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Abstract
Large scale, dynamical simulations have been performed for the two 
dimensional octahedron model, describing the Kardar–Parisi–Zhang (KPZ) 
for nonlinear, or the Edwards–Wilkinson class for linear surface growth. The 
autocorrelation functions of the heights and the dimer lattice gas variables 
are determined with high precision. Parallel random-sequential (RS) and 
two-sub-lattice stochastic dynamics (SCA) have been compared. The latter 
causes a constant correlation in the long time limit, but after subtracting it 
one can find the same height functions as in case of RS. On the other hand the 
ordered update alters the dynamics of the lattice gas variables, by increasing 
(decreasing) the memory effects for nonlinear (linear) models with respect 
to RS. Additionally, we support the KPZ ansatz and the Kallabis–Krug 
conjecture in 2 + 1 dimensions and provide a precise growth exponent value 
β = 0.2414(2). We show the emergence of finite size corrections, which occur 
long before the steady state roughness is reached.

Keywords: driven lattice gas, surface growth, autocorrelation, Kardar–
Parisi–Zhang class, stochastic cellular automaton, Edwards–Wilkinson class

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

J Kelling et al

Dynamical universality classes of simple growth and lattice gas models

Printed in the UK

035003

JPHAC5

© 2017 IOP Publishing Ltd

51

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aa97f3

Paper

3

1

22

Journal of Physics A: Mathematical and Theoretical

IOP

2018

1751-8121/18/035003+22$33.00  © 2017 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 51 (2018) 035003 (22pp) https://doi.org/10.1088/1751-8121/aa97f3

https://orcid.org/0000-0003-1761-2591
mailto:j.kelling@hzdr.de
mailto:odor@mfa.kfki.hu
https://doi.org/10.1088/1751-8121/aa97f3
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aa97f3&domain=pdf&date_stamp=2017-12-14
publisher-id
doi
https://doi.org/10.1088/1751-8121/aa97f3


2

1.  Introduction

Nonequilibrium systems are known to exhibit dynamical scaling, when the correlation length 
diverges as ξ ∝ t1/z, characterized by the exponent z. Simplest models are driven lattice gases 
(DLG) [1], which in certain cases can be mapped onto surface growth [2, 3]. Therefore, under-
standing DLG, which is far from being trivial due to the broken time reversal symmetry [4], 
and is possible mostly by numerical simulations only, sheds some light on the corresponding 
interface phenomena [5]. The simplest example is the asymmetric simple exclusion process 
(ASEP) of particles [6], in which particles and holes can be mapped onto binary surface slopes 
[7, 8] and the corresponding continuum model can be described by the Kardar–Parisi–Zhang 
(KPZ) equation [9]

∂th(r, t) = σ∇2h(r, t) + λ(∇h(r, t))2 + η(r, t),� (1)

where the scalar field h(r, t) is the height, progressing in the D dimensional space relative to its 
mean position, that moves linearly with time t. This equation was inspired in part by the sto-
chastic Burgers equation [10] and can describe the dynamics of simple growth processes in the 
thermodynamic limit [11], randomly stirred fluids [12], directed polymers in random media 
[13], dissipative transport [14, 15], and the magnetic flux lines in superconductors [16]. In 
case of surface growth σ represents a surface tension, competing with the nonlinear up–down 
anisotropy of strength λ and a zero mean valued Gaussian white noise η. This field exhibits 
the covariance 〈η(r, t)η(x′, t′)〉 = 2ΓδD(r − r′)(t − t′). The λ = 0, linear equation describes 
the Edwards–Wilkinson (EW) [17] surface growth, an exactly solvable equilibrium system.

Several discrete models obeying these equations have been studied [2, 7, 18]. The morph
ology of a surface of linear size L is usually described by the squared interface width

W2(L, t) =
1
L2

L∑
i,j

h2
i,j(t)−

(1
L

L∑
i,j

hi,j(t)
)2

.� (2)

In the absence of any characteristic length simple growth processes are expected to be scale-
invariant [19]

W(L, t) ∝ Lαf (t/Lz),� (3)

with the universal scaling function f (u):

f (u) ∝
{

uβ if u � 1
const. if u � 1.

� (4)

Here α is the roughness exponent in the stationary regime, when the correlation length ξ has 
grown to exceeded L, and β is the growth exponent, describing the intermediate time behavior. 
The dynamical exponent z can be expressed as the ratio of the growth exponents:

z = α/β.� (5)

Apart from the exponents, the shapes of the rescaled width and height distributions of the 
interfaces ΨL(ϕL) were shown to be universal in KPZ models in both the steady state [20] and 
the growth regime [21]. Here, ϕL denotes the interface observable in question, W2 or h, in a 
system of linear size L. In fact many people define the universality classes by these quanti-
ties, which can be obtained exactly in one dimension for various surface geometries, like flat 
[22] or curved [22–24] interfaces. The non-rescaled probability distributions are denoted by 
PL(ϕL) and their moments are defined via the distribution averages as:

J Kelling et alJ. Phys. A: Math. Theor. 51 (2018) 035003
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Φn
L[ϕL] =

∫ ∞

0
(ϕL − 〈ϕL〉)n PL(ϕL) dϕL.� (6)

Two standard measures of the shape, the skewness

SL[ϕL] = 〈Φ3
L[ϕL]〉/〈Φ2

L[ϕL]〉3/2� (7)

and the kurtosis

QL[ϕL] = 〈Φ4
L[ϕL]〉/〈Φ2

L[ϕL]〉2 − 3,� (8)

are calculated in the steady state or in the growth regime. The universal, rescaled forms are:

ΨL[W2(L)] = 〈W2(L)〉PL(W2(L)/〈W2(L)〉)� (9)

for the width and

ΨL[hL(r)] = LαPL(hL(r)/Lα)� (10)

for the surface height. Note, that 〈hL〉 ≡ Φ0
L[hL] ≡ 0 in the co-moving frame of the surface.

