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(B) Self-organized criticality
No octivity /’
Cirder Fine tuning by feedbock
Cricicality
Disorder :
: Griffiths phase

High (chootic) activity
Stretching criticolity throuwgh
neural network architecture

TRENDS in Cogniive Sciences

SOC « GP do not exclude each other
For SOC we need a responsible feedback mechanism,

GP can occur spontaneously in heterogeneous systems
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At A_: b maydiverge —  p(t) ~In(t) = Infinite randomness fixed point scaling

GP: Dynamical (scaling) criticality + susceptibility diverges
GP can occur by pure topological disorder in finite dimensional systems
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The largest precisely explored brain structural networks contains
N = 302 neurons (C. Elegans), fruit-fly hemibrain: N = 127,978

Finite size cutoff of PLs !

Connectomes, obtained by approximative methods like diffusion MRI
contain N ~ 1.000.000 nodes (voxels)

Unknown faithfulness, intensive research to automate image processing
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Open Connectome Large Human graphs

Diffusion and structural MRI images with
1 mm3 voxel resolution :
105—-106 nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas)

Lower levels: Deterministic tractography:
Fiber Assignment by Continuous Trackmg
(FACT) algorithm

Map : voxel — vertex (~ 107)

fiber — edge (~ 10 10)

+ noise reduction — graph

undirected, weighted
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Relative Threshold model :
incoming weights normalized by the sum :

T ”:.‘J..i = Wi, j / E jeneighb. of i Wi j:
to model homogeneous sensitivity of nodes

Inhibition: randomly selected weights are flipped to negative (quenched)

w; j = =W ;.
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0i(t) = wio + —ZH i; sin[# 6;(1)]

phases #;(t) ln—deglc-ca ki

global CDU:[)]:ng K is the control paramctc;‘ -
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Effect of Coupling Strength on r Natural Freq.
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. = j A gm f +— w; p is the intrinsic frequency of the i-th oscillator,
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Order parameter : avgrage phase: R(t) = 5 2 £i6(t)
=

Non-zero, above critical coupling strength K > K , tends to zero for K < K_as R oc (1/N)*?
or exhibits an initial growth: R(t,N) = N—1/2¢7 f,(t/N*) for incoherent initial state

Critical synchronization transition for D > 4 spatial dimensions,
which is mean-field like: i.e. D - oo (full graph)

The dynamical behavior suffers very strong corrections to scaling and chaoticity

We use this “toy” synchronization model assuming universality,
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Numerical integration of the model

Global synchronization measures: r(t) expif(t) = 1/N'Y " exp it (1))

i

R(t) = (r(t)) Z‘wf” — wi(t))

Local synchronization measures:
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Hurst (phase) and beta exponent analysis of local order
parameters
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Numerical ODE solution of large set of equations via adaptive

Bulrisch-Stoer stepper, implemented on HPC GPU-s
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Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weighted edges

The synchronization transition point

determined by growth as before ’ B =aass B
KKI-18 has D = 3.05 < 4 - o =
No real phase transition, crossover off o { J,_,f-f"' 1.@
Due to the fat-tailed link weight | Z ,,,;"’:}h— -"j”'"'l"f'“f
| = o 1 ]
distribution, incoming weight o = ::‘,/Iﬂ |
= . oo 12 LHooo DT
normalization is applied: oo o 0

Fr _ -_.. . ! -". .
N . n 1,5/ Z_;’Enuig_{]]h.of i " LN

K_.=1.7 and growth exponent: 17 = 0.6(1)
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Duration distribution for the KKI-18 graph

Measure characteristic times t, of first

dip below: R. = (1/N)2

average over: 10.000 independent w, 10

realizations
Histogramming of ¢, at the critical point <

1.2 (D

10°

Critical exponent: 7, =
obtained by fitting for the PL tails

Below the transition point : K < 1.6
non-universal power laws in the range
of experiments of activity durations :

1.5 < 1.<24 (LRTC Palva et al 2013)
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Figure 9. Duration distribution of ¢, on the KKI-18-I model in case of 5% inhibitory node assumption for K = 1.35 (+),
K = 1.45 (bullets), 1.55 (boxes), 1.75 (triangles). The dashed line shows PL fits to the tail region: #, > 20.
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Figure 9. Duration distribution of ¢, on the KKI-18-I model in case of 5% inhibitory node assumption for K = 1.35 (+),
K = 1.45 (bullets), 1.55 (boxes). 1.75 (triangles). The dashed line shows PL fits to the tail region: 7, > 20.

