 0.26, 0.4, 0.5 (bottom to top curves). Inset: Lo
cal slopes of the same. The asymptotic critical and super
critical effective exponents are roughly the same as in the
non-diffusive homogeneous SIR.
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Summary

TABLE I: Summary of critical SIR results for s = 4 HMN2d
networks and Euclidean lattices. The type of graph is de-
scribed by the Euclidean dimension (2d, 3d), or by the value
of b for HMN2d. +D denotes the diffusive case, +H means
the application of a single super-spreader hot-spot.

tvpe (k) Ae 7 T d
2d 4 10.4059(1)|0.59(1)| 1.06(1) 2
3d 6 [0.2198(2)(0.53(2)] 1.20(2) 3
2d4+D | 4 [0.3533(1)]0.55(2)[1.058(2)] 2

0.4 [6.3] 0.480(5) | 0.8(1) | 1.05(5) |2.98(2)
0.5  [6.7] 0.425(5) |0.95(4)| 1.01(3) 329{1}
1.0 [9.1] 0.310(5) | 1.4(1) | 1.10(7) (}
1.5 9.3 0.23(1) |1.30(3)] 1.12(5) | 3.8(1)
1.0+D |9.1] 0.240(3) | 1.4(1) | 1.10(8) (1}
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TABLE II. Critical exponents for dynamical percolation. Expo-
nents calculated by using scaling relations contained in this paper
are reported in the lower part. The rest of the exponent values are
from [37]. Where not reported uncertainties are in the last digit. For
d=2, values expressed as fractions refer to exact results [37]. For
d="6 we report the exact mean field values.

Exponent d=2 d=3 d=6
B=p' 5/36 0.417 1
| 1.506 1.169 1
¥ 43118 1.795 1
vy 4/3 0.875 1/2
T 96/91 1.188 32
o 36/91 0.452 1/2
Dy 91/48 2.528 1
T 1.092 1.356 2
a, 0.664 0.855 1
¥, 1.367 0.752 0
7 0.586 0.536 0
=4 0.092 0.356 1
z 1771 1.497 1
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FIG. 1. Powerlaw scaling in the distritufion of confrmed COWI0-19 ceses. Lefi column: Estimated probabilty Py(m) (blue lines and cindes) for a counfry to have a certain
number nof (&) confimed ceses (¥ = C) and (b) confimead deaths (x = O on March 22, 2020, Right columnc The same for fhe 2160 US counsies that have baen imvaded by
the coronasinus an March 31, 2020, Hisiogram bins are spaced equally on a logarithmic s and only bires with & positive number of entries are shown. Black solid lines show
straight-ine fits with siope u, indicated in e figurs lebeis. Insets: Cumulative fraction Gim) = Y%, Pim) of couniries, or coundes, with case numiber m =« n. Sofid lines
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B. Blausius: Chaos 30, 093123 (2020); doi: 10.1063/5.0013031
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