While many systems are described by a single dynamical length scale, aging ones are best char-
acterized by two-time quantities, such as the dynamical correlation and response functions [25]. In 
the aging regime: s � τm and t − s � τm, where τm is a microscopic time scale and s is the start 
time, when the snapshot is taken, one expects the following law for the autocorrelation function

C(t, s) = 〈φ(t, r)φ(s, r)〉 − 〈φ(t, r)〉 〈φ(s, r)〉� (11)

∝ s−b(t/s)−λC/z,� (12)

here 〈〉 denotes averaging over both lattice sites and independent samples; λC is the autocor-
relation and b is the aging exponent. The function φ denotes the measured quantity, which can 
be the particle density of the lattice gas or the surface height h(t, r). In the latter case,

Ch(t, s) = 〈h(t, r)h(s, r)〉 − 〈h(t, r)〉 〈h(s, r)〉 ,� (13)

for t = s one finds:

=
〈
h2(s, r)

〉
− 〈h(s, r)〉2

= W2(L → ∞, s) ∝ s−bh · fC(1).

This implies the relation

bh = −2β,� (14)

which must be satisfied in the L → ∞ and s → ∞ limit. We have also calculated the auto-
correlation of the slope (lattice gas occupancy variables) n(t, r) as:

Cs(t, s) = 〈(n(t, r)− n) (n(s, r)− n)〉
= 〈n(t, r)n(s, r)〉 − n2

= s−bs f ′C
( t

s

)
,

�

(15)

where n = 0.5 is the conserved average occupancy of sites. However, Cs(t, s) decays much 
faster than the height auto-correlator and obtaining reasonable signal/noise ratio requires 
much higher statistics.

A dynamic, perturbative renormaliztion group (RG) analysis of the KPZ equation [26, 27] 
suggested that the short and the long time scaling behavior of the height correlation function 
are identical and deduced a scaling relation for the exponent of Ch(t � s, s → 0) ∝ (t/s)−θ as:

J Kelling et alJ. Phys. A: Math. Theor. 51 (2018) 035003
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θ = (D + 4)/z − 2 .� (16)

Since θ = λC/z + 2β , due to (14) the relation (16) holds exactly in the solvable 1 + 1 dimen-
sional case. In D � 2 dimensions perturbative RG cannot access the strong coupling KPZ 
fixed point [28], thus the validity of this law should be tested by precise exponent estimates.

A conjecture based on a purely geometric argument, advanced by Kallabis and Krug [29], 
which can also be deduced from the scaling relation (16) claims D = λC  in any dimensions. 
In [30] we provided marginal agreement for this in D = 2 and [31] also suggested it using 
solid-on-solid models, although clear power laws were not reached within the times studied. 
Here we provide stronger numerical evidence in case of different lattice gas dynamics.

In aging systems a similar scaling form is expected for the autoresponse function of the 
field φ:

R(t, s) =
δ 〈φ(t)〉
δj(s)

∣∣∣∣
j=0

= s−1−afR
( t

s

)
� (17)

where j is the external conjugate to φ and a denotes the so-called aging exponent a. The uni-
versal scaling function exhibits the asymptotic behavior fR(t/s) ∼ (t/s)−λR/z  with the autore-
sponse exponent λR. In equilibrium λC = λR and a = b due to the fluctuation-dissipation (FD) 
symmetry [32]. In nonequilibrium systems these exponents can be completely independent. 
Therefore, we shall determine them one-by-one and investigate if some extended FD relation 
may occur among them. This has been done, using our very recent aging response expo-
nents [33], determined to test the validity of a logarithmic extension of local scale-invariance 
(LSI) [32] proposed in [34] and work on such extensions in other models has been continued 
recently [35, 36].

Throughout the present study we compare results obtained using two common updating 
schemes for lattice models: random-sequential (RS) and stochastic cellular automaton (SCA) 
(checkerboard) updates. We find constant as well as non-trivial corrections to the dynamical 
correlation functions produced by the SCA and also observe differences in the corrections to 
scaling.

This paper is structured as follows. The investigated model and the simulation algorithms 
are introduced in section 2. Roughness growth results are presented in section 3.1, while auto-
correlation and aging date can be found in section 3.2. We conclude the paper with a discus-
sion of the main implications of our results in section 4.

2.  Models and simulation algorithms

Discrete models set up for KPZ have been studied a lot in the past decades [2, 7, 18]. A map-
ping between KPZ surface growth in two dimensions and DLG has been advanced in [37, 38] 
an extension of the ‘rooftop’ model of [7, 8]. We called it octahedron model, characterized by 
binary slope variables σx/y at the edges connecting top vertexes of octahedra [38] represent-
ing atoms. The σx/y take the values 0 or 1 to encode down or up slopes, respectively. Thus 
deposition or removal of octahedra corresponds to a SCA, with the simple Kawasaki update 
rules [38]

(
0 1
0 1

)
p
�
q

(
1 0
1 0

)
,� (18)

where p and q denote the acceptance probabilities. Projecting the edges onto a plane yields a 
square lattice of slopes, which can then be considered as occupancy variables. This maps the 
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octahedron model onto self-reconstructing dimers following an oriented migration along the 
bisection of the x and y directions of the surface (see figure A1 of the supplementary material 
for a 3D depiction (stacks.iop.org/JPhysA/51/035003/mmedia)). In this picture the surface 
heights must be defined relative to a reference point h1,1 = 0 and can be reconstructed from 
the slope variables as

hi,j =

i∑
l=1

[2σx(l, 1)− 1] +
j∑

k=1

[2σy(i, k)− 1] .� (19)

Discrete surface and DLG models usually apply random sequential dynamics. On the other 
hand in certain cases synchronous, so called SCA-like site updating can prove to be useful, 
especially for simulations on parallel computers. This study is based on massively parallel 
simulations on graphics cards (GPUs). Synchronous updating in case of one-dimensional 
ASEP models has already been investigated [39–41]. One-point quantities in the bulk, like 
particle current or surface growth have been shown to exhibit the same behavior as in case of 
RS. However, n-point correlation functions may be different.

Here we extend the parallel two-sub-lattice scheme developed for ASEP [40] to the two 
dimensional dimer model as shown on figure 1, and compare the dynamical scaling results 
with those of the RS dynamics.

While the latter produces uncorrelated deposition and removal processes, SCA dynam-
ics attempts updates in a checkerboard pattern, which are thusly correlated. Because of this, 
blocks of sites to be updated can be visited in a sequential order within a SCA sub-lattice 
step, allowing for very efficient implementation [42], matching perfectly parallel processors 
of GPU architectures [43].

