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Theoretical research and experiments suggest that the brain operates at or
near a critical state between sustained activity and an inactive phase,
exhibiting optimal computational properties (see:

Individual neurons emit periodic signals
(Y. Penn et al PNAS 113 (2016) 3341)

— Criticality at the synchronization transition critical point



Why would be brain near criticality ?

r(ms °)

Pros:

Diverging fluctuations —
High sensitivity to stimuli

Diverging correlation functions —
Optimal transmission and
storage of information

Maximal information processing and computational performance

Cons: Tuning to critical point

Self-organized critical mechanism ?



Kuramoto oscillator model (1975)
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oscillators, Phase-locking is governed by the coupling strength K and
the distribution of intrinisic frequencies w. Here, the intrinsic frequencies
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Exhibits an initial growth: Rt N) =N""*t"f(t/N*) for incoherent initial state

Critical synchronization transition for D > 4 spatial dimensions,
which is mean-field like: i.e. D — oo (full graph)

The dynamical behavior suffers very strong corrections to scaling and chaoticity, see:

Rébert Juhdsz, Jeffrey Kelling and Géza Odor:
Critical dynamics of the Kuramoto model on sparse random networks
J. Stat. Mech. (2019) 053403



Growth of synchronization on sparse, synthetic
small-world networks

2D lattices of linear size L = 6000,
periodic boundary conditions,

+ extra random long link between
connecting any edges: <k> = 5,
90.000.000 edges

Growth runs from random initial state
Runge-Kutta-4 parallelized for GPUs
Maximum time: ¢, = 1000,

average over: /0000 independent @,
realizations

Critical point located at K=0.4773
Critical exponent: 1 = 0.55 (10)
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Determination of the characteristic time

exponent 7

Measure characteristic times 7, of first
dip below: R, = (1/N)1”

average over: 10.000 independent @,
distribution realizations
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What do we know about neuron networks ?

The largest precisely explored structural networks contains
~302 neurons (C. Elegans) (very recently fruit fly map is reported)

Connectomes, obtained by approximative methods like diffusion MRI
contain < 106 nodes (voxels)

Recently DMRI tractrography was confirmed by tract-tracing in ferret



Open Connectome Large Human graphs

Diffusion and structural MRI images with
1 mm3 voxel resolution :

1035 —-106 nodes
Hierarchical modular graphs
Top level: 70 brain region (Desikan atlas)

Lower levels: Deterministic tractography:

Fiber Assignment by Continuous Tracking
(FACT) algorithm

Map : voxel — vertex (~ 10 7)
fiber — edge (~ 10 10)
+ noise reduction — graph

undirected, weighted
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The topology of large Open
Connectome networks for the

human brain

Michael T. Gastner? & Géza Odor?

The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at
ever finer spatial resolution thanks to advances in neursimaging. Here we analyze several large data
sets forthe human brain network made available by the Open Connectome Project. We apply statistical
model selection to characterize the degree distributions of graphs containing up to ~+10% nodes and ~10"
edges. & three-parameter generalized Weibull (also known as a stretched exponential) distribution is a
good fit to most of the observed degree distributions. For almost all networks, simple power laws
cannot fit the data, but in some cases there is statistical support for power laws with an exponential
cutoff, We also calculate the topological (graph) dimension D and the small-world coefficient o of these
networks. While o suggests a small-world topology, we found that D < 4 showing that long-distance
connections provide only a small correction to the topology of the embedding three-dimensional space.
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Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weighted edges

The synchronization transition point
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K.=1.7 and growth exponent: 1 = 0.6(1)



Duration distribution for the KKI-18 graph

Measure characteristic times 7, of first

dip below: R, = (1/N)!”2

10

average over: 10.000 independent @.
realizations

p(t)

Histogramming of 7, at the critical point

Critical exponent: 7, = 1.2 (1)

10

obtained by fitting for the PL tails
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Below the transition point : K < 1.6
non-universal power laws in the range

of experiments of activity durations :
1.5< 7 <24 (Palvaetal 2013)
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Inhibitions: 20% of links: w, = -w, randomly

10

Inhibitory (negative) links
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K increases to 1.9(1), but 11 = 0.6(1) remains the same, and below it:

Duration scaling exponent within experimental range: 1.5 <7 <2.4

J.M. Palva et al PNAS 110 (2013) 3585



Inhibitory nodes

Inhibitions: 5% of nodes: w. — -w_randomly

10"

+135
| b s * 1.45
10 1.55
' 0T 175

i) 1]

1 3 *.‘;.{. Tx-1 ik

pt,)

" RS

—

L * e
10 3 " e

0 L

10’ ' 10’ 1o

t

X

Figure 9. Duration distribution of #; on the KKI-18-I model in case of 5% inhibitory node assumption for K = 1.35 (+),
K = 1.45 (bullets), 1.55 (boxes), 1.75 (triangles). The dashed line shows PL fits to the tail region: ¢, > 20.

