Universal scaling behavior in nonequilibrium system
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Nonequilibrium system occur when:
a) Relaxation to thermal equilibrium starting far from equilibrium

ordering dynamics
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b) By applying external fields or forcing currents fluxes or
connecting to different local thermal bathes

c) System defined purely by transtion rates (reaction/diffusion
model, surface growth system, spin system ...

For b) and c): Broken detailed balance in general:
w,_ P(s,|=w P(s )
J

= No Gibbs distribution, no free energy potentials
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Scaling in nature

Scaling (rescaling invariance): r— br, F(r,t,..) = a*F(br, b't, ...)
behavior is frequent in nature:

Geometrical scaling (models), fractal objects

Photograph of a romanesco broccoli
showing a naturally occuring fractal Snowflake viewed in an optical microscope

Rescaling invariance results in power-laws (at least for some decades)

(+ log. periodic oscillations for b discrete), diverging fluctuations



Power-law scaling in nature

Nontrival scaling in biological system I ...
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* Life-span tends to lengthen--and metabolism
slows down--in proportion to the quarter power
of an animal's body weight.
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* Biological control systems :
K. Kiyono, et al., PRL95 (2005) 058101.
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Beat number, i

critical, diverging fluctuations and phase
transitions at different periods of activity

* Brain :

The size distribution of neuronal avalanches

.1
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G. Werner : Biosystems, 90 (2007) 496, size (#electrodes)



Power-law scaling in nature

Man-made system:

Internet, WWW, ... etc. " ' ' ' '
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Power-law scaling in nature

Meteorology and Climatology:

O.Petres and D. Neelin, Nature Phys. 2 (2006)393
rain fall distribution E
S
Earthquake size distribution z
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Damage formation by collosions, explosions

(F. Kun & H. Hermann)
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And many more
What is the origin ?
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Overview of equilibrium (static) critical systems

* Power-laws occur at second-order (continuous) phase transitions

* At criticality, when & (correlation length) diverges the critical exponents:
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* They are related by scaling laws:

g +20+v=2, ag+8dg+1) =2, (1.7]

(2—m vy =7y, v d=2— oy .

* Sets of exponents define Universality classes



Generalization to nonequilibrium

Abszorbeald

tazis

H. Berry, Phys. Rev. E 2003

* Enzymological exmaple:

Continous phase transition
with £— @ between

active and absorbing states

Critical behavior with power-

laws and scaling relations

Scaling near ®



Nonequilibrium critical phase transitions appear in models of

- Epidemics spreading : T. Ligget, Interacting particle systems 1985

N

The ABC model: '
(a) A+ = Ay -
(b) Ay~ Ap oa
(c) BCo+2" =B e+ G 02|
(d} Aadi'l' Cadi_}-'glcg+2*q 0.0 .
{E} Bﬂdﬁ+3ddi_}32f§]+2** 01 02 n:u.'al||r 04 05 06

- Catalysis : Da-yin Hua, Phys. Rev E 70 (2004) 066101,
- Itinerant electron systems : D. E. Feldman, Phys. Rev. Lett 95 (2005) 177201,
- Cooperative transport : S. Havlin and D. ben-Avraham, Adv. Phys. 36 (1987) 695

... and many more (a whole zoo of models)

Universality classes ?

Do we need tuning ?



Scaling laws in “self-organized critical systems” (SOC)

Bak-Tang-Wiesenfeld sandpile
model

40000 grains dropped on center of 120 x 120 lattice with
h=4

Add a grain of sand:

h(x,y) > hxy)+1

And avalanche if: h(x,y) > h:

h(Xs Y) - h(X 5 Y) -4

h(x+1,y) » h(x*= 1,y) +1

h(x,y+1) » h(x,yx 1)+1

SOC mechanism has been proposed to
model earthquakes, the evolution of
biological systems, solar flare occurrence,
fluctuations in confined plasma, snow
avalanches and rain fall for example...

The term SOC usually refers to a mechanism
Slow energy accumulation (e)

Fast energy redistribution (a)

driving a system towards a critical state.
Prototype: sandpile model

Self-tuning to critical point:
|
act

e

€

control

SOC models can be mapped onto ordinary
nonequilibrium criticality of phase transition
to absorbing phase



Static, random percolation
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Detail of a bond percolation on the square lattice

in two dimensions with percolation probability
p=51

Besides random percolation
correlated percolation exists.
This can occur at thermal phase
transition points:
Fortuin-Kastaleyn construction.