Performing RS simulations on GPUs is less straight-forward, because unwanted correla-
tions may be introduced [30]. In order to eliminate these and to achieve results as close to 
really sequential simulations as possible, we apply a new DD scheme, with two layers of DD 
to match the GPU architecture. At level one, in a double tiling decomposition, the origin is 
moved randomly after each sweep of the lattice (DTr). At level two, these tiles are subdivided 
further, with a logical dead border (DB) scheme. Collective update attempts are preformed 
inside these cells, excluding one lattice site-wide borders around each. Here, the decompo-
sition origin is moved randomly after each collective update attempt. This scheme will be 
referred to as DTrDB in the following. Details of the new implementation are documented 
elsewhere [44].

In order to estimate the asymptotic values of different exponents for t → ∞, local slope 
analyses of the scaling laws were performed [5]. For example in case of the interface width 
growth we used

βeff

(
ti − ti/2

2

)
=

lnW(L → ∞, ti)− lnW(L → ∞, ti/2)

ln(ti)− ln(ti/2)
.� (20)

In our studies the simulation time, measured in Monte Carlo step (MCS), between two mea-
surements was increased exponentially

ti+1 = (ti + 10)em,� (21)

using m = 0.01 and t0 = 0. A flat initial state is realized by a zig-zag pattern with 
W2(L, t0) = 0.25. The simulations are subject to periodic boundary conditions.

Statistical uncertainties are provided as 1σ–standard errors, defined as ∆1σx = √
〈x2〉 − 〈x〉2/(N − 1). Throughout this study we used the implementation of the 
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Levenberg–Marquadt algorithm [45, 46] in the gnuplot software [47] for non-linear least 
squares fitting.

For p = q > 0 the octahedron model describes the surface growth of the EW equation [38] 
in 2 + 1 dimensions. In this case the autocorrelation function of heights has been derived [48, 
49]:

CEW
h = c0 ln

(
t + s
t − s

)
,� (22)

where c0 is a model-dependent constant. This function approaches 0 for t � s as a power law 
(PL) with the exponent λC,h,EW/zEW = 1, where zEW = 2. In section 3.2.2 we shall reproduce 
this result numerically as a test of our simulations.

3.  Results

Extensive dynamical simulations were performed using both RS and SCA updating schemes. 
To avoid finite-size effects we considered large systems with lateral sizes of L = 216.

In SCA simulations the deposition probability must be p < 1 in order to allow stochastic 
noise. We investigated three cases: p = 0.5, 0.75 and 0.95 in depth. While KPZ runs were 
performed without removals: q = 0, in the EW growth we applied p = q = 1 for RS and 
p = q = 0.5 for SCA.

The roughness scaling of the interface width is analyzed in section 3.1. This is followed by 
autocorrelation and aging studies of the height as well as lattice-gas variables in section 3.2.

3.1.  Roughness scaling

To compare numerical results coming from different updates we determined experimentally 
a scaling function f (t, p), that provides collapses of W(L, f (t, p)) for different dynamics. In 

Figure 1.  Schematics of the two-sub-lattice SCA updates of the dimer lattice gas 
model. Circles: empty sites (down slopes), bullets: filled sites (up slopes). Solid, black 
lines denote areas where the rule (18) is applied at t odd, while dashed red lines encircle 
areas for update at even t time steps. Diagonal, dashed lines are parallel with the x and 
y axis and are projection of the octahedron edges.

J Kelling et alJ. Phys. A: Math. Theor. 51 (2018) 035003
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case or RS dynamics this function is linear fRS(t, p) ∝ p. Since the p → 0 limit of the SCA 
corresponds to RS updating, we tried to extend the linear form analytically. A smaller survey 
study of SCA for a larger number of different p � 0.95 values was used to obtain this function 
numerically and resulted in the following nonlinear extension:

fSCA(t, p) = t̃( p) = t · p ep .� (23)

The speedup with respect to linear function of RS can be understood as follows. A dimer, 
that was moved at a given time step becomes the target of another update at the next sub-
lattice step in the p → 1, q = 0 case. This is more effective than random sequential updating. 
Therefore, the roughness growth is faster under SCA than under RS dynamics. One can test 
this function by observing a reasonably collapse on figure 2(a) for different p–s of SCA as 
compared to the RS results.

Figure 2(b) shows the effective scaling exponents βeff , as defined in (20), for SCA and 
RS simulations as the function of the rescaled time variable. Most notably, the βeff  exponent 
results exhibit slightly shifted plateaus for almost two decades in time, but the difference lies 
well within the error-margin of our best published result βeff = 0.2415(15) [50].
Random-sequential. The pronounced plateau visible for DTrDB, suggests that corrections at 
these late times are small, thus the βeff  here should be close to the asymptotic value for β. This 
leads to the estimate β = 0.2414(2), where the error margin is about the size of the 1σ-error 
bars attached to the effective exponents at late times.
Stochastic cellular automaton. Like in the RS case, there are almost two decades long pla-
teaus in the effective exponents, depending on p for L = 216. The plateau value differences 
are beyond the statistical fluctuations and the DTrDB result. The deviation from the RS result 
shrinks as we decrease p, i.e. as we introduce more and more randomness. This is plausible, 
but smaller p also means less effective simulations.

The plots also show a break down of βeff  at late times. Such behavior can be attributed to 
the onset of the steady state, which is not apparent from existing finite size scaling studies 
[50], where ξ ∝ tz ∼ L  appears to be reached about one decade later than the left end of the 
displayed plot.

Most importantly, the βeff  curve does not show this cut-off in the plateau in case of our 
largest sized L = 217 data, but matches perfectly the RS result. It only shows noise related 
oscillations within the 1σ-error margin. This indicates that the cut-off is related to finite sizes 
that will be investigated further in the following section.

