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Neurons exhibit oscillatory behavior   
 Quasistatic inhomogneity causes dynamical 

criticality in Griffiths phases
→  Edge of Synchronization and Griffiths phase in brain models  ?
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
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Universality !
Mean-field for d → 
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Electrode LFP experiments
Since Beggs and Plenz 2003
For humans and animals
In vitro, for balanced 

excitatory/inhibitory states
Other experiments: fMRI, BOLD,
Voltage imaging, calcium imaging,
MEG, EEG, Long-Range Temporal 
Correlations (LRTC).

Nonuniversal critical exponents or
Mean-field values :=1.5

t 
=2 ?
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Explanations for tuning to criticality

SOC ↔ GP  do not exclude each other

For SOC we need a responsible feedback mechanism, 

GP can occur spontaneously in heterogeneous systems
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 For m > n : first order phase transition see my book :

  On low dimensional regular, Euclidean lattice:  DP critical point : 
c
 > 0 between 

   inactive and active phases ( GÓ: PRE 67 (2003) 056114. )

                                                      Quenched disorder : rounds phase transition, Griffiths phase:

PVM et al : PRE 89 (2014) 012145   
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GP can occur by pure topological disorder in finite dimensional systems
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Hybrid Phase Transitions and GP in excitable 
(threshold) models

• Mean-field for threshold models

   with activation :

   G.O. B.S: Phys. Rev. Res. 3 (2021) 0131106

In heterogenous HMN models
HPT + GP +  Multistable states !
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networks ? 

The largest precisely explored brain structural networks contains 
N = 302 neurons (C. Elegans), fruit-fly hemibrain: N = 127,978

Connectomes, obtained by approximative methods  like diffusion MRI
contain  N   1.000.000  nodes (voxels)  

Unknown faithfulness, intensive research to automate image processing

Finite size cutoff of PLs ! 
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Open Connectome Large Human graphs

Diffusion and structural MRI images with 
1 mm3  voxel resolution : 
10 5 –10 6   nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas) 

Lower levels: Deterministic tractography: 
Fiber Assignment by Continuous Tracking 
(FACT) algorithm 

Map : voxel → vertex (~ 10 7 )

           fiber → edge   (~ 10 10 )

+ noise reduction → graph 

  undirected, weighted





Small world, still finite dimensional,
non-scale free, 
universal modular graphs
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Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition

→ Inherent disorder of KKI-18 can't 
round the phase transition,
No PLs, critical point, Hub effects!  

Relative Threshold model : 
incoming weights normalized by the sum :  
to model homogeneous sensitivity of nodes  

Inhibition: randomly selected  weights are flipped to negative (quenched)
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Slow PL dynamics, Griffiths effects 

(a) 20% of links are turned directional, randomly

(b) Unidirectional

No qualitative difference, but proves robustness (for more long links)
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Avalanche size distribution compared to 
experiments

Scaling near experimental values in 
the Griffiths Phase (~ 1.5) 
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Robustness of Griffiths effects in homeostatic 
connectome threshold models

G. Ó. Phys. Rev. E 98 (2018) 042126

Addition of a third (refractive) 
state does not destroy GP

Time dependent threshold 
model : GP shrinks, but
survives for weak variations



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 



Kuramoto oscillator model (1975) 

  Order parameter : average phase: 



Kuramoto oscillator model (1975) 

  Order parameter : average phase: 

  Non-zero, above critical coupling strength K > K
c
, tends to zero for K   K

c
 as R  (1/N)1/2 

  or exhibits an initial growth:                                           for incoherent initial state



Kuramoto oscillator model (1975) 

  Order parameter : average phase: 

  Non-zero, above critical coupling strength K > K
c
, tends to zero for K   K

c
 as R  (1/N)1/2 

  or exhibits an initial growth:                                           for incoherent initial state

  Critical synchronization transition for D > 4 spatial dimensions, 
  which is mean-field like: i.e. D →   (full graph)



Kuramoto oscillator model (1975) 

  Order parameter : average phase: 

  Non-zero, above critical coupling strength K > K
c
, tends to zero for K   K

c
 as R  (1/N)1/2 

  or exhibits an initial growth:                                           for incoherent initial state

  Critical synchronization transition for D > 4 spatial dimensions, 
  which is mean-field like: i.e. D →   (full graph)

  The dynamical behavior suffers very strong corrections to scaling and chaoticity

   We use this “toy” synchronization model assuming universality,
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Numerical integration of the model

Global synchronization measures:

Local synchronization measures:

Numerical ODE solution of large set of equations via adaptive

Bulrisch-Stoer stepper, implemented on HPC GPU-s

Hurst (phase) and beta exponent analysis of local order 
parameters
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Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weighted edges 

The synchronization transition point

determined by growth as before

KKI-18 has D = 3.05 < 4  → 

No real phase transition, crossover

Due to the fat-tailed link weight 

distribution, incoming weight 

normalization is applied:

Kc =1.7 and growth exponent:  = 0.6(1)
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Duration distribution for the KKI-18 graph

Measure characteristic times tx of first

dip below:  Rc = (1/N)1/2

average over: 10.000 independent i 

realizations

Histogramming of  tx  at the critical point

Critical exponent:t

obtained by fitting for the PL tails

Below the transition point : K < 1.6  
non-universal power laws in the range 
of experiments of activity durations : 
1.5 <t < 2.4  (LRTC Palva et al 2013) 
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Inhibitory (negative) links compared to 
experiments

Duration scaling exponent within experimental range:   1.5 < 
t
 2.4

J.M. Palva et al PNAS 110 (2013) 3585 

Inhibitions: 5% of links: w
ij
 → -w

ij 
randomly

K
c
 = 1.7(1) and = 0.6(1) remains the same. Sub-critically:
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Invariance of Kuramoto with respect to the 
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distribution