Ordinary(static) percolation
(see Stauffer & Aharony (1994)).

Sites or bonds placed randomly on lattices,
above p> p, infinitely large connected cluster.

Different cluster definitions: -j = | — exp(-2J/kT).
Diverging correlation length:

E(p) o [p—pol ™

Critical quantities:
cluster size: g e flp—pgls)

moments:
o
Y ng(p) o lp—p0r
g

P, = Y sna(p) x [p—pl”
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Scaling laws:
T=241/d, 1/o= /4,



Percolation dynamics

* Order parameter 1 : density of active sites
6 1 Z Y
A% = == SilT))
A 21 o) = Fal2s:(0
Y which in the supercritical phase vanishes with the leading power behavior

P p-pel” (1.35)
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Genuine basic models with absorbing state

Detailed balance cond: w. | Pls.|=w SN Pls. 1s broken
1= ] I J—1 J

Defined by the transition rates: w. ;

Field theory based on non-Hermition ,,Hamiltonian”

The ordered state exhibits small fluctuations: no return in case of falling in it
(no 0 - A reaction)

Phase transitions are possible in low (/,2) dimenions. MW theorem 1s not valid!
Reaction-diffusion particle systems : Competition of creation, removal, diffusion

Usua.llff bosonic field theory 1s applied but in low dimensions topological constraints
(particle exclusion) becomes relevant

Magping onto spin and surface
mo

els 1s possible:
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Mean-field classes of site restricted, one-component
reaction-diffusion systems (fermionic)

* General, reaction-diffusion systems :

O

nA-(n+k)A mA—(m-1)A

* |nactive phase: mA—(m—I)A

The steady state solution in this case can be obtained by solving

K{k)o(l — p)* = L(D{1 — ), (4.13)

where the trivial (p = 0) solution (corresponding to the absorbing state)

has been factored out. For the active phase one gets

L1—ea]t*
p=1- [F J] | (4.14)
L
which vanishes
F. = ﬁ =1 -'4].51
'L —

with the leading order simgularity

0o T — T, ’HMF: (4.16)

D

Order parameter P

0A= A0 p(t)oct™®
e Assume: A=1-0, =L _K(kes"(1— ) — L1 —a)p"

_~ |8
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IS dominant; p o« t/"Y

The solution splits into 3 cases: (1) n=m :

':"I.I'll.'i I'_'I'l'l'.iL"l' Fl:"l.l'i'l.ll'lf'tfl' fIFIL'I['I.I'_"I'lt prUIlL"llt

Pyr=1.

At the critical point the time dependent behavior is described by

) .
.__."J — _25{2P11+1 n l:j':.ﬂh-'-g_:' )

which gives a leading order power-law solution
oo 1;—1_.' il

hence the corresponding mean-field exponents are

GpF = .".al.-"i-’” =1/n.

(4.17)

(4.18)

(4.19)

(4.20)



Mean-field classes of site restricted, one-component
reaction-diffusion systems (fermionic

°@n<m:

By factoring out the trivial p = 0 solution we are faced with the general

condition for a steady state
Ko(l-p)* =L(1—a)p™ ™. (4.22)

One can easily check that in this case the critical point is at |
.=0, (4.23) k /
’ o L(l-o) Ko(1-0) /
(see Fig. 4.1(b)) and the density decays as /GE . ) i I —_—
- - — ]
a=1/{m-1), (4.24) / K‘Gﬂ * I_l}} (1-0) H
/
as for branching (n = 1) and m = [ particle annihilating models (BmARW) .."I T T | )
showed by Cardy and Tauber [Cardy and Tauber (1996)]. However the . P 0 'I |
steady state solution for n > 1 gives different 7 exponents than those of 0 1
BmARW classes, namely
g=1/(m—n). (4.25)

. @ n>m: n and m determine the (site)
In this case besides the p = 0 absorbing state solution we can get an active m.ean-.fleld CIaSS!
state if | | Diffusion does not play a role

Ko ™(1-pff =L{1-0) (4.21)

G. Odor: PRE 67, 056114 (2003)
is satisfied. Both sides are linear functions of o such that for & — 0 only

the p =0 is a solution. The left hand side is a convex function of p (from - What aboutﬂuctuation effects
above) with zeros at p= 0 and p = 1. Therefore by mcreasing « from zero 9
the left hand side meets the right hand side at o, p. > 0 (see Fig. 4.1(a)). If below dc °

this solution i= stable, a discontinuous transition of the steady state density
(order parameter) takes place by varying the reaction rates.