3.1.1.  Distribution of interface heights in the growth regime.  In order to get information about 
the shapes of the distribution of the SCA interface heights we calculated their lowest moments 
for L = 216 and for a smaller L = 212, to distinguish finite time from finite size-corrections. 
Figure 3 shows the evolution of the cumulant ratios S[h] and Q[h], defined by (7) and (8). The 
curves approach their growth regime asymptotic values, but move away again at late times. 
These values: S∞ and Q∞ can be determined by performing a fit of the form:

R(t) = R∞ + aR/̃t2β + bR/̃t4β ,� (24)

where β is the growth exponent, which is motivated by the KPZ ansatz discussed in the next 
section. We use t̃ , defined in (23), so the timescales match between RS and SCA run across 
various deposition probabilities. In (24), R is a placeholder for S[h] or Q[h], in the interval: 
200 � t̃ � 200 000 MCS, which excludes early time oscillations as well as the cut-off at late 
times, coming from ξ → L. This yields S∞ = −0.427(2) and Q∞ = 0.352(3) for the growth 
regime, in agreement with literature values [51–54] of the KPZ universality class. The sign 
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of S depends on the choice p ≷ q in the simulations, corresponding to sign(λ) of the KPZ 
equation (1).

Panel (b) of figure 3 shows the deviations from these asymptotic values. The error estimates 
given above originate from this representation: The error is assumed to be on the order of the 
closest approach of the numerical data to the asymptotic value.

Figure 2.  Width-scaling under stochastic cellular automaton dynamics. (a) Width 
curves collapsed over p by rescaling time as t̃ = t · p ep. For comparison the double 
tiling domain decomposition with random origin at device level and single-hit dead 
border at block level result is also shown (black dashed line). (b) Effective scaling 
exponents under stochastic cellular automaton dynamics for p = 0.95 (n � 2254), 
p = 0.75 (n � 6430) and p = 0.5 (n � 373, n � 3062). Random-sequential data is 
shown for comparison (n � 708). Propagated 1σ error bars are attached to the effective 
exponents, merging into an error-corridor at late times due to the dense placing of 
points.

Figure 3.  Skewness S[h] and kurtosis Q[h] of the distribution of interface heights in 
the growth regime. The data belongs to the set of stochastic cellular automaton runs 
with p = 0.75, L = 216 (nSCA, p=0.75 � 6430, compare figure 2). The skewness for a 
smaller dataset for L = 212 (nSCA, p=0.75,L=212 � 45), which reaches the steady state 
regime at late times in the plot, is included to illustrate finite-size behavior. (a) Cumulant 
ratios as functions of time. The horizontal lines show the obtained fit parameters for 
the asymptotic values, to guide the eye. See text for proper values with error estimates.  
(b) Finite-time and finite-size corrections to the asymptotic values of the cumulant ratios.

J Kelling et alJ. Phys. A: Math. Theor. 51 (2018) 035003
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After the closest approach to the asymptotic values in the growth regime, S(̃t) and Q(̃t), both, 
move in the direction to their respective values in the steady state: S∞ ≈ 0.26 and Q∞ ≈ 0.13 
[42, 55–57]. The shape of the distribution of surface heights changing in this way is an indi-
cation of finite-size effects becoming relevant at t̃fs ≈ 3 × 105 MCS. This coincides with the 
time at which the cut-off5 in βeff(̃t) was observed in SCA runs for L = 216 (see figure 2(b)). 
Hence it becomes clear, that this change in βeff  is caused by finite-size effects. In figure 3(b) 
we also plotted S[h](̃t) of a smaller system (L = 212), for which the steady state is reached 
after the relaxation time τ = Lz ≈ 6 × 105 MCS, but finite-size corrections are evidently rel-
evant long before then.

3.1.2.  Kardar–Parisi–Zhang ansatz for the growth regime.  Analytical and numerical invest
igations of KPZ models in 1 + 1 dimensions found that finite-time corrections to h(t) took the 
form ∝ t−β  for the interface height [24, 58–61]:

h(t) = sign(λ) · (Γt)βχ+ ξ + ζt−β ,

where λ, Γ, ξ and ζ are model-dependent parameters and χ is a universal random variable with 
Gaussian orthogonal ensemble (GOE) distribution in case of a flat initial condition. The KPZ 
ansatz hypothesis states, that a generalisation of this form should also hold in higher dimen-
sions [51, 54]. Higher moments of the height 〈hn〉 show corrections ∝ t−nβ, accordingly, and 
thus ∝ t−2β for the roughness, prescribing:

βeff = β +

N∑
n=1

cnt−2nβ ,� (25)

with non-universal parameters cn and N6. Moreover, good agreement between the numerics 
and experiments has been found [31, 62, 63]. In the 2 + 1 dimensional restricted solid-on-
solid model (RSOS) model, the dominant corrections to the roughness growth were found 
to be of order ∝ t−4β [54], which motivates the inclusion of higher orders in these forms in 
higher dimensions [51, 52, 54, 64]. Ideally, such a model would fit the data well as soon as 
all relevant orders are included. Adding more terms should not improve the fit quality further. 
However, adding more free parameters in this way can result in overfitting of a noisy data, if 
not convergence-problems.

Figure 4 shows fitting results using (25) on the previously introduced datasets. It is imme-
diately apparent, that (25) with N = 1 does not describe the presented data, n = 2-terms are 
required, as in case of the RSOS model. In case of RS simulations, the ansatz appears to fit 
reasonably well early times: t̃ � 100 as well. The SCA runs on the other hand show strong 
oscillations at early times, caused by the synchronous updates, and are not described well by 
the KPZ ansatz here. Still, late times before the finite size cutoff becomes effective, (in the 
interval 1 × 10−5 � 1/̃t � 3 × 10−3) can be fitted well by (25), suggesting universality of the 
corrections. This becomes true in the p → 0 limit, as in case of figure 2.

The spread of β values for larger N provides an estimate for overfitting and may serve as 
an error estimate for a small confidence interval of 1σ. For simulations with RS dynamics, 
this yields β = 0.2414(2), which, remarkably, is identical to the result based on the average 

5 The cut-off was observed at t̃′ ≈ 1.7 × 105 MCS at two different times contributing in the calculation of βeff(̃t′): 
t̃1 ≈ 2 × 104 MCS and t̃2 ≈ 3.2 × 105 MCS � tfs.