Brain experiments: i > 0  

distributions are narrow: i ~ 0.02

and have mean value: <i> ~ 0.05 

<i>  0 can be gauged out by a rotating coordinate system

Rescaling of i  as : i → ai '    t → (1/a) t '    K → a K' 

The results can be transformed for later times and weaker couplings  
  



The effect of additive stochastic noise

Gaussian distributed annealed noise is added: 

Negligible effect:
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Comparison with the fruit-fly connecome results

Fruit-fly connectome is the largest
exactly known neural network:
N = 21.615, L = 3.410.247

Similar to random Erdős-Rényi (ER) graph,
but power-law tailed connection weights
Weakly modular: Q

FF
 << Q

KKI-18

Synchronziation transition via R(t)
local slopes :  = -d lnR / d lnt

 
K

c
 = 1.60(1)  (inflexion curve)

Characterized by mean-field growth
Exponent  = 0.7(1)

 

A
ij
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Fluctuations of R show

extended transition for KKI-18

For FF ~ ER like distro

With random inhibitors: wider range

The same is true for fluctuations of 

HMN structure of KKI-18 is responsible 

for the extended critical region

and Griffiths Phase of humans

As compared to the fly connectome 
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Synchronization transitions on connectome graphs 

with periodic external force (task state)

Shinomoto-Kuramoto oscillator model synchronization transition:

                                                   
i
: angle, K: global coupling

                                                      F: external force, 
i
: noise

Quenched heterogeneity in self-frequencies and network topology



Force induced synchronization
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Characteristic time exponent 
t
  results

The p(t
x 
) distros exhibit power-law

near the synchronization
transition point F

c
 ~ 0.1 for K=1.3

characterized by the exponent: 2

Similarly as in case of the KKI-18:
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Hurst and beta exponent analysis

Community dependent synch.

Quasi-criticality, like in fMRI 

experiments:  Ochab et al,

Sci. Rep. 12, 17866 (2022).



FMRI experiments

Task ↔ rest state operation
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This enables to distinguish from finite size and rounding effects
Large human graphs show: ~ degree distribution universality, finite
dimensionality and small-worldness
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Below the transition point GP like synchronization dynamics
Durations, with exponents agreeing in vivo LRTC experiments for

 humans due to HMN and d ~ 3.1 < 4
Fruitfly: mean-field behavior (d > 4) and narrow fluctuation region
Invariance with respect to frequency distributions
Insensitivity for the additive Gaussian noise
Periodic force induces synchronization and higher fluctuations
Force enhances long-range correlations, i.e. in the task phase

operation of brain with respect to resting state 
 



Summary



Summary

Thank you for your attention !
Recent publications:



Summary

Thank you for your attention !
Recent publications:

Géza Ódor, Istvan Papp, Shengfeng Deng and Jeffrey Kelling :
Synchronization transitions on connectome graphs with external force  
Front. Phys. 11 (2023) 1150246.

Géza Ódor, Gustavo Deco and Jeffrey Kelling
Differences in the critical dynamics underlying the human and fruit-fly connectome
Phys. Rev. Res. 4 (2022) 023057.



Summary

Thank you for your attention !
Recent publications:

Géza Ódor, Istvan Papp, Shengfeng Deng and Jeffrey Kelling :
Synchronization transitions on connectome graphs with external force  
Front. Phys. 11 (2023) 1150246.

Géza Ódor, Gustavo Deco and Jeffrey Kelling
Differences in the critical dynamics underlying the human and fruit-fly connectome
Phys. Rev. Res. 4 (2022) 023057.


	Slide: 1 (1)
	Slide: 1 (2)
	Slide: 1 (3)
	Slide: 1 (4)
	Slide: 1 (5)
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 2 (7)
	Slide: 2 (8)
	Slide: 2 (9)
	Slide: 2 (10)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 3 (7)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 7 (6)
	Slide: 7 (7)
	Slide: 7 (8)
	Slide: 7 (9)
	Slide: 7 (10)
	Slide: 7 (11)
	Slide: 7 (12)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 8 (7)
	Slide: 8 (8)
	Slide: 8 (9)
	Slide: 8 (10)
	Slide: 8 (11)
	Slide: 8 (12)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 9 (6)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 10 (5)
	Slide: 10 (6)
	Slide: 10 (7)
	Slide: 10 (8)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 12 (6)
	Slide: 12 (7)
	Slide: 12 (8)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 16 (4)
	Slide: 16 (5)
	Slide: 16 (6)
	Slide: 16 (7)
	Slide: 16 (8)
	Slide: 16 (9)
	Slide: 16 (10)
	Slide: 16 (11)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 17 (7)
	Slide: 17 (8)
	Slide: 17 (9)
	Slide: 17 (10)
	Slide: 17 (11)
	Slide: 17 (12)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Slide: 18 (5)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 19 (6)
	Slide: 19 (7)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 21 (4)
	Slide: 21 (5)
	Slide: 21 (6)
	Slide: 21 (7)
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 23 (4)
	Slide: 23 (5)
	Slide: 23 (6)
	Slide: 23 (7)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 24 (5)
	Slide: 24 (6)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 25 (6)
	Slide: 26
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 27 (4)
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 28 (3)
	Slide: 28 (4)
	Slide: 29
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 30 (3)
	Slide: 30 (4)
	Slide: 30 (5)
	Slide: 30 (6)
	Slide: 30 (7)
	Slide: 30 (8)
	Slide: 30 (9)
	Slide: 30 (10)
	Slide: 30 (11)
	Slide: 30 (12)
	Slide: 30 (13)
	Slide: 30 (14)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)

