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Resume

Ce travail présente une analyse détaillée des effets quantiques sur I'image
de nanotube obtenue par microscopie a effet tunnel (STM). La diffusion
dépendant du temps de paquets d’ondes est calculée a partir d’'un modele
de potentiel de jellium de la jonction entre le STM et 1’échantillon, qui com-
prend différents arrangements de nanotubes de carbone et de points con-
tacts. Les distributions du courant de probabilité et de densité de probabilité
sont déduites de la fonction d’onde dépendant du temps. La théorie permet
Iidentification des composants d’origine purement géométrique responsables
des distorsions caractéristiques de 'image STM des nanosystemes de carbone.

On considere plusieurs systemes modeles, chacun consistant d’une pointe
STM simulée, d’une surface de support et d'un nanosysteme de carbone. On
simule 'effet de la convolution de la pointe et de I’échantillon en calculant des
coupes de la topographie STM au dessus d’un nanotube. On examine aussi
I’effet de possibles points contacts sur le courant tunnel avant de calculer le
courant tunnel pour un assemblage de nanotubes en radeau. On compare
ensuite la distribution de courant tunnel pour des tubes libres et supportés.
La rétrodiffusion des ondes électroniques est étudiée en simulant un nanotube
fermé aux deux bouts.

On trouve que le courant qui traverse le(s) nanotube(s) et la jonction
tunnel nanotube — support dépend principalement par la jonction pointe —
nanotube en vertu de sa grande résistance tunnel. Le processus d’écoulement,
de la charge électrique est caractérisé par deux échelles de temps: le nanotube
se charge d’abord assez rapidement par le paquet d’onde injecté par la pointe
avant que cette charge ne s’écoule plus lentement vers le substrat. On com-
pare aussi les distributions de courant tunnel pour deux positions de la pointe
STM au dessus d’une jonction de nanotubes en Y: soit au dessus du point a
symétrie trigonale, soit position décentrée le long d’un bras. Les deux prob-
abilités tunnel ne different que peu l'une de l'autre, étant légerement plus
importante le long d’'un bras. On trouve que la pointe échantillonne encore
la région de la jonction quand elle est éloignée de 1.2 nm le long d’un bras.



Summary

This work contains a detailed analysis of quantum effects which influence the
scanning tunneling microscopic (STM) imaging process of carbon nanostruc-
tures. Time dependent scattering of electronic wave packets was calculated
on a jellium potential model of the STM junction containing different ar-
rangements of carbon nanotubes and point contacts. Distribution of the
probability current and the probability density was derived from the time
dependent wave function. The theory allowed me to identify components of
pure geometrical origin responsible for characteristic distortions of the STM
image of carbon nanosystems.

Several model systems were constructed, each model system consisted
of a simulated tip, a support surface, and a carbon nanosystem. The tip
convolution effect was simulated by calculating line cuts over a nanotube;
effect of point contacts was studied on the tunnel current; tunnel current for
a nanotube raft was calculated; tunnel current distribution was compared
for supported and unsupported nanotubes; electron wave backscattering was
studied by simulating a capped tube; tunnel current distributions were cal-
culated for different STM tip positions above a nanotube Y-junction.

The tunnel current flowing through the STM tip — nanotube(s) - support
tunnel junction is mainly determined by the tip — nanotube junction owing
to its large tunnel resistance. The tunneling event through the STM model is
characterized by two time scales, the nanotube is quickly ”charged” with the
wave packet coming from the tip then this ”charge” flows into the support
much slower. In case of a nanotube Y-junction two characteristic STM tip
positions were studied: the tip is either above the trigonal symmetry point
or is displaced along one arm. The tunneling probability at the symmetrical
tip position is only slightly increased from its value over an arm but in the
off-the-junction case the wave packet still samples the junction region for an
1.2 nm tip displacement.
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Chapter 1

Introduction

Scale of the electronic
motion in the nanoworld

r.-: -

SPACE

1 Angstrom = 10 m im 10 million km = 1019 m
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1 femto sec = 105 s 1s 31 million year = 101> s
LAWS
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Figure 1.1: (color) Comparison of nano-, human-, and astronomical scales.

Modern science is entering into the nanoworld. The nanoworld is the
world of nanostructures, a world where the characteristic length is the nanome-
ter (107 meter). We are beginning to learn how to study the properties of
individual nanostructures, how to build them, and how to assemble com-
plicated networks from them. This rapid development is mostly driven by
the need of exponentially increasing miniaturization of electronic devices [1]
(http://public.itrs.net). If we want to understand the operation of na-
noelectronic devices and to plan such devices, we need to study the motion
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of electrons inside nanostructures. As shown in Fig. 1.1, the characteristic
dimensions of the electronic motion in nanostructures (107 m and 1071 s
are as far from the characteristic dimensions of our direct sensory experi-
ences (1 meter and 1 second) as the astronomical world is from our human
world. The most important difference and difficulty, however, is that elec-
tronic motion in the nanoworld is governed by the laws of quantum mechan-
ics. Because of this vast distance from the human world, all measurements
of the nanoscopic electron motion are indirect and generally difficult to in-
terpret. These systems are, however, considerably more complex than atoms
and simple molecules, hence it is difficult to study them theoretically. This
is where computer simulation comes in as an extremely useful tool. Comput-
ers, products of today’s microtechnology help to realize the nanotechnology
of tomorrow.

Carbon nanotubes (CNTs) first observed more than a decade ago [2] are
potential building blocks for future nanoelectronics [3] because they can be
conducting or semiconducting [4]. The feasibility of CNT transistors [5, 6]
and even logic gates [7] with sub-nanometer active regions has already been
demonstrated. Electronic structure of a freestanding single wall carbon nan-
otube (SWNT) is uniquely determined by its atomic structure, these all-
carbon molecules can be metallic and semiconducting according to the (n,m)
wrapping indices of the graphene sheet. Simple tight-binding theory repro-
duces this relation remarkably correctly [8], as verified by ab-initio calcula-
tions [9], and scanning tunneling microscopy (STM), experiments [10, 11].
Close vicinity of other objects, however, alters the CNT electronic struc-
ture. The strongest change is due to the electrostatic doping effect, which is
actually utilized in CNT-FETs [12]. As was pointed out, however, the con-
tacts and the support surface may strongly influence the behavior of CNT
electronic devices. Three-terminal nanoelectronic devices [13] can also be
fabricated from CNT Y-junctions [14, 15]. Y-junctions are shown to have
asymmetric I-V characteristics [16] and the current between two ends of the
Y is influenced by the potential given to the third end [17]. Tt is still de-
bated, however, whether the rectifying behavior is an intrinsic property of
the junction or rather caused by electronic structure of the interface to the
metallic leads [18].

