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Abstract
Local scale-invariance theory is tested by extensive dynamical simulations of 
the driven dimer lattice gas model, describing the surface growth of the 2  +  1 
dimensional Kardar–Parisi–Zhang surfaces. Very precise measurements of the 
universal autoresponse function enabled us to perform nonlinear fitting with 
the scaling forms, suggested by local scale-invariance (LSI). While the simple 
LSI ansatz does not seem to work, forms based on logarithmic extension of 
LSI provide satisfactory description of the full (measured) time evolution of 
the autoresponse function.

Keywords: local scale-invariance, Kardar–Parisi–Zhang, GPGPU, 
autoresonse

(Some figures may appear in colour only in the online journal)

Understanding universal scaling behavior of nonequilibrium dynamical systems is a challeng-
ing task [1]. Critical phenomena can emerge away from equilibrium, but due to the broken 
time reversal and translational symmetries, an extension of the renormalization group method 
(RG), as the best tool, is not straightforward [2]. The lack of translational symmetry manifests 
in aging phenomena observed in glasses, polymers, reaction-diffusion systems or cross-linked 
networks [3].

LSI theory is proposed [4] to generalize dynamical scaling to a larger set of local scale 
transformations, including → /( )γ+t t t1 , analogously as conformal invariance (CI) extends 
RG of equilibrium critical phenomena. As CI [5, 6] works well in case of equilibrium uni-
versality classes, LSI aims at the same for nonequilibrium dynamical ones [7]. LSI has been 
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shown to reproduce the universal shapes of responses and correlators in a large variety of 
models, as reviewed in detail in [7]. The predictive power of generalized dynamical scaling 
alone was shown to be limited [8], and later the role of the generalized Galilei invariance was 
recognized. Analogously to the logarithmic CI generalization [9], Henkel suggested the loga-
rithmic extension of LSI (LLSI) to make the theory applicable for more general cases [10].

While many systems are described by a single dynamical length scale ( ) /∼L t t z1 , with 
the dynamical exponent z [11, 12], aging ones are best characterized by two-time quantities, 
such as the dynamical correlation and response functions [13]. In the aging regime: τ�s m 
and τ− �t s m, where τm is a microscopic time scale, one expects the following law for the 
autoresponse function of the field φ:

( )
( )
( )

δ φ
δ

= =
=

− − ⎜ ⎟
⎛
⎝

⎞
⎠R t s

t

j s
s f

t

s
,

j

a
R

0

1
� (1)

where s denotes the start and t  >  s the observation time, j is the external conjugate to φ. This 
law contains the so-called aging exponent a, the universal scaling function, with the asymp-
totic behavior ( / ) ( / ) /∼ λ−f t s t sR

zR , and the autoresponse exponent λR.
LSI has been shown to describe aging properties of diffusive, solvable models with z  =  2, like 

Acetri [14, 15], Edwards–Wilkinson (EW) [16] interface growth and of mean-field like mod-
els, exhibiting long-range interactions [7, 17]. It also provided agreement with the numerics in 
case of reaction-diffusion models [18–20]. However, tests in the critical (1  +  1)-dimensional  
contact process showed systematic deviations in the / →t s 1 limit [10, 21]. On a phenomeno-
logical level, these discrepancies could be resolved by the more recent extension to LLSI [10], 
which we shall recall below.

Numerical testing is easier in systems, which do not need to be tuned to criticality, but 
exhibit generic scale invariance, like interface models. For nonequilibrium surface growth 
dynamics the LLSI predictions have been found to be in agreement with the simulations of the 
1  +  1 dimensional Kardar–Parisi–Zhang (KPZ) model [22]. The purpose of the present study 
is to extend such investigation to 2  +  1 dimensions in the presence of high precision simula-
tion data available by simulations of dimer models describing KPZ surface growth [23–25].

The KPZ equation [26] describes the evolution of the height function ( )h tx,  in the d dimen-
sional space relative to its mean position

( ) ( ) ( ( )) ( )ν λ η∂ = ∇ + ∇ +h t h t h t tx x x x, , , , ,t
2 2� (2)

where λ is the amplitude of the up-down anisotropy, ν is a smoothing surface tension coeffi-
cient and η is a roughening of the surface and represents Gaussian noise with zero mean value 
and the variance ⟨ ( ) ( )⟩ ( )( )η η νδ −= −′ ′ ′ ′t t T t tx x x x, , 2 d . The letter T is related to the noise 
amplitude (the temperature in the equilibrium system).