Upper critical dimension and below. Numerical example
G. Odor, Phys. Rev. E 73, 047103 (2006)
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FIG. 4. (Color online) Density decay in the 34 —44, 34 —@
model at D=0.8. Different curves correspond to p=0.1185, L1187,
0.118 75, 0.1188, 0.118 86, 0.1189, and 0.119 (from top to bottom).
The inset shows the decay of triplets for p=0.11886&.
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FIG. 3. (Color online) Effective static order parameter exponent
results in the active phase. Bullets correspond to D=0.8, boxes to
p=0.1 of the 34 —44, 34 — 24 model. Stars denote the results of
the 34 —44, 34 — O model.
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Branching and annihilating random walks (BARW)
Unari reaction models

02
A > (+1)A, A >0, 2A 5 A

o :
& 1+1 drealization = ‘:q:
)
For n=1 directed percolation (DP), contact éi"*
process, epidemic spreading : / Py

In the reaction-diffusion language the DP is built up from the following

Sk
processes ,jk,\\xi g&i}%
ALD ApE04 A%24 242 4. (4.31) ,_@%%%5?
P
The mean-field equation for the coarse-grained particle demsity p(t) is }R{%} : ﬂf%\%a
L
b . a4y
EP =(oc—7)p—(A+a)p* . (4.32) r-:f{‘; k-}";3, tl
.‘"\.'.I. e
This has the stationary stable solution {{‘-:':'E@ /%
AN
. = for ;oo . 4 T
px) = {THE rE: . z*" : (4.33) "%\ :‘é‘; ?} b
B g A
exhibiting a continuous transition at ¢ = 4. A small variation of o or v g\ﬁx ﬁ}\“‘éﬁﬁﬁx\
near the critical point implies a linear change of p. Therefore the order ‘é}‘ H‘N“xfm Yy %ﬁ o
parameter exponent in the mean-field approximations y:. ;{%e \;m ﬁ?‘? ﬁ,i\
L, SO
ur =1. (4.34) T4 by ?‘i '
L >



2 dim IP versus 1+1 dim DP

Isotropic percolation Directed percolation



DP cluster (generalized) mean-field (GMF)

Master equation for n-point configuration probabilities of s.

aP,({si})

ot

= f(P,({s:). (1)

Bayesian extension process (n>N correlations are neglected)

. H::ﬂ_ P _-'x'(-"' I+ == =i".‘.'+_,.')
P(sy.....s,) = — _ (2)

H:rl - P,”-.'— l (.'1 I4js = on s S N— l+..".}
Reduction of parameters due to symmetries, conservations
Prl.{.."f]. A ..'1.”.) = 2 P.r.'+l{."'.J‘ A L.H_rl..."l.rl._'_l.]'._

T+l

P.r.'(i‘l‘ caa ""‘-'rl..]' = 2 P.r.'+l(""ﬂ~-"]- .‘~,I.-]'.

|

If we apply GMF for one-dimensional, site restricted lattice version of
DP, for N=10 we have 528 independent variables



DP cluster generalized mean-field (GMF)

G. Szabé and G. Odor PRE49 (1994) 2764, G. Odor PRE51 (1995) 6261

0.3 4 e . .
f:.;; Rule 6/16 SCA to realize DP in 1d
fad o D t-1: 00 01 10 11  creation with
g L - t: 0 1 1 0
¥ ¥ e A prob. p

0.1 4 ; I
VA GMF + Coherent anomaly (CAM) extrapoltion

/
0.0 .r*{_.,. _ I T
05 06 07 DB 09 1.0 Q, ~ afn)(p/p? — 1),
C
L
FIG. 1. Average concentration vs p suggested by n-point a(n) ~ (pl — p )",
approximations (labels refer to n).
2 I
N=1 and N=2 exact results: 2y | e
0.6 1 * = 2
_ 1 2 L Co= 2-dp = ) 1 |
=i(-3) = 4] oo |
: : : o ¢ S
In higher order numerical solution 0 T — 01
+ Taylor series, Padé extrapolation R 7
(o — %Zﬂkfl - p]k / npg:iili:aft;ig?ltﬂ?xge;? I[E:].”“ e thﬂl-":duééfxtrapmtiuurlﬂrf. [4] 0,28
k=0 Simulation, Ref. [15 I.285(5)