STM is one of the main techniques to investigate individual carbon nanos-
tructures [19] and devices fabricated from them. This is because of its un-
precedented spatial resolution: STM is routinely able to achieve atomic res-
olution and the vertical resolution is better than 0.01 nm. When Binnig and
Rohrer first measured [20] the exponential distance dependence in an exter-
nally and reproducibly adjustable vacuum gap then combined scanning [21]
with the tunneling effect, many scientist though such an instrument should

16



not have worked in principle. Indeed, it took several years to explain why
the STM is possible [22] and what an STM instrument is measuring actually.
In the simplest approximation [23] the tunneling current is proportional to
the surface local density of states at the Fermi energy at the position of the
STM tip.

STM is the only tool offering the possibility to study both the atomic
and electronic structure of the same nanostructure with sub-nanometer reso-
lution [24]. This unique advantage of the method is also its greatest difficulty:
the influence of the geometry (i.e. the spatial positions of the atoms) and
the influence of the electronic structure is always intimately mingled in STM
images and scanning tunneling spectroscopy (STS) curves. Several other fac-
tors, as the STM tip geometry [25] and the properties of the support surface
(the conducting substrate on which the nanostructure is deposited for STM
study) also affect STM imaging. There are some characteristic differences in
the STM imaging of a three dimensional object "floating” over the surface
of the support as compared with STM techniques usually applied on flat,
homogeneous single crystalline surfaces or adsorbate covered surfaces. First
of all, in this case one cannot neglect the convolution effects arising from the
geometry at the very end of the STM tip. The second important difference
arises from the existence of two tunneling gaps: one between the tip and
the NT and the second, between the NT and the surface over which it is
floating. The differences in the electronic structure of the nanostructure and
that of the support may also have a significant effect on the value of the
tunneling current. A further effect which is to be taken into account in the
interpretation of STM data is the value of the tunneling gap between the tip
and the imaged object. Early work on the dependence of STS spectra on the
width of the tunneling gap showed that the STS results are influenced by this
value [26, 27]. This gap can be an important parameter in understanding
the STS data and the topographic STM images of CNTs. Atomic resolution
images of CNTs do not exclude the possibility of point contact imaging [26].

All these factors influencing STM imaging of carbon nanostructures show
that the interpretation of experimental STM images and STS spectra is not
an easy task. I address all these factors systematically in this work and
analyze their specific effect on the STM/STS results.

Experimental STM/STS results analyzed in this work were mainly mea-
sured in our Laboratory, the Nanotechnology Department (headed by Dr.
L. P. Bir6) of MTA MFA, Budapest and in the LASMOS, FUNDP Namur
(headed by Prof. P. Thiry). Most of the measurements were done by Dr.
L. P. Biré and his students. Majority of the CN'T samples measured were
prepared at the Laboratory of Nuclear Magnetic Resonance (headed by Prof.
J. B.Nagy) by the catalytic decomposition of acetylene [28] over a supported
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transition metal catalyst.

1.1 Outline

The organization of this thesis is as follows. Chapter 2 gives a brief in-
troduction to STM investigation of carbon nanosystems. In Chapter 3 the
theoretical framework, the models, and the algorithms are presented which
I used for the simulation of the STM tunneling process. First the potential
scattering model of the STM tip — NT(s) — substrate model is constructed,
then I introduce the wave packet dynamical method, discuss the choice of ini-
tial states and the proper measurables. Chapter 4 gives a detailed analysis of
the geometrical factors influencing the STM imaging process. This includes
the effect of the tip convolution, influence of point contacts, and that of tip
polarity. Chapter 5 is devoted to the study of the STM tunneling process.
After the detailed examination of the time development of the tunneling pro-
cess specific experimental arrangements are analyzed: a semi-infinite capped
tube, a quantum dot, and a NT Y-junction.

Hartree atomic units are used in all formulas except where explicit units
are given. SI units are used, however, in all the figures and numerical data.

The personal pronoun ”I” is used for my work, ”we” for the work I par-
ticipated in, and ”they” for the results of others. For all published figures
the reference is given as ”From” for papers where I am among the authors
and as "Ref” for other papers.
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Chapter 2

STM investigation of carbon
nanotubes

2.1 Carbon nanotubes

Carbon is a unique element regarding its electronic orbital versatility and its
subsequent polymorphism. One of its electronic hybridizations is sp?, which
is the one that graphite is built with.

Figure 2.1: Geometrical construction
of a carbon nanotube. d; and dy are
the unit vectors of the graphene sheet,
¢ is the wrapping vector. The shaded
region shows the rectangle cut from
the graphene sheet. After [29].

Single wall carbon nanotubes (SWNTSs) are objects composed of carbon
with typical diameters of the order of 1 - 2 nm. The structure of a SWNT
is like that resulted after rolling a single sheet of graphene into a cylinder.
Along the cylinder axis SWNTs are typically of yum in length. Fig. 2.1 shows
the geometrical construction of a SWNT. The two vectors d; and @ span the
graphene unit cell, |@,| = |@;| = V3acc = 0.246 nm, where ace = 0.142 nm
is the C' — C' nearest neighbor distance in the graphene sheet. Graphene has
two atoms in the unit cell located at the origin and at 1/3 - (d; + d»). To

19



obtain a NT first a long and narrow rectangle is cut from the graphene sheet
(shown in Fig. 2.1 by shading). The direction and length of the narrower
side is given by the wrapping vector ¢ = nd, + mds. This rectangle is then
rolled up to a cylinder so that ¢ becomes the circumference of the tube. The
direction of the NT axis is naturally perpendicular to ¢. Hence the diameter
d = |¢]/m of the CNT is

Figure 2.2: Graphene sheet wrapped up in various ways as a model of various
SWNTs. An armchair, a zigzag, and a chiral tube is shown. A chain of bonds
is highlited along the circumference of the armchair and the zigzag tube.

The structure of an "ideal” SWNT (i.e. an infinite seamless one) is per-
fectly determined by the wrapping vector ¢ which is in turn determined by
the tuple (n,m), the wrapping indices (or chiral indices). Several, typical
examples are shown in Fig. 2.2. Because of the characteristic shape of the
chain of C'— C bonds along the circumference of the NT (highlited in the fig-
ure) (n,n) tubes are called armchair tubes and (n,0) tubes are called zigzag
tubes. General (n,m) tubes are called chiral tubes.

Even the structure of a seamless SWNT, however, is different from that
given by the above simple geometrical construction. This is because the c3
symmetry of the graphene sheet is broken by the rolling operation: C' —
C bonds along the tube axis and perpendicular to the tube axis become
inequivalent. For small diameter tubes ab-initio geometry optimization [30]
indeed gives noticeable atomic displacements from the positions determined
by the simple wrapping of the graphene sheet. The deviation from the ideal
behavior increases with increasing curvature. The most prominent change is
the increase of the diameter with respect to its geometrical value (eq. 2.1).