This equation was inspired in part by the stochastic Burgers equation [27] and can describe 
the dynamics of simple growth processes in the thermodynamic limit [28], randomly stirred 
fluids [29], directed polymers in random media [30], dissipative transport [31, 32], and the 
magnetic flux lines in superconductors [33].

The morphology of the surface is usually characterized by the roughness

( ) ( ) ( )= −W L t h hx, t x, t, ,x x
2 2� (3)

where x denotes an average over all spatial coordinates. Simple growth processes are 
expected to be scale invariant and follow the Family–Vicsek scaling law [34]:

( ) ( / )∼ αW L t L f t L, ,z� (4)
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with the universal scaling function f(u)

( ) ∼
β⎧

⎨
⎩

�
�

f u u u
u

for 1
const. for 1.

� (5)

Here, α is the roughness exponent, describing the stationary state, where the correlation length 
exceeds the lateral system size L. The growth regime is governed by the growth exponent β. 
The ratio of these gives the dynamical exponent /α β=z . KPZ is Galilei invariant [29], result-
ing in the exponent relation

/( )β= +z 2 1 .� (6)

Discrete models set up for KPZ have been studied a lot in the past decades [35–37]. A 
mapping between KPZ surface growth in two dimensions and driven lattice gases has been 
advanced in [23]. This is based on the so-called octahedron model, characterized by binary 
slope variables at the middle points of the up/down edges. Up slopes in the x or y directions are 
represented by /σ = 1x y , while down ones are encoded by /σ = 0x y . Thus deposition or removal 
of octahedra corresponds to a stochastic cellular automaton with the simple update rules

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠�0 1

0 1
1 0
1 0q

p
� (7)

with probability p (q) for attachment (detachment). By considering edge values to be lattice 
occupancy variables we can map the octahedron model onto self-reconstructing dimers fol-
lowing an oriented migration in the bisection of x and y directions (see figure in [23]). The 
surface height can be reconstructed for each lattice site from the slope variables by tracing a 
path from a reference point: (1, 1) with h1,1:  =  0, leading to the expression

[ ( ) ] [ ( ) ]∑ ∑σ σ= − + −
= =

h l i k2 , 1 1 2 , 1 .i j
l

i

x
k

j

y,
1 1

� (8)

We have confirmed that this mapping using the parameterization: /( )λ = + −p p q2 1 
reproduces the one-point functions of the continuum model [23]. The case ≈p q, leading to 
λ≈ 0, the EW model is recovered. Numerical results for the autocorrelation have also been 
found to be in agreement with those of other KPZ models [25, 38, 39]. The dimer lattice gas 
can be studied by very efficient bit coded simulation methods using graphic cards (GPU) as 
detailed in [25, 40].

We performed extensive simulations of the dimer model on lattices with lateral size of 
L  =  216 and periodic boundary conditions. The large systems serve to stay clear of finite size 
effects. The initial state corresponded to the flat surface and rule (7) was applied either by a 
random-sequential (RS) [25] or a sub-lattice parallel stochastic cellular automaton (SCA) site 
selection algorithm.

We calculated the autoresponse function as described in [25]. To introduce a perturbation, 
we used space-dependent attachment and detachment probabilities

/   / [ ]
/ /
ε ε

ε ε
=

+ + ∈
− +

⎧
⎨
⎩

p
p a p a

a

2 if 2 0, 1

1 2 2 otherwisei
i i

i

0 0� (9)

and = + −q p q pi i0 0 , respectively. Here, =±a 1i  and ε = 0.005 is a small parameter. After 
the waiting time s we used the same stochastic noise η (random sequences), in two realiza-
tions. System A evolved, up to the waiting time s, with the site-dependent probabilities pi and 
qi and afterwards with the uniform ones p0 and q0  =  0. System B evolved always with spa-
tially uniform attachment and detachment.
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From these simulations, we determined the time-integrated response function

( ) ( )

( ) ( )( ) ( )
→ →

→
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where a is the aging exponent for the autoresponse. Measurements were performed at expo-
nentially increasing times

( )= + ⋅ > =+t t m t10 e , with 0, 0,i i
m

1 0

up to = ⋅t s200max . Throughout this paper time is measured in Monte-Carlo steps MCS), 
defined as one sweep over all lattice sites.