6 This assumes that ξ and ζ are independent, but there is no guaranty for that. For ballistic deposition in D = 1, a 
strange correction exponent, close to 1/2 was observed (see e.g. [60]), while in our recent RSOS model simulations 
[57] we also found correction exponent β in case of N > 1 levels.
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of the late-time plateaus of βeff . Fit parameters for N � 6 can be found in table B1 of the sup-
plemental material.

3.1.3. The Kardar–Parisi–Zhang dynamical exponent.  The dynamical exponent z = α/β  of 
the KPZ class is related to the roughness exponent α by the Galilean symmetry [12]:

2 = α+ z = α (1 + 1/β) .� (26)

Inserting the our estimate β = 0.2414(2) into this equation  yields α = 0.3889(3) and 
z = 1.611(3). The latter is used to calculate autocorrelation exponents in the next sec-
tion. It should be noted, that the above value for α, while in agreement with earlier numer
ical estimates [42, 50, 64, 65], marginally disagrees with the currently most accepted one 
α = 0.3869(4) [66]. Combining this roughness exponent results with our own estimate for 
β violates equation (26) by about 2.5σ . A slight violation of the Galilean invariance, which 

Figure 4.  Effective exponents βeff  for roughness growth with Kardar–Parisi–Zhang 
ansatz fits using the form (25) to orders one through three. The resulting asymptotic 
values for β are given in the legends accompanied by the uncertainty of the fit parameter. 
The insets show a zoom to the late-time region 1 × 10−5 � 1/̃t � 3 × 10−3 (truncated 
before the finite size break down figure 2(b)). Panel (a) shows the random-sequential 
dataset using DTrDB. Fits were performed in the interval 1 × 10−5 � 1/̃t � 1 × 10−2. 
Panels (b)–(d) show stochastic cellular automaton datasets with p = 0.5, 0.75 and 0.95, 
respectively. The fits were restricted to the interval shown in the inset. The sample size 
for DTrDB, was n � 1044. See the captions of figure 2 for other sample sizes.
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was proposed for discrete systems [67], may explain this disagreement. If this is the case the 
correct dynamical exponent would be z = 1.603(3). However, the validity of the Galilean 
invariance is still widely accepted in literature [28, 18, 65], for this reason we use our α and z 
estimates, obtained using (26), for consistency.

3.2.  Autocorrelation

3.2.1.  Autocorrelation of interface heights in the Kardar–Parisi–Zhang case.

Aging.  The autocorrelation results of the interface heights under RS dynamics are summa-
rized in figure 5. A near-perfect collapse of the Ch(t, s) functions could be achieved by using 
b from the relation (14).

Autocorrelation exponent obtained by random-sequential dynamics.  We calculated effective 
exponents of λC,h/z  and its t/s → ∞ behavior, by an analysis shown in the right inset of fig-
ure 5. In order to read-off the appropriate correction to scaling we linearised the left tail of the 
curves by plotting them on the 

√
s/t scale. This leads to the extrapolations λC,h/z = 1.254(9) 

depending on s.
To clarify the situation we attempted a different type of local slope analysis presented in the 

left inset of figure 5, using tail effective exponents, where each λC,h/z  value was determined as 
the exponent of a PL-fit to Ch(t′, s) for t′ � t. These can be expected to converge more mono-
tonically to the asymptotic value as before, because the left tail data of Ch(t, s) are included in 
the procedure for all tmin with an increasing weight as tmin increases. Indeed, the curves of dif-
ferent s values in figure 5(b) behave more linearly with some additional oscillations. However, 
all curves seem to fluctuate around a common mean, which is not the case for the local slope 
analysis. A single linear fit for the combination of all curves, yields an averaged extrapolation 

of λ̃C,h/z = 1.23(3) in a marginal agreement with our previous result for this λC,h/z = 1.21(1) 
[30] and with the value obtained in [31, 64] for intermediate times.

The present larger error margin takes the uncertainty due to the actually unknown correc-
tions into account. This problem is illustrated in the comparison between effective exponents 
and tail effective exponent, where the former show a smaller apparent extrapolation error. In 
the following we use the simpler extrapolation method based on effective exponents, but esti-
mate the error from their direct fluctuations rather than the uncertainty of the extrapolation fit.

Using our z value the corresponding autocorrelation exponent is λC,heights = 1.98(5). These 
results also hold in simulations with more coarse domain decomposition (DD), where one 
would expect an observable difference if any artificial correlations were present.

Stochastic cellular automaton autocorrelation functions and aging.  SCA updates are spa-
tially correlated, therefore they introduce a contribution to the autocorrelation function, which 
depends on the update probability p < 1. If we want to model cellular automaton like systems 
this is not a problem, but for describing the KPZ equation this is artificial. Figure 6 compares 
the autocorrelation functions of height variables at p = 0.95 and p = 0.5. The most apparent 
property is the finite asymptotic value (figure 6(a)). This is the consequence of frozen regions, 
arising in ordered domains, which are difficult to randomize by the SCA dynamics. In the 
dimer model updates can happen at the boundaries only, besides this alternating domains are 
also stable in case of SCA, they flip-flop at even-odd sub-lattice steps, when p → 1.

We applied an iterative fitting procedure to determine the functional behavior as follows. 
As a first approximation the Ch(t → ∞, s, p) = o( p) limit was determined using a linear 
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extrapolation from the function’s right tail. Subtracting the appropriate value from each curve 
revealed a PL approach to this constant. To obtain refined o( p) values, the exponent x was read 
off from the data, allowing a subsequent fit for the tail in the form:

f (t) = o + c · t−x,� (27)

with free parameters o and c. The corrected exponents converged as x′ → λC/z, after subtract-
ing the refined o( p) values. These iterations yielded self-consistent estimates for o( p) and 
the autocorrelation exponent of the SCA. This procedure is more prone to statistical error for 
small t/s, because Ch(t, s) is farther away from the asymptotic behavior in this case, allowing 
noise in the tail to influence the extrapolated value more strongly. Table 1 lists the calculated 
o( p) limits (including those for the lattice-gas variables, see section 3.2.3).

The limiting value turned out to depend exponentially on p. Note, that similar ep depend
ence has been found in fSCA(t, s) relating SCA and RS timescales7.