Although ideal CN'Ts consist merely of carbon atoms, their physical prop-
erties vary significantly, depending on the details of the atomic arrangement
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(determined by the (n, m) tuple). The most prominent example of this con-
nection is the dependence of the SWNT electronic structure on its chirality.
On the basis of their electronic structure the SWNTs can be divided into
two groups [4]: semiconducting NTs, these have a vanishing density of states
(DOS) at the Fermi energy and metallic NTs, with a finite DOS at Fermi
energy. The zone folding approximation [31, 32| gives a simple unique re-
lation between the (n,m) tuple and the electronic structure of a CNT: if
n —m = 3k, where k is integer, then the CNT is metallic, all other tubes are
semiconductors. The DOS of SWNTs contains van Hove singularities (where
dE/dk = 0), which is a signature of 1D electronic structure. The energy gap
AFEy; [33, 34] between the first two van Hove singularities below and above
EF is:

AElrrlzetallic = 6 aC—dC’YU , (2.2)
AElsizmiconductor = 9 aC;lC’YU , (23)

where 7y is the 7 electron interaction integral. For typical SWNTs of
d ~ 1 nm diameter AET%llic 5 15 eV and AEjemiconductor ~ () 5 eV [10].
Calculations taking the ¢ — 7 interaction into account [35, 36] show the
opening of a curvature induced minigap on Ep for all CNTs with n —m =
3k # 0. Hence the n = m armchair CNTs are the only true metallic systems.
For SWNTs the above predictions are verified by experiments [10, 11] and
ab-initio calculations [9].

A multi wall carbon nanotube (MWNT) is built by concentrically placing
the smaller diameter SWN'Ts in the larger diameter ones in a way that the
graphene cylinders are separated by a distance of 0.34 nm [37, 38]. This value
is between the 0.335 nm interlayer distance of ABAB graphite (HOPG) and
the 0.344 nm interlayer distance of turbostratic graphite. This is because the
ABAB stacking can not in general be realized in MWNTs and this shifts the
interlayer distance towards the value characteristic of turbostratic graphite.
The diameter of MWNTs may range up to 100 nm.

Another regular, multi-shell structure frequently found experimentally is
the "rope” [39] or "raft” [25] of SWNT's, which is built by placing side by side
the SWN'Ts in a way that their axes are parallel to each other with intertube
spacing 0.32 nm characteristic of van der Waals inter-SWNT binding [39].

Real CNTs do contain defects in general and these defects do influence
the geometry and also the properties of CNTs. Incorporation of pentagons
and heptagons (5- and 7 membered rings) introduces curvature to a per-
fect graphene sheet. Due to this effect, different arrangements of pentagons
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and heptagons give a large variety of carbon nanostructures, like metal-
semiconductor junctions [40], CNT knees [41], tori [42], coils [43] and Y,
T, X [44, 45], etc multiterminal connections [46]. These nanostructures are
potential building blocks of future nanoelectronics.

When the ratio of nonhexagonal to hexagonal rings is more than unity,
the NT walls become undulated and the interlayer distance increases. These
structures can be described by the Haeckelite model [47, 48]. We performed
an extensive study of the structural and electronic properties of coiled and
curled CNTs having a large number of pentagon-heptagon pairs in a co-
operation between LPS, FUNDP Namur and our Laboratory [49, 50, 51, 52,
53].

Another kind of defects are the foreign atoms built into the carbon lat-
tice, e.g. from the catalyst used for SWNT production. CNTs can also be
functionalized chemically [54], i.e. various molecules can be bound to the
CNT. Functionalization increases the bond strengh [55] between the CNTs
and the matrix in NT composites.

2.1.1 CNT preparation methods and applications

The need for CN'Ts is steadily increasing, thanks to their extraordinary prop-
erties. Practical applications demand a large quantity of CNTs with con-
trollable properties on a low cost. The most important CNT preparation
methods existing today are as follows.

lijima found the NTs in arc discharge prepared samples [2]. The arc is
generated between two carbon rods in an inert gas (He, Ar) atmosphere.
This method is similar to that used for fullerene synthesis [56]. Arc grown
MWNTs are generally well graphitized (contain only a few pentagons and
heptagons) and have closed ends, their inner diameter is 1 - 3 nm, outer
diameter is 2 - 25 nm, the length is around 1 um. By co-evaporation of
a catalyst SWNTs can also be produced. Arc grown SWNTs are mostly
arranged in hexagonal ropes.

In a variation of the arc discharge method an AC arc is generated be-
tween two carbon rods submerged in water [58, 57]. There is no product
on the electrodes, the deposit peels off the electrodes. A continuous flow
of water makes it easy the removal of the product from the system. This
cheap and easy to use method produces well graphitized MWNTs. Fig. 2.3
shows TEM images of MWNTs produced by the underwater arc method in
our Laboratory.

Laser ablation of carbon was the first method [59] to produce fullerenes.
This method was optimized for the production of SWNTs and MWNTs. The
product of this costly technique contains long bundles (5 - 20 gm) of 1 - 2 nm
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Figure 2.3: TEM images with increasing magnification of carbon nanotubes
produced in an underwater electric arc. Electron diffraction is shown on one
of the graphitic particles in the upper left subimage. The HRTEM image
(lower right) shows MWNTSs with well graphitized, straight walls and tapered
ends. Ref. [57].

diameter SWNTs with good diameter distribution control.

The CCVD method [60, 28] (Catalytic Chemical Vapour Deposition) has
been used since the seventies to produce carbon filaments [61]. This method
is based on the catalytic decomposition of hydrocarbons. CNTs grow on the
catalyst particles. SWNTs and MWNTs can also be produced. An important
advantage of the CCVD method is the possibility of patterned growth by
catalyst litography which is important for field emission application in flat
displays. CCVD grown CNTs are generally less graphitized because of the
low synthesis temperature (700° — 1000°). This method is applied at the
RMN Laboratory of FUNDP since 1993. First STM images of CCVD SWNT's
were published in 1997 by L. P. Bir6 et al [25].

A variety of the CCVD method is the spray pyrosylis [62] method. The
liquid carbon source and the catalyst is sprayed into a furnace and the CN'T
containing product is removed in a continuous process. Diameter and mor-
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phology dependence on experimental conditions of CNT arrays grown by this
method was studied in our Laboratory [63].

The method of high pressure catalytic decomposition of CO (HiPco [64]
method), similarly to the spray pyrolysis is also a continuous method. SWNT
material of 97% purity can be produced at rates of 450 mg/h.

All these methods produce a statistical mixture of different (n, m) SWNTs
or MWNTs composed from them. The with of this statistical distribution
can be decreased, but no method exists today for a controlled growth of
specific (n,m) tubes. This level of control, or at least the selective growth
of semiconducting and metallic CNTs would be important for nanoelectronic
applications.

Most of the applications of CNTs, however, are possible without this
ultimate control. Excellent field emission properties of CNTs [65, 66] makes it
possible to utilize CNTs in high resolution electron microscopes, flat screens,
and even in lamps.

According to the experiments [67] and calculations [68, 69] the Young’s
modulus of SWNTs is around 1 TPa and the CNTs return to their initial
state after several cycles of large deformations. These excellent mechanical
properties makes it possible to improve the composite materials by incorpo-
rating CNTs into a plastic or ceramic matrix.