The random-sequential GPU implementation from [25] has been modified using a novel 
combination of the dead border and double tiling domain-decomposition schemes, which 
we call DTrDB, in order to eliminate previously observed correlations. Details of this algo-
rithm will be discussed elsewhere [41]. To speed up simulations further, we introduced a SCA 
algorithm on GPUs, which uses a checkerboard pattern for updates: a MCS is performed by 
updating all odd sites simultaneously with p  <  1 and all even sites afterwards [42]. The GPU 
implementations were tested by comparing different schemes. Direct comparison of the GPU 
results with sequential CPU simulations was impossible on the same level of accuracy, but 
consistency with former simulations [25] could be achieved.

Results from various autoresponse calculations are summarized in figure 1(a). The forms 
of the autoresponse function agree very well across all types of simulations. The most notable 
difference is a constant factor (∼2.08) in the response functions between the SCA and RS 
results, which is caused by model-dependent time-scales. Also note the small shift between 
SCA ( = =p q0.95 0) and SCA* ( = =p q0.95, 0.05) for s  =  100, caused by the different 
update probabilities.

Figure 1.  Simulation results of the integrated height autoresponse, comparing 
variants obtained by RS and SCA simulations. (a) Aging collapse of the functions. 
(b) Corresponding effective exponents, extrapolating to asymptotic values. Slopes of 
DTrDB and SCA* are not shown, because the late-time regime was too noisy, due 
to small sample sizes. The black straight line corresponds to a linear fit to the SCA 
s  =  30 results. System and sample sizes are: =∗L 2CPU

13, =∗n 39083CPU  [25], all 
others use L  =  216, with ==n 23849sSCA, 30 , ==n 12012sSCA, 100 , =∗ =n 1390sSCA , 100 , 

==n 830sDTrDB, 30  and ==n 700sDTrDB, 100 .
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The aging exponent is often determined by performing a manual collapse of the available 
datasets for different waiting times s. For RS simulations, the value ( )=a 0.30 1RS

coll.  was deter-
mined in this way and published in [25]. For the SCA simulations presented in figure 1(a), the 
value ( )=a 0.26 1SCA

coll.  shows the best collapse. However, this method requires visual inspection 
of plots to determine for which value of acoll. the data collapse works best, which is prone to 
bias and underestimation of the attached error margins.

Numerical computation of the aging exponent involves point-wise division of autocorrela-
tion functions for different waiting times:

( )
( )

( / )
( / )

( / / )χ
χ

= =χ

χ

= ⎛
⎝
⎜

⎞
⎠
⎟t s

t s

s f t s

s f t s

s

s

,

,
.

a

a
t s t s

a
1

2

1 1

2 2

1

2

1 2

Since the values ( )χ t s,  are available only at discrete times an interpolation is required to 
compute these ratios at arbitrary t/s. The simplest option is a linear one, which can also be 
performed on a double-logarithmic scale, reducing systematic errors when the interpolation 
values follow a power law. In the implicit average over t all points are weighted with their 
statistical signal-to-noise ratio, which overall increases the weight of early times, while in the 
visual method one is tempted to focus on late times. The present method yields ( )=a 0.24 2SCA , 
for the SCA simulations with q  =  0, and ( )=a 0.27 2DTrDB , for our new RS simulations with 
p  =  1, q  =  0. For comparison, we calculated ( )=a 0.25 4RS  from the data published in [25], 
based on RS CPU and GPU simulations. The present data suggest no significant difference 
between the aging exponents of RS and SCA.

In order to determine the asymptotic scaling and corrections we determined (tail) effective 
exponents ( )/λ t zR,eff min , where each value is the exponent of a power-law fit to ( )χ t s,  in the 
interval ( )t t,min max  using the form

( ) ( )/= ⋅ λ−g t c t ,t
t zR

min
,eff min� (11)

with free parameters c and ( )/λ t zR,eff min . The results are displayed in figure 1(b) for the three 
largest datasets, where /�t t 4min max . This method suppresses short-wavelength noise but 
preserves scaling corrections of larger scales. Only our best dataset (SCA, s  =  30) allows a 
reliable extrapolation for ( → )/λ ∞t z,R,eff min . The effective exponent curve of the s  =  100 data 
breaks down at the end; still the trend observed at early times is in agreement with the extrapo-
lations for s  =  30. We attribute this to larger oscillations, similarly as in the case of CPU RS 
updates, where, however, the asymptotic value still appears to agree.