Figure 6(b) shows the corrected Ch(t, s) functions, after subtracting the limiting o( p) val-
ues. A nearly perfect data collapse could be achieved using the aging exponent bh, coming 
from the RS simulations. Even more, the corrected SCA and the displayed RS autocorrelation 
functions show identical behavior.

Figure 5.  Autocorrelation results from random-sequential calculations using 
DTrDB. System size L = 216, n � 1044 realizations for s > 30 and n � 473 for 
s = 30. The main panel shows the collapsed autocorrelation functions for waiting 
times s = 30, 100, 500, 1000. Right inset: Corresponding local slope analysis and 
extrapolations assuming corrections of the form 

√
s/t, as drawn. Linear fit was 

performed for 
√

s/t ∈ [0.1, 0.3]. Stated errors are pure fit-errors, see text for actual error 
margins. Left inset: Tail effective exponents obtained from power law fits for intervals 
t � tmin with successively increasing tmin. A linear fit to the combination of all curves is 
displayed as a solid black line, extrapolating to λ̃C,h/z = 1.23(3).

7 These limits could also be determined from the small survey study presented in figure 2(a), comprising much 
smaller sample sizes than the results presented in detail in the following. This data suggests an exponential 
dependence o( p) ∝ exp(νp) with a similar, or possibly the same, value for the parameter ν for both slopes and 
heights. However, these autocorrelation measurements used the same waiting time s, without taking into account the 
p-dependent time-scale. Thus the actual waiting times s̃  decrease with p, which makes the fit performed on the o( p) 
across these runs unsuitable to determine a reliable value for ν.
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Autocorrelation exponent: stochastic cellular automaton.  Local slope analyses of the cor-
rected autocorrelation functions are displayed in figures 6(c) and (d) at p = 0.95 and p = 0.5, 
respectively. Assuming a rescaling of the abscissa: 

√
s/t, allows one to observe a linear behav-

ior of the effective exponents for intermediate times. In case of p = 0.95 the o-values could 
not be determined precisely enough for s > 100, thus we considered extrapolations at 
s = 30, 100 only in a weighted average of the results. This yielded: λC,h/z = 1.26(1) and so 
λC,h = 2.01(2). These values are in good agreement with those obtained from a local slope 
analysis of RS calculations for small s.

Figure 6.  Autocorrelation of KPZ heights from stochastic cellular automaton 
calculations. Error bars have been omitted for clarity. The visible noise is a good 
indication for 1σ error. Panels (a) and (b) show data sets with p = 0.5 (3062 
realizations, t � 1.4 MMCS) and p = 0.95 (3062 realizations, t � 400 kMCS). Lateral 
system size is L = 216. (a) Raw autocorrelation functions showing saturation depending 
on p. (b) Collapsed autocorrelation functions, corrected by the saturation offset o (see 
text). Plots for p = 0.5 (lower set of curves) use paler variations of colors than those 
of p = 0.95 for the same s, to make them distinguishable at late times. The DTrDB 
autocorrelation function of s = 100 is also displayed for comparison. The bottom 
panels (c) and (d), show the local slope analysis corresponding to the p = 0.95 and 
p = 0.5 data sets, respectively. Extrapolations assume corrections of the form 

√
s/t, as 

drawn. Printed error margins are pure fit-errors.
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The effective exponents for p = 0.5 show a slightly decreasing tendency with s in  

figure 6(d), moving towards the RS estimate λ̃C,h/z = 1.23(3). However, we cannot consider 

the extrapolated values for s = 500 and s = 1000 more precise, than those at s = 30, 100, 
because the determination of the o(s) constant becomes more uncertain at higher times, increas-
ing the possible error of the exponent estimates.

3.2.2.  Autocorrelation of interface heights in the Edwards–Wilkinson case.  Since the autocor-
relation function in the EW case is known exactly (22), we can verify our simulations by a 
comparison with it. Indeed, the expected form could be reproduced by our random-sequential 
implementation. A more interesting result is, that the SCA simulations also fit it perfectly. The 
finite saturation value, caused by correlated updates, observed in the KPZ case is not present 
here.

The agreement with the analytical form is exemplified in the inset of figure 7. A small 
deviation at very early times can be observed here, as well as in the RS results and should be 
related to the initial conditions of the simulation with respect to those of the analytical calcul
ations. The application of a fit with (22) results in c0 � 0.152 for different waiting times s.  
Using the consistency relation (14) for s → t  we can expect the same value, which was derived 
for the octahedron model in [38] for the s → ∞ limit.

These numerical results do not only show the correctness of the SCA and RS implementa-
tions of the roughening kinetics, but provide an example, where the correlations introduced by 
SCA do not affect the dynamical behavior.

3.2.3.  Autocorrelation of lattice-gas variables in the Kardar–Parisi–Zhang case.  Next we show 
results for the lattice-gas variables corresponding to the binary slope values of heights of the 
KPZ growth presented earlier (see figure 8) using RS dynamics. Here again, the Cs(t, s) func-
tions of different waiting times collapse almost perfectly with the value: bs = 0.76(2). In a pre-
vious paper [30] we reported: bs = 0.70(1), which were obtained by a smaller sized analysis.

Autocorrelation exponent: random-sequential.  Since the density autocorrelation functions 
decay much more rapidly than those of the heights, the signal-to-noise ratio in the present 
sample is insufficient for a reliable extrapolation based on the effective exponents. A weighted 
average of direct PL fits for 4 � t/s � 90 yielded λC,s/z = 2.312(2). However, the effective 
exponents show curvature as t/s → ∞ and suggest an asymptotic value λC,s,eff/z = 2.39(2). 
In [30] we obtained λC,s,eff/z = 2.35(2), coming from s = 30, L = 213 sized CPU simulations.

Stochastic cellular automaton density autocorrelation functions.  Similarly to the case of inter-
face heights the Cs(t, s) functions approach finite values asymptotically, as shown in figure 9(a) 
as the consequence of the SCA dynamics. The computed values of o( p, s) are listed in table 1.