The strong relation between the atomic structure and the electronic struc-
ture makes it necessary to investigate isolated CNTs, to resolve their atomic
structure, and to measure the electronic structure of the very same NT. STM
is able to achieve these tasks.

2.2 Scanning tunneling microscopy

In principle, the concept of an STM is very simple (see Fig. 2.4): an atom-
ically sharp, metallic tip is brought within a distance of a few tenths of a
nanometer to a conducting surface; due to their quantum mechanical behav-
ior, electrons may tunnel from the tip to the surface and vice versa.

Unless a bias U, is applied between the tip and the surface the two elec-
tron fluxes: surface - tip, and tip - surface, will be equal, and will cancel
out each other in equilibrium. When an external bias is applied, depending
on the polarity of the bias, one of the tunneling directions is made pref-
erential, therefore a net electronic current can be measured in the circuit.
Usually the bias is of the order of 1 V, which yields currents in the 1 nA
range. Fig. 2.5 shows the one dimensional (1D) band structure model of the
tunneling mechanism from left electrode to the right one.

In practical STM instruments, the positioning and scanning of the STM
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Figure 2.4: Concept of the STM. Small circles symbolize the atoms. s is the
tip-sample tunnel gap. From [70].

tip is achieved by piezoelectric actuators in most cases. The width of the STM
gap is controlled by a feedback loop which keeps the value of the tunneling
current at a setpoint value I eipoint selected by the operator. An STM can
operate in several operating modes, the two most important ones are as
follows:

e Topographic (constant current) imaging: the feedback loop is on, the
image is generated from the values of the voltage applied to the ”z”
piezo-actuator to maintain a constant value of the tunneling current.
Provided the electronic structure at the sample surface is homogeneous,
the topographic profile of the surface will be generated. Foreign atoms

are seen as a dip or a hill, depending on their electronic structure.

e Current-voltage spectroscopy, frequently called scanning tunneling spec-
troscopy (STS). The scanning, and the feedback loop are switched off,
the value of the tunneling gap is fixed, and the bias voltage is ramped
from —U to 4+U, and the corresponding current variations are recorded.
The function dI/dV gives information about the local DOS (Density
Of States) of the sample.

The explanation of the unprecedented lateral resolution of the STM lies in
the exponential distance dependence of the tunneling probability: the tunnel
current flows in a narrow channel between the closest point of the tip and
sample.
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Figure 2.5: (color) Band structure model of STM tunneling. The [; tunnel
current is constituted from contributions of states in the energy window
U;. Red arrows symbolize that the contribution is increasing with increasing
energy because the states with higher energy ”see” a shallower potential gap.

2.3 STM investigation of carbon nanotubes

The first STM experiment proving that atomic resolution is possible on a
CNT was reported in 1993 [71]. The authors of that publication investigated
MWNTs produced in-situ by the condensation of evaporated carbon on a
highly oriented pyrolytic graphite (HOPG) substrate.

The earliest STS measurement on CNTs was reported in 1994 [72]. These
measurements were carried out in air on MWNTs grown by the electric arc
method transferred onto an Au substrate by ultrasonication in ethanol. Both
semiconductor and metallic CNTs were found.

There are two distinct classes of NTs on which atomic resolution was
achieved: i) MWNTSs with diameters of several tens of nanometers [71, 73]
like in Fig. 2.6 and i) SWNTs with diameters in the 1 nm range [10, 11]
like in Fig. 2.7. These images were measured by L. P. Bir6 [70]. While
the MWNTs show a similar structure to HOPG, i.e. a threefold symmetrical
lattice composed of tunneling current maxima (light features) and sometimes
Moiré superstructures [71]; the SWNTs show a threefold symmetrical lattice
of minima (dark features) corresponding to the empty centers of the hexagons
building up the graphene sheet.
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Figure 2.6: Atomic resolution, constant current, topographic image of a
MWNT. I, = 1.0 nA, U; = 100 mV. Note the three lines oriented along
the directions in which the £ sites (visible in the STM images of graphite)
are aligned. The line cut clearly shows the curvature of the nanotube and
the atomic corrugation. Some blurring is present in the image due to the
mechanical contact of the tip with the nanotube. From [74].

2.4 Perturbative theory of STM imaging

The tunneling into a supported NT is a complex problem due to the two
junctions (STM tip — CNT and CNT — support) the STM current must go
through. As T will show later in Section 5.6, my wave packet dynamical results
clearly indicate that this process proceeds in two, quasi sequential processes.
In the first process, when the electrons tunnel from the tip into the NT,
the support plays little role. In the second process, the STM tip itself plays
little role. One could reasonably well reproduce the first process by ignoring
the support and by assuming that the NT is contacted by two electrodes at
both ends through which the spreading charges can be evacuated into the
external STM circuit. Compared with the floating N'T, this electrical setup
would certainly affect the absolute value of the transmission coefficient of
the STM problem, but should have little influence on the imaging process
itself. Ab-initio calculations of the STM image of a NT on Au using the
Tersoff-Hamann formalism (see Section 2.4.1) has shown that this is actually
the case [9].

Treating the tip-sample coupling as a first-order perturbation the total
tip-sample current is given as

2me [t

=== [ dE[f(E) = f(E)]3_ Kalv|B)*0(E = Ea)d(E = Eg) . (24)

a’ﬁ
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Figure 2.7: Atomic resolution topographic STM image of a SWNT. a) Gray
scale at left corresponds to 0.35 nm; AB is parallel with the tube axis, the
line cut along C'D is shown at right hand side. b) Detail of the tube seen in
a), gray scale at left correspond to 0.26 nm; as seen in the line cut (shown
on right hand side of the image) taken along the marked line in b), the
measured distance of the carbon atoms in the hexagon is 0.148 nm, while
the amplitude of the corrugation from the empty center of the hexagon to
the tunneling current maximum corresponding to the carbon atom is 0.8 nm.
From [70].

where f;(EF) and fy(F) are the occupation numbers of the tip and sample,
respectively and (a|v|3) is the coupling matrix element of an |«) tip state
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to a |fB) sample state. This equation is the well-known starting expression of
the perturbative theories of elastic tunneling processes.

2.4.1 Tersoff-Hamann theory

In this simplified model [23] only one atom at the tip apex is taken into
account, with an s-wave orbital. Both the tunneling matrix elements and
the tip DOS are taken to be constant in the eU; energy window. With
these assumptions the tunnel current is directly proportional to the LDOS
integrated between the Fermi level of the tip and sample, that is

ES

LFEU) x [ dE puoos(7, E) (25)
B3 —el;
with
pLpos (7, E) Z | Us(7) [* 0(Es — E) (2.6)

where 103 and Ej are the electron wavefunction and eigenvalue of state
B, respectively. We then approximate the constant current images as iso-
surfaces of I;(7,U;). Using this approximation Rubio et al. simulated [9]
STM images of SWNTs by determining the p;pos(7, E) values from ab-initio
calculations.