Table 1 summarizes the estimates for the autoresponse exponent λR. Here we assume 
z  =  1.611(2), that can be obtained by the scaling relation (6) and using our former, high pre-
cision value ( )β = 0.2415 15  [24]. There is agreement between the results for the considered 
waiting times across RS and SCA dynamics.

Table 1.  Estimates for the height autoresponse exponent λR, assuming z  =  1.611(2). 
Sample and system sizes are listed below figure  1. Error-margins were estimated 
visually.

CPU* [25] SCA
= =p q0.98, 0.02 p  =  0.95, q  =  0

/λ zR 1.25(3) 1.23(2)
λR 2.01(5) 1.98(4)

J. Phys. A: Math. Theor. 50 (2017) 12LT01
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Considering, that earlier results for the autocorrelation exponent marginally allow λ = 2C  
[25], which is predicted by Krug’s conjecture λ = dC  [43, 44], it is interesting to note, that 
λ = 2R  seems to be satisfied within error margin. The possible equality λ λ=C R might point 
to the existence of a non-equilibrium fluctuation-dissipation relation in (2  +  1)-dimensional 
KPZ. The autocorrelation function is defined as

( ) ( ) ( ) ( ) ( ) ( / ) /φ φ φ φ= − ∼ λ− −C t s t s t s s t s, ,b zC

with the aging exponent β= −b 2  and definitions analogous to those in equation (1). However, 
one must expect a different relation than in the (1  +  1)-dimensional case, because the implied 
relation for the aging exponents 1  +  a  =  b  +  2/z [22] does not hold.

The quality of the available data allows a precise calculation of effective exponents. Yet, the 
estimates for the asymptotic values carry larger uncertainties, due to the unknown corrections 
to scaling. Thus, a next step in the KPZ aging studies is an attempt to determine these correc-
tions, assuming scaling forms for χR. These forms are based on the LSI hypothesis. For the 
time-integrated autoresponse, equation (10), LSI theory for KPZ predicts the scaling function

( / ) ( / ) ( / )/= −χ
λ− − − ′f t s A t s s t1 ,z a

,LSI 0
1R� (12)

where A0 is a normalization factor and ′a  is expected to be another universal exponent, like 
the aging exponent a. A different form, adding logarithmic corrections was proposed recently 
in [10]:

= − −

+ − ⋅ − + −
χ

λ− −

−

′

′

f t s A s t

s t A s t A s t

1 1

1 ln 1 ln 1 ,

z a

a

,L LSI
1

0

1 2
2

R2 ( / ) [ ( ( / ) )

( / ) ( ( / ) ( / ))]

/

� (13)

where the sum of logarithmic terms to second order results from the assumption, that the 
primary field φ of the system is replaced by a doublet and the scaling dimensions are rep-
resented by ×2 2 matrices. The solution in [10] uses a Schrödinger-invariant Lie algebra, 
which implies z  =  2, a dynamical exponent different from that of the KPZ universality class. 
However, the scaling form (1) is invariant of the value of z, because it depends on the ratio /λ zR  
only. It should be noted, that, this does not hold for the space-dependent part of the response 
function, which remains an open problem.

The scaling function (13) resembles a form, which contains the first two lowest order 
correction terms of a logarithmic series to (12). We shall test by fitting if, an assumed more 
generalized power series form

∑

= − −

+ − ⋅ −

χ
λ− −

−

>

′

′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f t s A s t

s t A s t

1 1

1 ln 1 ,

z a

a

j

J

j
j

,L LSI
1

0

0

RJ ( / ) ( ( / ) )

( / ) ( / )

/

�
(14)

which, given enough terms, might fit a broad range of data, really supports the expected L2LSI 
theory with the scaling (13). However, an LSI extension with triplets, or beyond, would also 
give physical meaning to some terms with ⩾j 3. Thus these terms being relevant to describe 
the data would point to the necessity of higher orders in the extension of LSI.

We have tested different (J) levels of the series (14) with our data, obtained from the most 
precise SCA simulations. Figure 2 shows plots of the ratio of data and best fit. This is a visual 
representation of how well forms for [ ]∈J 0, 3  describe the data:

J. Phys. A: Math. Theor. 50 (2017) 12LT01



7

χ
= >

χ
−

t s

s f t s
t s1 for 1.

a
,L LSI

!