Series expansion for DP, Ref. [1] 0.2764(2)



DP field theory, numerical results

full field theoretical action with the couplings m, u =, v = A/2 looks like

S = [ d'zdt[Hp + Hg = f dlzdt [¥(8 — DV?)g + (m + wd — v)ibed]

(4.40)
where ¢ is the density, 1 is the response field (appearing in response func-
tions). The action is invarisnt under the following rapidity-reversal sym-
metry

dlz,t) = —p(z,—t) | Ylz,t) = —glz,~t) . (4.41)

This symmetry yields [Grassberger and de la Torre (1979); Muficz et al
(1997)] ? the scaling relations

i-¢
dd+Inp =dz .

(1.42)
(4.43)

This field theory was found to be equivalent [Cardy and Sugar (1980)] to
the Reggeon field theory [Abarbanel et al (1975); Brower et al (1978)],
which is a model of scattering elementary particles at high energies and
low-momentum transfers. The the upper critical dimension of directed

percolation is can be deduced from the general form (4.30)

d. =4. (4.44)

Table 4.1 Estimsates for the critical exponents of directed percolation. Diata are from:
[Jensen (1999a)] (1d), [Voigt and Ziff (1997)](2d), [Jensen (1992)](3d), [Bromzan and
Diash (1974); Janssen (1981)]i4 — &)

critical d=1 d=2 d=213 d=4—¢
exponent
#=p5" O.TIEJE-E(S} 0.5840 4) WEL(1) T —¢/0 — 001158 e2
¥y 1.036E54(4) 0.734(4) 0.581(5) 1/2 + /16 +0.02110 2
| 1.733847(5) 1.205(6) 1.105(5) 146/12 +0.02238 2
Z="02 1580745 10) L76(5) 1.O0{1) 2 — /12 — 0.02021 2
§=u 0.150464(6) 0.451 0.73 1 —e/d —0.01283 2
7 0.213686(8) 0.230 0.12 £/12 4+ 0.03751 2
L LE04144019) | 1.15%(15) | 1.783{1G6) 2+ Oe)
AglZ = Ao /Z 1.9(1) 2.75{10) 4+ Oe)
0y 1.5(2) T e/
~p 2.277T30E) 1.60 1.25 1+ e/6 + 0066832

This stochastic process can through standard techmiques [Jamssen
(1976)] be transformed into a Langevin equation formalism. Below the
critical dimension the RG analysis of the Langevin equation

Oplz, t . . .
20D DVl t) + (o~ ol ) -

— A+ o)t (x )+ v plz gz, 1) (4.45)
is necessary [Janssen (1981)]). Here n(x,t) is the Gaussian noise field, de-
fimed by the correlations

<qlz,t) ==0 (4.46)

< glx, glz' 1) = =Tz — 2)é(t — ). (4.47)
The noise term is proportional to 4/ p(z,t) ensuring that in the absorbing
state (p{x,t) = 0} it vanishes. The square-root behavior stems from the
definition of p{z,t) as a coarse-grained density of active sites averaged over
some mesoscopic box size.



DP below d , topological phase diagram method

HR=':-'i_l—j-?}§'—|:Fi_p3—j':ljlrg'+Ei_p—p2}r§'2 <« AN p APE A A% 24 2404

A . . . .
=(ﬂ.-—ﬁp—§w)il—mq- (4.38)

The phase portrait of this system is depicted in Fig. 4.3. The zero energy

Generalization of the
Ginzburg-Landau potetntial
Description to nonequilibrium
(two fields)

PHYSICAL REVIEW E 74, 041101 (2006)

|_1

Fig. 4.3 Phase portrait of the DP system in the active phase. Thick solid hines represent
zero-energy trajectories, which divide the phase spece into s number of disconnected
regions. The point B = {1, (e —~)/A} corresponds to the active mean-field fived point.
From [Elgart and Kamenevr ( 2006)].

lines are the generic p = 1 {mean-field) and g = 0 (absorbing phase) trajec- (d)
tories, along with the g = 2(op — +) /Ap curve. According to the mean-field
analysis [classical equations (4.32) and the equation of motion (1.80) with

p = 1], the active phase mean-field phase corresponds to point B in Fig. 4.3.