For an infinitesimally small bias eq. 2.5. becomes even simpler:

Ii(7,Uy) < prpos(7, Eg) , (2.7)

which means that the tunnel current at tip position 7 is simply propor-
tional to the sample LDOS on the Fermi level at the center of the tip.

2.4.2 Tight-binding STM theory

To go beyond the simple Tersoff-Hamann result one has to make some jus-
tificated assumptions for the («|v|f3) tunneling matrix elements and for the
tip DOS. A simplest formalism to accomplish this is the tight-binding theory
of STM imaging [75].

By treating the coupling interaction v between the STM tip and the
isolated NT in first order perturbation theory, the tunnel current between
them is given by eq. 2.4. In tight-binding, assuming one orbital per atom for
the sake of simplicity, the electronic states of the tip and sample are linear
combinations of atomic orbitals located on the corresponding sites ¢ and j:
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1€t JEs
Inserting these LCAO expressions in eq. 2.4 yields the following expres-
sion of the current at zero Kelvin [76]

ES
= (2r) %/F dE S S vyvhnta (Bl — B+ eV + E)niy (E) (2.9)
F

—eV i, €L j,j'Es

where the Fpr’s are the Fermi levels of the unperturbed systems, and
v;; = (n;|v|0;) is a tip-sample coupling element. The energy levels of the tip
sites have been shifted to accommodate the bias and contact potential of the
junction. In eq. 2.9,

E) = (=1/7) Im G}, (E +10) (2.10)
with G%/(z) a Green function element of the sample for the complex en-
ergy z. A similar expression is defined on the tip side. The diagonal elements

ng;(E) and n3;(E) are the local densities of states on sites 7 and j of the tip

(23
and sample, respectively. These elements were computed by recursion [77].
This technique, originally designed for the calculation of diagonal elements
of the Green function, also gives access to non-diagonal elements [78]. For a
real symmetric Hamiltonian matrix with one orbital per atom, non-diagonal

elements can be obtained as follows

0; + 0,

Gy (z) = Gyrj(2) = ( 7 (z— H)™ |
1

—51Gi(2) + G (2)]

0; + 0,

75 (2.11)

The NT Green function was computed with C 7 orbitals only, assuming
a constant hopping interaction of -2.9 eV between first-neighbor atoms.

In applications for CNTs, the STM current was calculated with eq. 2.9
by considering just one atom : at the tip apex with an s atomic orbital,
like in Tersoff-Hamann theory. A Gaussian function of 6 eV full width at
half maximum was chosen to represent the tip density of states at the apex
nk;(E). On the sample side, the CNTs were described with one 7 orbital per
atom. The tip—sample coupling interactions were sp Slater-Koster hopping
terms having the following expression [75]:
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Vij = Up Wi e 4/ cos 0;; (2.12)
wy = ey e " (2.13)
j/

where d;; is the distance between the tip atom 7 and the sample atom j,
0;; is the angle between the orientation of the 7 orbital on site j and the ij
direction. The Gaussian weight factor w;; was introduced for convergence
reasons. The parameters used are A\ = 0.085 nm and ¢ = 60 nm~2. The
prefactor vy does not matter as long as absolute values of the current are not

required.
Figure 2.8: Calculated gray scale

STM current map at constant height

(0.5 nm) above a graphene sheet. The
tip potential is 0.25 V. Thin black
lines show the graphene hexagonal lat-

tice, with atoms at the vortices of the
hexagons. See the text for details.

L . J From [79).

As a first application of the tight-binding formalism STM image of a single
graphene sheet was calculated, see Fig. 2.8. We can see corrugation valleys
that correspond to the center of the hexagons of the honeycomb structure
(overlaid on the image by black lines). Around the hexagonal holes, there is
a network of protruding C-C bonds. The hexagonal atomic lattice does not
show up in the image, instead a triangular lattice made of the valleys is seen.

When coupling two or more graphene layers with the Bernal graphite
stacking, the two atoms per unit cell become unequivalent: atom A has a
neighbor directly beneath whereas atom B does not. In a small interval
around the Fermi level, the LDOS on site A is much smaller than that on
B [80]. As a result, the STM current at small bias is larger when the tip is
above an atom B, which therefore appears as a protrusion in the constant-
current image. This interpretation is considered as the ad-hoc explanation
of the fact that only every other two atoms are seen in the experimental
STM images of graphite [81]. As can be seen in Fig. 2.9 there are no marked
local maxima of the current at the locations of the A atoms, only the B
atoms are seen (as white features). By increasing the bias, the differences
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Figure 2.9: Calculated gray scale
STM current map at constant height
(0.5 nm) above a multilayer graphite
surface. The tip potential is 0.25 V,
which corresponds to a current ratio
Ig/I4 = 2. The B atoms are clearly
resolved, whereas the A atoms do not
come out. Thin black lines show
the graphene hexagonal lattice, with
atoms at the vortices of the hexagons.
See the text for details. From [79].

between the densities of states on A and B sites become less important and
the asymmetry washes out gradually.

Fig. 2.10 shows the STM images computed by the tight-binding formalism
for four single-wall nanotubes with diameter around 1.4 nm. In agreement
with the interpretation of graphene images summarized above, the centers of
the honeycomb hexagons correspond to sharp dips of corrugation. In these
2D maps of the radial distance of the tip, the nanotube axis is along the
horizontal, x direction. Only the topmost parts of the nanotubes have been
imaged. The curvature of the nanotube causes a distortion of the images in
the form of an inflation of the y (see Section 4.1.2) as discussed in [75], here
by a factor of 1.7. This distortion is clearly visible on the honeycomb lattice
that was superimposed on the images. It is also responsible for the elongate
shape of the corrugation dips at the center of the hexagons.

In the (18,0) (metallic) zig-zag CNT illustrated in Fig. 2.10, the largest
protrusions are found on the bonds parallel to the axis. These protruding
bonds form a triangular lattice of oblate humps. This resembles the triangu-
lar lattice formed by every other two atoms in multilayered graphite. In the
(10,10) (metallic) armchair NT, the largest protrusions are realized on the
atoms. Here all the bonds look the same and the image has the honeycomb
symmetry.

In the case of chiral (11,9) and (12,8) NTs (both semiconductors), one
third of the bonds protrudes more than the others, like with the zig-zag ge-
ometry, but not always the ones closest to the axial direction. This bond
anisotropy again destroys the hexagonal symmetry, as often observed exper-
imentally [82]. In chiral NTs, the protruding bonds form stripes that spiral
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Figure 2.10: Calculated gray scale representation of the axial distance at
constant current of the STM tip apex at the topmost part of four single-
wall carbon nanotubes. The tube axis is parallel to the horizontal direction.
The vertical distance of the tip to the atom located at the center of each
image was set to 0.5 nm. For the two metallic, non-chiral (10,10) and (18,0)
nanotubes, the tip potential was 0.3 V. The chiral (11,9) and (12,8) nanotubes
are semiconductors, with a band gap of ~ 0.6 eV. For both of them, the tip
potential was 0.5 V. All coordinates in the figure are in A. From [79).

around the NT [83]. The elongate holes at the center of the hexagons are
no longer aligned with the circumference, as indeed often observed in the
experimental images [10, 11], even at room temperature [84].