J

( / )
( / )

/� (15)

Non-linear fits for J  >  0 do not converge using the classical least-squares Levenberg–
Marquardt algorithm [45, 46]. To obtain the parameters presented in table  2, the Nelder–
Mead method [47] was employed, which does not provide statistical error estimates for the fit 
parameters. Fit results can be governed by any of a multitude of local minima, depending on 
the initial guesses and the choosen fit interval. Judging by the connected variation in param
eter values, the accuracy of the tabulated parameters should be assumed to be no better than 
20%, except for the values of /λ zR  which vary by less than 5%.

It is apparent from figure 2 that the uncorrected LSI ansatz fails to describe the asymptotic 
behavior of χ, giving /λ ≈z 1.17R . So does the logarithmic form with J  =  1. The form with 
J  =  2, which is predicted by the theory yields much better fits, with /λ ≈z 1.22R , agreeing 
with the asymptotic value obtained earlier / ( )λ =z 1.23 2R

tail . The parameter fits presented in 
table 2 take into account the observed time interval ⩽ / ⩽t s1 200. When the fit is limited to the 

Figure 2.  Plots of equation (15) in case of SCA autoresponse calculations with p  =  0.95 
and q  =  0. Sample sizes are ==n 23 849sSCA, 30  for s  =  30 (a) and ==n 12012sSCA, 100  
for s  =  100 (b). Best fits are determined from the region ⩽ / ⩽t s1 10.

Table 2.  Parameters for best fits of χf ,L LSIJ  forms to KPZ autoresponse functions for 
⩽ / ⩽t s1 200. Values for /λ zR  in parenthesis result from fits considering ⩽ / ⩽q t s 10, 

as presented in figure 2. =a 0.24 for all fits. Error margins are not given, because the 
method employed for fitting does not provide meaningful estimates.

/λ zR ′a A0 A1 A2 A3

s  =  30 f L LSI0 1.164 (1.167) 0.016 38.833
f LLSI1 1.164 (1.144) 0.023 35.085 0.187
f L LSI2 1.224 (1.219) 0.501 4.938 1.772 −0.431
f L LSI3 1.224 (1.224) 0.505 4.790 1.716 −0.422 −0.004

s  =  100 f L LSI0 1.186 (1.191) 0.006 102.584
f LLSI1 1.165 (1.142) 0.100 14.444 0.844
f L LSI2 1.230 (1.224) 0.490 5.544 2.019 −0.472
f L LSI3 1.230 (1.233) 0.475 5.506 1.914 −0.437 −0.008

J. Phys. A: Math. Theor. 50 (2017) 12LT01
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interval ⩽ / ⩽t s1 10, the results for λR (values in parentheses) do not change significantly. This 
means, that the χf ,L LSI2  form describes the corrections, affecting the autoresponse function at 
early times, well enough to determine the correct asymptotic autoresponse exponent just using 
early-time data.

The form with J  =  3 shows marginally better agreement with the data in figure 2. In fits to 
the whole observed time interval, the amplitude A3 of the added third-order term is severely 
suppressed (table 2). Adding another fit parameter, a slightly better fit would be expected. The 
small absolute value of A3 in relation to A2 suggests, that a third order correction does not 
carry physical meaning, supporting the L2LSI theory.

The values of the coefficients for J  =  2 and 3 are similar at different waiting times. This 
satisfies our expectation, since aging is described by the s−a term in equation (10) alone and 
the functional form of ( / )χf t s  should not depend on s explicitly. The autoresponse functions 
we obtained by less precise simulations also agree with the L2LSI theory, but they exhibit too 
much noise to exclude a logarithmic series like (14).

In conclusion, we provide numerical evidence that the L2LSI theory describes well aging 
data of the autoresponse function for all measured times in case of the 2  +  1 dimensional 
KPZ surface growth. We obtained precise estimates for the autoresponse exponent as well as 
for the aging exponents. In particular a ( )λ = 2.00 6R  estimate seems to emerge from our high 
precision parallel simulations. Our code can be extended to also calculate the space-dependent 
part of the KPZ response function. For the autocorrelation functions of the KPZ model fC,L LSI2  
a form is yet to be proposed. Our simulations generate high precision correlation data for 
heights as well as density variables that remains to be tested later against different aging func-
tions [41].
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