FIG. 5. (Color online) Generic phase portrait of DP models in
the vicinity of the phase transition [after the shift, Eq. (30)]. (a)

The o e b L T . b 1 Active phase, m =0 (b) transition point, m=0; (¢} extinction phase,
L& .:}Stf'm Call T e t to extinction Iy tuﬂlﬂg the contro FIELI.'ELm'E'tET m=10. The [.'I]US and minus E-i.gl:ls- show the E-i.gl-.l of the Hamiltonian

m = o — 7 to zero. The transition is represented by the phase portrait with . ... cctor. (d) The one-loop diagram renormalizing u vertex

the three zero-energy trajectories intersecting at the point (1,0). To focus (verexes m and v are renormalized in a similar way)
on the vicinity of this point the shift of variable

p—1 —p {4.39)



Generalized, n-particle Contact Processes

According to the phase-space description
the triangular topology encodes DP behavior.
For unary reaction models this is called the
DP hypothesis.

Tuning of simultaneous intersection of more than 3 lines —

In case of n particle reactions, when the lower levels are not generated by RG (fluctutions)
the g=0line is ,,n” times degenerated — different universality classes ?

Binary particle reaction models:

2430 24534; s4d o, (4.102)

where the last reaction s included (a8 usual in bosonic models) to prevent
infinite proliferation of particles in the active phase. It is easy to construct
the corresponding resction Hamiltonian by the recipe given in Sect. 1.6.1,

A T i
Hp=5(l-p)0 + 50" -p)0 + 507 - )¢
1 y
:Hf.’ﬂi1+;rrj|_rrj:r3+ipg|;-]il—pjuf. (4.103)

35



Binary particle reaction models (classes)

The corresponding zero energy lines are shown on Fig. 4.13 with the g =

Novel %hase-space topology,
novel class 7 Long debates: q
PRG could not find corresponding
stable fixed point (Janssen et al)

e

The site restricted version does
not require the 3A->2A reaction,
but an explicit diffusion of A-s,
otherwise the 2A->3A, 2A->0
(]_i(alr contact process) shows DP
like behavior.

The difoSive Site reStriC.ted VerSion Fig. 413 FPhase portrait of the annihilation-flssion system in the sctive phasa (ef DP,
the: PCPD ShOWS dlffu S101N _F'ig. -1'::3:. hT ke zer..:.-merg:.r- '_'_I.'I.-:q ; 0 '..sic:l;ul:-'.:r: degen;.'rr:n.te m’.ld i .191;.{;{:_1 by LI-'_E;{;;EI:';'E
dependent scaling behavior by ® transition points 4, B, and C coalesce. From [Elgart and Kamenev (2006)]
numerical methods

0 heing double degenerated. The system i= in the active phase for 7 =

S ome SlmUIathnS Clalm that : 2\ corresponding to [:rfl'.ll[ B I(auu:l particle density :.u._:J. By by :L_uu'.n-g
PCPD _ DP Since fOf D lar e the control parameter m = 7/2 — A to zero the model can be driven to

g % x g extinction. The o/2 = A condition corresponds to a continuwous phase
there 1S a dl‘l {1n the eXpOIleIltS) transition. Af the transition point the four zero-energy lines are intersecting

in the point



Binary production (PCPD) model

1D PCPD reaction—diffusion

model
production annihilation
G : (1-pX(1-D)/2 p(1-D)
t e

HEH-EH — -
'[+]_ & — e I N N TR MR S

diffusion
rate: DD

absorbing
phase

density ~ (0—G)

active phase

Two absorbing states without
symmetry, one of them 1s

diffusive. (Carlon, Henkel, Schollwock
(PRE 2001).

Bosonic field theory .
(Howard&Tauber'97) failed to describe
critical behavior. In the bosonic
model diverging active phase.

Fermionic model shows different
critical behavior but field theory 1s
too hard. Numerical methods show
new exponents.

No extra symmetries or
conservation laws of the action has
been found to exl?lam unexpceted
critical behavior !