The images of a semiconducting NT depend on the sign of the bias po-
tential. Neglecting any contact potential that would shift the Fermi level
of the semiconductor, the tip potential must exceed half the band gap of
the NT to produce a tunneling current. The values +0.4 and -0.4 V were
selected for the calculations. With a negative tip, the unoccupied states of
the NT are probed. Inversely, a positive tip explores the occupied states.
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Figure 2.11: Effect of the sign of the bias potential on STM images of semi-
conducting nanotubes. The two upper images are calculated gray scale topo-
graphic STM images for the tip negative and tip positive case. The coordi-
nates are in A. From [8]. The two lower images are atomic resolution images
measured on the same tube with tip negative and positive bias. Ref. [85].

Fig. 2.11(upper) shows the calculated STM images of the (11,7) NT for the
tip negative and tip positive case. Increasing the chiral angle of the N'T' pro-
duces a rotation of the strongest bonds [8], which progressively join together
and form stripes that spiral around the NT. With reversing the STM bias,
the handedness of the spiral stripes are reversed. This complementarity of
the STM images upon reversing the bias has been indeed observed experi-
mentally [85]. Interestingly, the image of a semiconducting (n, m) NT not
only depends on the sign of the bias potential but it does also depend on
whether n — m is a multiple of three plus one or minus one [83].

To summarize, as verified by ab-initio calculations [9], essential features of
atomic resolution STM images of SWNTs can be successfully and effectively
calculated [75, 83] with the tight-binding method. We calculated an ”atlas”
of simulated STM images for a series of 27 SWNTs representing all main
characteristic variations [8] by this method. The calculations show that the
honeycomb symmetry of the graphitic network is almost always broken by
electronic effects and the STM images of armchair NTs [8] are the only ones
to exhibit the full symmetry of the geometrical structure.
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2.5 Effect of the substrate

CNTs have to be deposited on a conducting substrate for STM study, to
support the CNTs mechanically and to maintain a closed electrical circuit.
Metals (Au, Pd, Pt, etc) and HOPG graphite are used in experiments. In
the case of metal support surfaces the most important effect of the substrate
on the STM image is caused by the doping of the CNT by the substrate. As
seen on the experimental STS curves (see e.g. [10]) and proved by ab-initio
calculations [9], this charge transfer effect can shift the STS curves of SWNTs
by several tenth’s of eV. However according to the ab-initio calculations [9],
for the Au(111)/CNT system, the shape of the wave functions at the Fermi
level show still a good resemblance with the wave functions of the free tube,
thus the STS curves are unchanged except for the above mentioned shift.
For a HOPG substrate, however, charge transfer is minimal.

(a)

-0.5 \wtﬁ_am) .
Au(100) Figure 2.12: Total energy of
% -10] metal/CNT as a function of in-
& PI(111) terfacial distance. The reference
‘%4'5_ /P/a(fn ::‘;:' energy is t-aken- as -metal/CNT sep-
e —a—Pd arated by infinite distance. Pt(100)
204 Po(100) /::o/;:;w%z))) curve is shifted up 0.2 eV for clarity.

Ve 18 20 22 24 2o 28 a0 52 Ref [86].

Distance(A)

Fig. 2.12 shows the results of ab-initio total energy calculations [86] for
the metal/CNT system for several metal surfaces. For all metal surfaces con-
sidered by that authors, the metal/CNT interface is a Schottky type barrier.
The tunnel barrier between the metal surface and the CNT is ”punched” for
each interface except for the Au(111)/CNT interface, where a shallow and
narrow tunnel barrier does exist, with 2.5 eV height (above Fr) and 0.065 nm
width. When placed on HOPG, the CNT will "float” on the van der Waals
potential [87]. The interlayer spacing of graphene sheets in HOPG and the
distance of SWNTs in bundles are roughly similar, 0.34 nm, therefore it is
justified to expect the same distance between the CNT and the HOPG sub-
strate. Because of this relatively large distance the barrier between the CNT
and the HOPG support surface is a tunnel barrier. Mechanical pressure of
the STM tip can, however, lower or even "punch” this tunnel barrier (see
Chapter 4).
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Chapter 3

Simulation of the STM
tunneling phenomenon

3.1 Introduction

To go beyond the simple 1D picture of STM tunneling mechanism (see Sec-
tion 2.2, Fig. 2.5) we has to consider, that

e the edges of the trapezoidal potential are rounded because of long range
correlations mimicked by the classical image potential. Hence the ef-
fective potential barrier [88] for tunneling is lowered and this effect
becomes important for small (< 0.5 nm) tunnel gap values.

e In an STM instrument the electrodes are not flat but one of the elec-
trodes is a tip with an atomically sharp apex. When imaging nanos-
tructures, the local radius of curvature of the sample (curvature on the
point below the tip apex) can also be small. Therefore it is necessary
to go beyond the 1D approximation.

e When imaging CNTs, the CNT is not an integral part of the support
but is ”floating” above the support surface [73] at the van der Waals
distance. This means that there are two tunnel gaps: one between the
STM tip and the CNT and the other between the CN'T and its support.

Some of the features of the STM imaging mechanism are of purely geo-
metrical origin. Most important among these is the apparent lateral broad-
ening [25] of the CNTs in STM images caused by the curvature of the tip
comparable to (or larger than) the curvature of the CNT. In order to con-
centrate only on these geometrical effects without the effect of the specific
atomic structure, I constructed a three dimensional (3D) jellium potential
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model of the STM tip — CNT — support tunnel junction. Due to the charac-
teristic lengths of this model, comparable to the A\ Fermi wavelength of the
electrons and to the micrometer electronic coherence lengths [89] in SWNTs
quantum interferences [90] and multiple scattering are important ingredients
to account for in a realistic model of tunneling through SWNTs.

The basic ideas and restrictions of the method I developed are as follows.

e The tunneling problem is regarded as a problem in potential scatter-
ing theory [91]. The current density is determined by calculating the
scattering of wave packets (WPs) incident on the barrier potential.

e The method applies to localized barriers. By localized, I mean situa-
tions in which nonperiodic spatial variations of the potential occur only
over a finite interface region of nanoscopic size.

e The initial WPs are constructed from the stationary states of the reser-
voir from which the WPs are arriving. The initial WP is formed in such
a way that its envelope function will have a constant plateau of larger
size than the spatial dimension of the interface region.

e The total tunnel current at a given STM bias is a statistical average of
the tunnel currents for WPs of different allowed incident energies and
directions (k vectors) weighted according to the band structure of the
two reservoirs.

Because of the limited computational facilities my earlier calculations
were done on a two dimensional (2D) model. 2D calculations, presented in
Chapter 4, describe important features of STM tunneling that 1D models
can not account for, e.g. tip convolution, the effect of point contacts, and
the geometric asymmetries in (V') curves.