Table 1.  Autocorrelation limits for KPZ with stochastic cellular automaton dynamics 
for different deposition rates p and q = 0, as functions of the waiting time s. Fit errors 
are shown, which are below the given number of digits in case of the slopes.

s/MCS

oh os

p = 0.5 p = 0.95 p = 0.5 p = 0.95

30 0.003 20(3) 0.055 398(8) 0.012 871 0.221 623
100 0.003 31(5) 0.055 20(3) 0.014 286 0.219 827
500 0.0031(2) 0.054 57(8) 0.013 944 0.218 547
1000 0.0035(3) 0.0548(2) 0.013 903 0.218 330
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Figure 9(b) shows the corrected functions Cs(t, s)− o( p) in comparison with our RS 
result. Data collapse for p = 0.5 and p = 0.95 could be achieved using the common aging 
exponent value bs = 0.76, obtained from our previous RS calculations. This indicates, that the 
density correlation behavior is not changed by the application of SCA updates as in case of 
the height variables.

Figure 7.  Autocorrelation functions of heights under stochastic cellular automaton 
dynamics with p = q = 0.5 (EW). Sample size is nSCA = 5919. Error bars are omitted 
for clarity. The magnitude of fluctuations can be seen from the visible fluctuations in the 
plots. The inset shows the data divided by CEW

h .

Figure 8.  Autocorrelation results from random-sequential calculations using DTrDB 
(the same runs as those shown figure 5). The main panel shows an aging collapse of the 
autocorrelation functions for s = 30, 100, 500, 1000. The inset displays a local slope 
analysis for s = 30, 100. Linear fitting lines are also shown, assuming corrections of 
the form s/t in the interval t/s ∈ [6.25, 50]. The horizontal line ( ) marks the value 
obtained from direct power law fits.
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Stochastic cellular automaton density autocorrelation exponent.  In contrast with the inter-
face height results the density correlation exponent of the corrected Cs(t, s) exhibits a more 
complex behavior. The dataset for p = 0.95 clearly exhibits a different exponent than what 
we observed in case of the RS simulations. We show effective exponents fitting for s = 30 and 
100, where the signal-to-noise ratio is better on figure 9(c). A direct linear fit extrapolating to 
s/t → 0 yields an estimate of λC,s,SCA/z = 0.75(2).

At p = 0.5 we can find a crossover form the RS to a different, SCA asymptotic behavior 
in figure 9(d). A linear extrapolation for the tail of this crossover curve results in λC,s,SCA/z, in 
good agreement with the p = 0.95. This leads to the following numerical form for the tail of 
the autocorrelation function under SCA dynamics:

Figure 9.  Results from stochastic cellular automaton calculations for the autocorrelation 
of slopes. Error bars have been omitted for clarity. The visible noise is a good indication 
for 1σ error. Panels (a) and (b) show data sets with p = 0.5 and p = 0.95. Data are 
taken from the same runs as of figure 6. (a) Raw autocorrelation functions showing 
saturation depending on p. (b) Collapsed autocorrelation functions, corrected by the 
saturation offset o (see text). The lower set (pale curves) belongs to p = 0.5. Data 
form a DTrDB run for s = 100 is displayed in red for comparison. The bottom panels  
(c) and (d), show the local slope analysis corrsponding to the p = 0.95 and p = 0.5 data 
sets, respectively. Extrapolations assume corrections of the form s/t, as plotted. Printed 
error margins are pure fit-errors. Horizontal lines ( ) in panel (d) mark the asymptotic 
esponents for random-sequential updates and SCA at p = 0.95, from bottom to top.
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fC,SCA(t/s, p) ∝ c1 · (t/s)−λC,s/z + c2 · (t/s)−λC,s,SCA/z.� (28)

3.2.4.  Autocorrelation of lattice-gas variables in the Edwards–Wilkinson case.

Random-sequential autocorrelation functions.    In case of RS simulations, the tail of Cs(t, s) 
does not decay with a simple PL as can be observed in the figure 10. The pronounced curva-
ture in the log-log plot suggests a slower than PL decay at first glance. However, the effective 
exponents (inset) suggest a PL with an asymptotic exponent λEW

C,s /zEW = 0.7(2), following a 
cross-over from an early-time regime.

Stochastic cellular automaton autocorrelation functions.  While the SCA dynamics seems to 
reproduce the expected autocorrelation function of the surface heights after the removal of the 
constant, the evolution of the underlying lattice gas is different. In case of p = q = 0.5 the den-

sity autocorrelation exhibits a PL tail, characterized by λSCA,0.5
C,s /zEW ≈ 2 (see inset of figure 10).

In the p → 0 , q → 0 limit the SCA crosses over to an effective RS dynamics, because 
we avoid the correlated updates of the lattices. This is indeed the case here, evidenced by 
the p = q = 1/32 results (see figure 10). Following a rescale of time t = p · t  one can find a 
good collapse with the RS results. Therefore, the update dynamics seems to affect the scaling 
behavior of the density autocorrelation function.

Aging.  The aging exponent obtained from the presented simulations is bEW
s = 1.1(2). This 

value holds for both RS and SCA dynamics, but breaks down for very small values of s.

4.  Discussion and conclusions

We performed extensive simulations of the octahedron model by RS and SCA dynamics. 
Precise estimates were obtained for the dynamical behavior: exponents as well as probability 
distributions of the KPZ and EW universality classes. The main advance of this work, in the 
long story of KPZ research, is the influence of correlated SCA dynamics on the universal 
properties of these models. Furthermore, we determined the aging properties of the underlying 
DLG of the octahedron model.

By determining moments of the probability distributions we could study finite size effects 
and arrived at the conclusion that the corrections related to this become relevant much before 
the occurrence of the steady state. Our surface growth simulations support the validity of the 
KPZ ansatz hypothesis in (2 + 1)D and yield a growth exponent β = 0.2414(2), from which 
α = 0.3889(3) and z = 1.611(3) can be deduced. The growth exponent value lies within the 
error margins of [50, 52, 57], but not within those of the early landmark result of Forrest and 
Tang β = 0.240(1) [68]. However, the small simulation cells used then demanded shorter 
simulations times, which could have lead to a smaller estimate due finite-time corrections. 
Under SCA dynamics marginally lower growth exponents were observed for deposition prob-
abilities p > 0.5 and additional corrections to scaling caused the failure of the KPZ ansatz at 
early times.