Mysteries of PCPD

The upper critical dimension predicted:

d = 2(m-n-1)/(m-1) = 2 (dCDP=4)

confirmed by simulations (Odor et al 200.

The mean-field exponents are different
from those of DP : o = 1/n

For d 22 non-DP class, why
would 1t collapse at d=1 to DP ?

Fermionic version and FT .
suggest that PCPD 1is better described
by a multi-component model

DP coupled to diffusing particles
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Fig. 6.5 Effeciive # exponents for different diffusion rates. The circles correspond to
01 =0.05, the squares to )= 0.1 the dixmonds to [} =0.2, the up-triangles to [ = 0.
and the down-triangles to D =0.7. From [Qdor (2000)].



Space-time evolution of universal nonequilibrium spreading
models with absorbing states in 1+1d

", 41+ Unary production spreading
- With parity

4 ervation (PC):

A - (m+l)A, 2A — 0

#4 o Binary production spreading
it coupled to slave modes

Mthout and with diffusion:

e TR 2A > (m+2)A, 2A =0
"'fr.‘ N ‘ .: ,, 'Y ‘:l i':F_., A 'Ir-' X

Reactive and diffusive sectors,
LE AR Bt changing exponents by varying
A | AL g i the diffusion rate.
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Possible realization of PC by a surface growth model

[T * Dimer growth model <
- Unidirectionally coupled,
—— e = parity conserving RD systems:

A— 3A B—3B C(C—=3C..
2A— 0 2B— 0 2C—=0...
A—A+B B—B+C C—C+D

* Growth transition <> absorbing
phase transition at each level with
parity conserving class behavior

A p=0.] N p=0.1

H. Hinrichsen, G. Odor, PRL, PRE 1999.



Mapping to surfaces and interfaces

The morphology of a growing nterface i= usually characterized by its width

W(L,t) = [% Z hi(t) — (% Z }r..!{f:,)g]l.-'z | (7.2)

Mapping of two dimensional
dar-p

Kar arisi-Zhang type
surface growth onto
driven lattice gas of dimers

G. Odor et al PRE (2008)

Technological point of view the control of
their roughness is becoming critical for
applications in fields such as
microelectronics, image formation, surface
coating or thin film growth

(see: T. S. Chow, Mesoscopic Physics of Complex

Materials Texts in Contemporary Physics, Springer
2000)

Dynamics of a tumor growth ~

Molecular beam epitaxy class

(B. Brutovsky, D. Horvath, V. Lisy,
physics/0704.3138

Oy=1Lc=0 c=als

¢

FIS. 8 Simulation of the impact of chemetherapy to the T4
cluster after 200 time steps of the growth. The left colamno

Dpm 14 c= 0 Tl ]




Topological effects in low dimensions

* Hard-core exclusion among different species in 1d RD model:
Pair annihilation : AA— 0, BB — 0

Branching:
A— BAB or A— ABB
different phase transitions L =
* This overwrites other symmetries — >. | = _F
and conservation laws = =
* Hypothesis: 1 g
In one-dimensional, coupled branching ;
and annlhllatlng randOm WCl‘lk Systems ; 1*'-1{'}. rlﬂ. Steady (‘:—-ldl!" I:l{_*n:t;l'11.1_,- in the mm—_:lliplvnimrill-
of N -gpes of excluding particles at | i, i 5 = 2 dismonds to the symmetri branch.
G — tWO Mnlversallty ClClSSéS €XlSt, ing with 3 = 1/2 and stars to the model without exclusion

(3 =1).

those of 2-BARW2s and 2-BARW?2a
models. (Odor PRE 2001)

* Confirmed for binary models too..



Critical universality classes summary

* Which factors determine the PT universality class of a model of
short range interactions ?

Besides the spatial dimensions, boundaries, inhomogenities:

Mean-field classes of RD : nA = (n+k)A, mA — (m-1)A
Symmetries, conservation laws like in equilibrium (BAW?2 ...)
Initial conditions (temporal boundary condition)
Topological effects in low dimensions (multi-comp systems...)
Dynamically generated long range memory (coupled systems...)
For competing dynamics diffusion can play a role

See also: G. Odor, Rev. Mod. Phys. 76 (2004) 663.

NN PK WO

e Recent interests:

The effects of

long-range interactions,
underlying networks
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