The electrostatic potential of the rotationally symmetric tip and the
spread of the charge along the tube during tunneling which may be im-
portant for metallic tubes can not be accounted for in the 2D model. The
net effect is that the 2D model overestimates the tip - tube conductance as
compared to the tube - support conductance because it does not take into
account that the tip - tube tunnel junction is zero dimensional but the tube
- support tunnel junction is one dimensional. Recent advances in computer
power permitted me to address the full 3D geometry of the problem and thus
to handle the WP spreading phenomenon. 3D calculations are presented in
Chapter 5.
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3.2 Jellium potential model

My potential model of the STM tip — NT — support system is a generalization
of the 1D potential model shown in Fig. 2.5.

The geometry of the model system is shown in Fig. 3.1. The support is
assumed to be a flat surface. The NT is modeled by a cylinder of 0.5 nm
radius floating above the support at a distance of 0.335 nm as measured from
the surface of the support to the wall of the NT. This is the distance of the
graphene sheets in HOPG and similar distances have been found between
the elements of the SWNT ropes [39]. The STM tip is taken as a rotational
hyperboloid of 0.5 nm apex radius and 15° aperture angle. The particular,
arbitrary choice of a hyperbolic tip shape does not influence the qualita-
tive character and the main numerical trends obtained from the calculation.
The hyperbolic shape, however, makes it easy to calculate the electric field
analytically for rotationally symmetric arrangements.

Figure 3.1: (color) Model system with STM tip, nanotube, and support
surface. Size of the box is 4 nm.

In the case of the 2D calculations I used the cross section of the 3D
potential, i.e. Vop(z,2) = Vip(x,y = 0, z). Hence in this case the system is
made translation symmetric in the y direction, i.e. the tip is a hyperbolic
cylinder in the 2D model and the tip—tube tunnel junction is infinitely long
in the y direction.

The potential V() = Vi () + Veis () of this system consist of the jellium
potential Vj.; () and the electrostatic potential Ve, (7). The jellium potential
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describes the binding of the electrons inside the electrodes the same way as
used in the 1D model of Fig. 2.5.

The decrease of the tunnel barrier due to the finite jellium radius (see
Section 3.1) is accounted for by assuming the effective surface of the elec-
trodes to be 0.071 nm outside the geometric surface. This is the half nearest
neighbor distance in HOPG. My model potential is zero outside the effective
surfaces of the electrodes and -9.81 eV inside. This is calculated from the
HOPG Er =5 eV Fermi energy [92] and W = 4.81 eV work function [93].
This model potential does not account for the different material properties
of the tip, NT, and support, it allows the calculation of the influence of the
geometry on the tunneling current only.

support

Figure 3.2: Geometric surfaces (full line) and effective surfaces (broken line)
of the tip, nanotube, and support. All dimensions are in nm. From [74].

As was shown [94] the self-consistent electronic structure of NTs repre-
sented by the jellium model compares favorably with parametrized LCAO
calculations that take atomic structure into account. The absence of atomic
structure in the jellium tubes is equivalent to averaging over all chiral angles.

3.2.1 The electrostatic potential

Electrostatic potential in the STM tip — NT — support tunnel junction is
arising from several sources: i) external bias Uy, ii) contact potential due to
the different Fermi levels, and iii) image potential. In this work focussing
on geometric effects all objects are assumed to have the same material pa-
rameters, hence the contact potential is zero. The lowering of the tunnel
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barrier due to the image potential [88] is partly accounted for by assuming
the effective jellium surfaces to be 0.071 nm outside the geometric surface,
as explained in Section 3.1

Electrostatic potential V,;; due to the U; STM bias is calculated in the
following way.

All the three objects (tip, CNT, and support) are assumed to be perfect
conductors for the electrostatic field calculation. For metallic CNTs this
is a plausible assumption because of their small screening length [95, 96].
The Usypport and Uy, potentials are fixed by the STM setup: Usyppore = 0,
Uiip = U;. The CNT is considered to be isolated, hence its charge Q. = 0.
Next I calculated the charge density distribution o;(n,£) on the surface of
each of the electrodes ie{tip, tube, support}, where n and & are the parametric
coordinates (inner coordinates) on the surface of the electrodes. This was
done using the capacitance matrix method [97], see Appendix A for details.
Verst () is then calculated from o;(n, ) by direct integration.

Fig. 3.3 shows the electrostatic potential of the 2D STM model. From
the Usypport = 0V, Upp = 1V, and Qupe = 0 C conditions the capacitance
matrix method gives Ujype = 0.376 V.

In non-metallic tubes the electrons cannot move freely along the tube axis.
Thus my perfectly conducting ring model is valid for the semiconducting
tubes if only the electrons can move freely along the circumference of the
tube.

3.2.2 The drain potential

In the wave packed dynamical method (see Section 3.3) the time dependent
Schrodinger equation is solved on a finite spatial region. This finite region in-
cludes the localized part of the potential, the potential is zero (or constant, or
at least translation symmetric) outside this region. We have to solve the time
dependent Schrodinger equation for the finite region in such a way that the
solution should be the same as if we solved the time dependent Schrédinger
equation for the whole space and then we cutted the part corresponding to
the finite region from the total wave function. In other words the finite region
is a window (I call it presentation window) to the whole solution. This can
be achieved by the so called absorbing boundary condition.

I solve the time dependent Schrédinger equation using the split-operator
FFT method (see Section 3.3.1). This method introduces an artificial peri-
odic boundary condition into the solution. To prevent unphysical interference
effects among the neighboring cells, the edge of the presentation window is
closed by an absorbing layer.

The absorbing layer should be such that for the WP arriving into this layer
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Figure 3.3: Equipotential lines of a 2D STM model with a CNT of 1 nm
diameter. All dimensions are in nm.

there should be no reflection and no transmission, the WP has to ”disappear”
simply — be absorbed in the layer. Numerically this means that both the
reflection and the absorption has to be negligibly small and also the width
of the absorbing layer has to be as small as possible, in order to minimize
computing time and memory requirements.

For the Schrodinger equation the absorbing layer can be realized by a
region of negative imaginary potential. Thus the total potential is complex,
with:

V(F) = V}ell(ﬂ - inrain (F) (31)

where V() is the jellium potential and Vi, (7) is the absorbing po-
tential.

The norm of the wave function is not conserved for an imaginary po-
tential, the magnitude of the WP is exponentially decreasing in a region of
a constant negative imaginary potential. Hence, if the absorbing region is
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thick enough, the transmission can be made arbitrarily small. Not only the
transmission, but also the reflection has to be negligibly small, however. This
can be accomplished by a non constant imaginary potential. In order to find
the best absorber I performed numerical experiments for different absorbing
potentials. A WP was "shot” into the absorbing potential and the reflection
and transmission probability was "measured” inside the computer. These
experiments revealed that the absorbing potential has to increase gradually
to prevent reflection. Gradual refractive index is also used in broadband op-
tical antireflection coatings [98]. According to the numerical experiments I
choose the following absorbing potential:

Vo - (’F) _ Vdrainmax { (|F| - TO)?’) if |F| > To; (3 2)
drain A3 ain 0, otherwise , '

which means that the absorbing potential is zero inside a sphere of radius
ro and is slowly "switched on” outside this sphere. Here dg.q:, is the width
of the absorbing potential and Vg 4inmae 18 its maxium value, i.e.