Our estimate of the roughness exponent does not agree with the direct estimate 
α = 0.3869(4), obtained recently through a finite-size scaling analysis of the RSOS model by 
Pagnani and Parisi [66], which was based on SCA simulations with p = 0.5. Numerical dif-
ferences between SCA and RS dynamics might be a cause of this. However, since our estimate 
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was derived using (26), a slight violation of the Galilean invariance, which was proposed for 
discrete systems [67], may also explain this disagreement.

Both our RS and SCA simulations reproduced the expected autocorrelation behavior of 
interface heights in the EW universality class. In the KPZ case correlated updates resulted in 
Ch(t, s) to approach a finite value asymptotically. However, after the subtraction of this con-
stant we found the same universal PL tails for both types of site-selection dynamics.

In case of the underlying lattice-gas variables, we found the relevance of the SCA dynam-
ics for the asymptotic autocorrelation decay exponents, but the aging exponent seems to be 
insensitive for this. Interestingly, in case of the non-linear (KPZ) model the SCA dynamics 
slows the decay of the autocorrelations, while in the linear (EW) model this results in a shorter 
memory of the dimer model. This is the consequence of the effectivity of the ordered SCA 
updates, which enhances the build up (KPZ) or distortion (EW) of homogeneous areas, cor-
related for long times.

Our estimates for the autocorrelation exponents of the KPZ class are summarized in table 2. 
We provided numerical results for C(t, s) in the KPZ case with unprecedented accuracy, drawn 
from timescales up to t/s = 1000 due to the high signal-to-noise ratios we could achieve by 
these parallel algorithms implemented on GPUs. These simulations can be help to test predic-
tions of theories like local scale-invariance with logarithmic corrections [34].

The KPZ autocorrelation exponent in (1 + 1) dimensions was derived analytically λ1d
C,h = 1 

[26, 27]. Later Kallabis and Krug conjectured, that in higher dimensions λC,h = D [29] applies, 
but rigourous proof is still missing. Our estimates for λC,h, summarized in table 2, support this 
hypothesis within error margin both for RS and SCA dynamics.

Figure 10.  Autocorrelation functions of slopes under stochastic cellular automaton 
(blue and green) and random-sequential (black) dynamics in the linear model. Sample 
sizes are nSCA,p=0.5 = 5919, nSCA,p=1/32 = 147 and nDTrDB = 2101, for both s = 30 and 
s = 100. For stochastic cellular automaton, p = 1/32, the simulation time is rescaled 
to collapse the curves, following: t = p · t , analogously for s. No rescaling is applied to 
the other plots: t = t . Error bars are omitted for clarity. The magnitude of fluctuations 
can be seen from the visible fluctuations in the plots. The inset in panel (a) shows 
the effective autocorrelation exponents λC,s,eff/zEW for DTrDB and stochastic cellular 
automaton, p = 1/2, both for s = 30 and with 1σ error bars.
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We have tested the validity of the relation (16) by Krech with our numerical data. The value 
for the short time dynamical exponent: θ = λC/z + 2β = 1.23(2) + 0.2414(2) � 1.71(3) 
agrees well with: (D + 4)/z − 2 = 6/1.611(3)− 2 � 1.72(1), therefore we can support the 
validity of the relation obtained by a perturbative RG analysis [26, 27].

A possible continuation of this work could be the study of the height correlations in the 
momentum space:

Cq(t, s) = 〈h−q(t)hq(s)〉 .

In particular one should be able to test, whether Cq(t, s) decays in an exponential or in a 
stretched exponential way as predicted in references [69–72]. Note, that we have already 
succesfully used the extension of the dimer model to determine the power spectrum density: 
S(k, t) = 〈h−q(t)hq(t)〉 in case of Kuramoto-Sivashinsky type of systems [73].

We can also compare the present estimates with our recently published values for the 
autoresponse λR = 2.00(6) and the corresponding aging exponent a = 0.24(2) [33]. λC � λR 
seems to hold within error margins. In (1 + 1) dimensions an exceptional fluctuation-dissipa-
tion relation (FDR) exists [12, 74]:

Tχ(t, s; r) = −∂2
r C(t, s; r).� (29)

This implies the exponent relations λC = λR and

1 + a = b + 2/z� (30)

confirmed by simulations [75]. Our (2 + 1)D results support the first one, but the latter is not 
satisfied by our numerics:

1 + a = 2 (β + β/α)

1.24(2) �= 1.724(3).

This calls for the existence of a possible FDR in higher dimensions. For example the genaral-
ized form

1 + a + (D − 1)/2 = b + 2/z� (31)

is satisfied by the exponents within error limits in D = 1, 2 both. Confirmation of this assump-
tion should be a target of further research. An intermediate step in this direction could also 
occur as an inequality, like one found in the KPZ steady state [76, 77].

Table 2.  Summary of Kardar–Parisi–Zhang and Edwards–Wilkinson autocorrelation 
λC and aging b exponents, assuming zKPZ = 1.611(3) and zEW = 2, respectively. There 
are no independent estimates for b under stochastic cellular automaton dynamics. 
Values for the Edwards–Wilkinson case provided without error margin correspond to 
the analytical solution [48, 49].

λC,h λC,s bh bs

KPZ Random-sequential 1.98(5) 3.8(2) −0.4828(4) 0.76(2)
Stochastic cellular 
automaton

2.01(2) 1.25(2)

EW Random-sequential 2 1.4(4) 0 1.1(2)
Stochastic cellular 
automaton

2 ≈ 4
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The autocorrelation and aging exponents which we found for the driven lattice gas of 
slopes differ from another two dimensional extension of the totally asymmetric exclusion 
process (TASEP) described in [78], where λC,s/z = 1 and bs = 1 are reported.

Finally we point out that the SCA simulations are more efficient because they they allow 
for optimal memory access patters in contrast to the random accesses required for the RS ones. 
Technical details of our implementations are published elsewhere [43, 44]. The extension of 
these algorithms for other surface models, like those with conservation laws [73, 79] or in 
higher dimensions [80] is straightforward. However, the efficiency of RS implementations, 
using the approach employed here, decreases with the number of dimensions due to the vol-
ume of local cells increasing. SCA simulations do not suffer from this problem and are thus 
more suitable for higher dimensional problems.

The code used in this work can be found at https://github.com/jkelling/CudaKpz.
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