K =1.7(1) and i1 = 0.6(1) remains the same. Sub-critically:

Duration scaling exponent within experimental range: 1.5 <7 <2.4
J.M. Palva et al PNAS 110 (2013) 3585



Galilean invariance of the Kuramoto model with
respect to the @. distribution

Brain experiments: @, > 0
distributions are narrow: o ;~ 0.02
and have mean value: <@ > ~ 0.05

6:(t) = wip + K Y Wi;sin[f;(t) — 6:(¢)]

]

< ;> #0 can be gauged out by a rotating coordinate system

Rescalingof w; as: o, 2 aw;,’ t—(l/a)t’ K—akK'

l

Existing results can be transformed for later times and weaker
couplings



Conclusions

Heterogeneity effects are considered on large connectomes and
random small-world graphs

This enables us to distinguish from finite size rounding effects

Large OCP graphs show: ~ degree distribution universality, finite
Dimensionality and small-worldness

For Erdds-Rényi : Mean-field dynamical scaling with ugly corrections
New method to determine crossover to synchronization and 7,

Below the transition point non-universal scaling of phase synchronization
“Frustrated synchronization” ~ Griffiths Phase ?

Duﬁrations, with exponents agreeing in vivo activity experiments for
umans

Effects of inhibitory links, nodes
Invariance with respect to frequency distributions
Insensitivity for additive Gaussian noise

G.O and J. K, arXiv:1903.00385, accepted in Scientific Reports



Explanations for tuning to criticality

=] Self-organized criticality
No aoctivity /’
Cird er Fine tuning by feedbock
Criticality
Disorder ;
: Griffiths phase

High (chootic) octivity
Stretching criticolity throuwgh
neural network architecture

TRENDS in Cogniive Sciences

SOC < GP do not exclude each other
For SOC we need a responsible feedback mechanism,
GP can occur spontaneously in heterogeneous systems

GP ~ Frustrated synchronization



OPEN UME PROJEGT

COLLECTIVELY REVERSE-ENGINEERING THE BRAIN ONE SYNAPSE AT A TIME.

connectHOME | INFO | IMAGES ﬁ GRAPHS

Freely downloadable images and graphs of humans and animals:
https://neurodata.io.




OCP graph dimension measurements

Breadth-first search algorithm from each
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OCP graph analysis

Degree distribution : scale-free ?

Maximum likelthood method
N
Z(v) = []Pr(ki,v)
i—=1

Akaike information theory model
selection:

2K(K +1)

= 2In(L(V) 42K+ ——"—
AIC, n(Z(9)) +2K +

Vy, V, ... Vg parameters,
maximizing £

Best model : stretched exponential,
with ~ universal exponent
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Kuramoto model on the random Erdos-Rényi
osraph, desynchronization
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Figure 7. Effective decay exponents d.¢ (1) as a function of time obtained numerically
in the ER graph (k= 1) combined with a 2d lattice, for different values of K and
sizes N = 6000 (thin lines) and N = 10000 (thick lines). The dashed horizontal line
indicates the asymptotic value § = 1/2 of the mean-field universality class, while
the vertical line shows the estimated cutoff time for the larger size.

Runge-Kutta-4 GPU solution for zero centered @, of unit variance

Decay of R(t) near the critical point for different sizes

Mean-field behavior + non-monotonic corrections to scaling (?)



OCP small world coefficient

- C/C}
- L/Lr
cA number of closed triplets
number of connected triplets
[ = Zd(‘* j) I ln(N;) —0.5772 n l,’2
N(N — 1 r=
{ J?é; In(k:’
KKl N Nodiges 1k} L L (i [ Cr T ar
10 | 040= 10F | 8.68=1 18471 | 11.38 | 302 | 5.04 <107 | 320=10-7 | 1.97 = 10-% | 803.26 | 433.09
11| 863 10° | 707 10 | 163.84 | 1225 [ 307 | 599 10" | 324101 | 190« 10~ | 789.23 | 427.60
12 [ 744 10° | 498510 | 13379 | 13.91 [ 314 | 602 107" | 3581071 | 1.80< 10~ | 757.12 | 45043
13 | 846 10° | 593107 | 140017 | 12296 [ 314 | 6025 107" | 356 107" | 166 < 10-* | 88174 | 52158
14 | 770 10° | 536 107 | 13910 [ 13.10 | 3.13 | 6.01 x 10 Pl 3621077 | 181104 | 70464 | 47299
15 | 847 =« 10° | 6.94 10 | 163.84 | 12.80 | 3.06 | 590 10~" | 332107 | 1.94 10~ | 740.79 | 411.13
16 | 7.60 10° | 5705 10 | 150001 | 12203 [ 3.09 | 602 107" | 338 10-" | 1982 10-* | 78248 | 438,63
17 [ 787 = 10° | 5200 10F | 13220 | 13.00 | 346 | 6.02= 107" | 373 10-" | 168 10-* | 869.74 | 520.15
18 | 840 10° | 663 = 10F [ 15621 | 1030 | 3.00 | 508 < 10! [ 358 « 10" | 1.84 = 10~ | 82809 | 531.35
10 [ 731105 | 494 10F | 13490 | 1317 | 314 | 602 10-! | 359 % 10~ | 185 104 | 77596 | 462.90

Table 4. Summary of small-world properties for the studied KKI graphs. N Nedges: number of nodes and edges. (k) mean
degree. L: average shortest path length. Lt ex pectation value for the average shortest path Icnglh in Erdas-Renyi graphs with
the same N and Negges. W A clustering cocfficients defined by Eq. 10 and 11, respectively. O mean clustering cocfficient
in Erdos-Rienyi graphs. a®  o: small-world cocfficient defined by Eq. 9. based on either C% ar C8.

Finite graph dimension < small world network (6 > 1)



The effect of additive stochastic noise

Gaussian distributed annealed noise 1s added:

0:(t) =wio+ K Z W;; sin[8;(£) — 0:(¢)] + s&(2)
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