K =1.7(1) and n = 0.6(1) remains the same. Sub-critically:

Duration scalin eﬁ)onent within experimental range: 1.5<7t <24
J.M. Palva et al PNAS 110 (2013) 3585
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Invariance of Kuramoto with respect to the w,
distribution

Brain experiments: w, > 0
distributions are narrow: og;~ 0.02

and have mean value: <w.> ~ 0.05
0i(t) = wio + — Z Wi, sin[f;i(t) — 6;(t)]
<w,> # 0 can be gauged out by a rotating coordinate system

Rescaling of w; as: w, - aw,' t - (1/a)t' K - a K’
The results can be transformed for later times and weaker couplings



The effect of additive stochastic noise

Gaussian distributed annealed noise is added:

. K
6:(t) = wi 0+ ;Li 3" Wiy sinf8 (1) — 6:()] + s& (i)

J

Negligible effect:
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Fruit-fly connectome is the largest
exactly known neural network:

N = 21.615, L = 3.410.247

Similar to random Erdés-Rényi (ER) graph,
but power-law tailed connection weights

Weakly modular: Q,_, << Q

KKI-18

Synchronziation transition via R(t)
local slopes : n=-dInR /d Int

TAK = 1.60(1) (inflexion curve)

Characterized by mean-field growth
Exponent n = 0.7(1)
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+—s fly homeo
+— fly raw K’'=K*628
=8 ER N=1024

ER N=22000
#—k KKI-18

Fluctuations of R show

extended transition for KKI-18
For FF ~ ER like distro

___With random inhibitors: wider range

The same is true for fluctuations of Q2
HMN structure of KKI-18 is responsible
for the extended critical region

and Griffiths Phase of humans

As compared to the fly connectome
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Synchronization transitions on connectome graphs
with periodic external force (task state)

Shinomoto-Kuramoto oscillator model synchronization transition:

0;(t) = wj +K Y Wjgsin[fy(t) — 6;(t)] 6 angle, K: global coupling
k

| F': external force, 71: noise
+ Fsin(6;(t)) + en;(t) . '

Quenched heterogeneity in self-frequencies and network topology

F= 0.04 o) force

oo




Force induced synchronization
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FIG. 1: Order parameter dependence on F' for the fruit-fly
connectome for the noisy (black bullet) and the noiseless (red
boxes) cases at K = 1.3. The blue diamonds show the steady-
state () values with noise. Lower inset: Variances of R and
() for the noisy case. Upper inset: Time dependence of the
noisy R(t), for F' = 0, 0.02, 0.03, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4
(bottom to top curves).
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FIG. 3: Fluctuations of R and {2 as the function of F' for the
KKI-18, for the noisy and the noiseless cases at K = 1. Inset:
Order parameter K for the noisy and noiseless cases as well
as (1, denoted by the same symbols as in the main figure.
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FIG. 4: Avalanche duration distributions on the fruit-fly con-
nectome for different forces, shown by the legends and at
K = 1.3, ¢ = 0.01. Dashed lines are PL fits for At > 100.
The inset shows the steady state o({1) as the function of K,
for excitation values F' = 0.001, 0.0667, 0.1, 0.2, 0.3 (top to
bottom).
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FIG. 4: Avalanche duration distributions on the fruit-fly con-
nectome for different forces, shown by the legends and at
K = 1.3, ¢ = 0.01. Dashed lines are PL fits for At > 100.
The inset shows the steady state o({1) as the function of K,
for excitation values F' = 0.001, 0.0667, 0.1, 0.2, 0.3 (top to
bottom).

The p(t ) distros exhibit power -law
near the synchronization

transition point F_~ 0.1 for K=1.3
characterized by the exponent: 2

Similarly as in case of the KKI-18:
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FIG. 8 Hurst and beta exponents of all fruit-fly connectome
communities. In the forceless case at the critical Hopf tran-
sition coupling, the H exponent is the largest for every com-
munity. With forces these values drop for each community.
This shows a resemblance with the rest and non-rest studies
of different brain areas in [63], showing (H) = 1.0 at resting
state and (H) a 0.7 at task driven states.
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communities. KKI-113 is presented with and without force
terms and KK-18 without the force terms.
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state and (H) a 0.7 at task driven states.
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Conclusions

Heterogeneity effects on the scaling can be investigated on large
connectomes and random small-world graphs for comparison

This enables to distinguish from finite size and rounding effects

Large human graphs show: ~ degree distribution universality, finite
dimensionality and small-worldness

In homeostatic threshold models dynamical critical behavior in the GP
Running Kuramoto model on KKI-18 : crossover to synchronization
Below the transition point GP like synchronization dynamics

Durations, with exponents agreein§ in vivo LRTC experiments for
humans due to HMN and'd ~ 3.1 < 4

Fruitfly: mean-field behavior (d > 4) and narrow fluctuation region
Invariance with respect to frequency distributions

Insensitivity for the additive Gaussian noise

Periodic force induces synchronization and higher fluctuations

Force enhances long-range correlations, i.e. in the task phase
operation of brain with respect to resting state
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