Vdrain (TO + ddrain) - Vdrain mazx - (33)

For the 2D calculation the width of the absorbing potential was 3.84 nm
and the maximum value 4.35 eV. For the 3D calculation a smaller, 3.044 nm
wide absorber was chosen to speed up computation with maximum value
8.71 eV. For these parameters both the reflection and the transmission is
less than 107% for an £ = 5 eV WP. According to the numerical experi-
ments, optimized drain potentials [99] give similar R and T values for these
parameters.

3.3 The wave packet dynamical method

Erwin Schrédinger introduced the concept of wave packets [100] to bridge
the gap between classical and quantum descriptions of nature. The wave
packet dynamical (WPD) method [101, 102] is a scattering experiment inside
the computer: an incoming WP is ”shot” into the localized potential under
investigation and the time development of the WP is calculated by solving
the time dependent Schrodinger equation. The "result” of the wave packed
dynamical calculation is the time development of the WP itself — it gives
insight into the details of the time dependent process — and also allows that
selected measurables be calculated from the outgoing (scattered) WP. These
measurables are those quantities measured in a real scattering experiment.
In the case of an STM model the WP is approaching the STM tunnel junc-
tion from inside of the tip bulk (or from the support bulk) and we study the
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tunneling of this WP into the other electrode, the support (or into the tip).
Given the initial state ¢o(7;¢) and the localized potential V' (7), the (1)
wave function is calculated from the time dependent Schrodinger equation.

This conceptionally simple and easy to implement method contains no
perturbative approximation but includes all interference [90] and multiple
scattering effects and thus it is capable of providing results comparable with
advanced tunneling theories [103] when applying a properly chosen model po-
tential. Inclusion of multiple scattering and interference effects is important
for modeling the resonant tunneling process arising because of the existence
of two tunnel gaps.

In free space the time evolution of a WP is quite simple: it is a transla-
tional movement with constant v velocity and a spreading with a doubling
time 7, = 2v/3(Az)®. See Appendix B for a brief summary of the most
important properties of WPs. For a complicated potential, however, wave
packet dynamics reveals a whole lot of interesting phenomena, e.g. the WP
is split into several parts in space and time, periodic or quasi periodic motion
occurs (so called quantum revivals [104]), etc. In Chapter 4 I mostly focus
on the final state and the measurables calculated from the final state. In
Chapter 5 I study the time evolution itself in the STM model.

3.3.1 The split-operator FFT method

Time evolution of the wave function is governed by the time dependent
Schrodinger equation:
Oy(73 1)

i = H(t). (3.4)

Formal solution can be written using the time development operator:

(7 t) = Uhy(71) U = ¢ Hlt~to) (3.5)

If the potential is conservative, then H = K + V where the kinetic and
potential energy operators do not commute in general, hence the exponential
in eq. 3.5 can not be factored. Note, however, that we can decompose [105,
106] the exponential by the symmetrical unitary product

e—z(K—l—V)ét — e—zK&t/Qe—zV(Ste—zKét/? (36)

The error of this approximation is O [(575)3].

According to eq. 3.6 the action of the evolution operator is split into three
consecutive steps: a free propagation for time 0¢/2, a potential only propa-
gation for time dt and again a free propagation for time §t¢/2. If the potential
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V is local, then its effect is a simple multiplication with V'(7), hence the ef-
fect of the potential energy propagator exp (—iVdt) is a multiplication with
exp (—iV (7)ot). The effect of the kinetic energy propagator exp (—iKdt/2)

is given in k space by multiplicating the (p(E; t) momentum space wave func-

-2
tion by exp <z|k| 5t/4> To utilize this formula it is necessary to calculate the

(p(E; t) momentum space wave function by fast Fourier transform (FFT) of
(7 t). Finally we have to return back to real space by inverse FFT, i.e.:

6—iK6t/21/)(7:»; t)y=F" ei|E|25t/4f [)(7;t)] (3.7)

The evolution of the wave function over a time step 0t is calculated in a
straightforward way: first eq. 3.7 is applied, then the result is multiplied by
exp (—iV (7)ot), and finally eq. 3.7 is applied again. Convergence towards
the exact result is obtained by using a small dt.

3.3.2 Construction of the initial state

For infinitesimally small bias calculation the WP is launched with the Fermi
momentum kx from inside the tip bulk towards the apex of the tip or from
inside of the support bulk towards the NT.

Figure 3.4: A truncated plain wave wave packet. White shows the zero
density and black the maximal density.

To eliminate the effect of the particular WP shape on the resulting tun-
neling probability the width of the WP has to be larger than the largest half
width of the tunneling channel: Az >> HWp. In atomic resolution STM
measurements H Wy is around 0.1 - 0.2 nm [91]. Tused Az = Ay = Az =
0.37 nm. For the special case of the NT raft, when the WP is coming from
the support (see Section 4.2), the total lateral size of the interface region is
more than 1 nm, see. Fig. 4.14. This would require the use of a Gaussian WP
with fairly large Az which would subsequently require a fairly large spatial
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mesh. To avoid this difficulty I constructed a WP called truncated plane wave
which has a plateau of constant probability density larger than the interface
region. Such WP can be constructed as a convolution of a Gaussian with a
square window function. To compensate for the effect of the distortion of the
plateau during the time development of the WP a backward time propagator
is used to construct the initial state:

N d I )2 _ 2
to(x,2) = N-P, l/ ’ exp (—u + ka$> dx'] -exp <—M + Zkzz>
d a a

(3.8)
where d; = —1.52 nm, dy = 1.52 nm, ¢ = 0.529 nm, and NV is a normal-
ization constant. (Eq. 3.8 is a 2D expression, as used in Chapter 4.) By
the free space propagator Pto the truncated plane wave is backward propa-
gated in time by an amount of ¢y = (29 — Zinterf) /v, Where z; is the initial
z position of the center of the WP, 2, ¢ is the 2z position of the first tun-
neling interface, and v, = k, is the z component of the group velocity. The
2o initial position was chosen to make the probability density of the initial
WP negligible in the interface region. Fig. 3.4 shows a grayscale plot of a
truncated plane wave WP.

3.3.3 Choice of the measurables

The method of analyzing the resulting large wave function dataset basically
relies on calculation of integrals of certain quantum mechanical observables
derived from the wave function on carefully chosen subspaces. As a first
step two important observables are calculated from the wave function: the
o(Fit) = |¢(x,y, 2; t)|* probability density and the ;(F, t) probability current
density.

j(n,&;t), the perpendicular component of the j(F, t) probability current
density flowing across selected & measurement planes, gives the 2D map of
the probability current crossing those planes as the function of time, where
n and £ are the parametric coordinates (inner coordinates) of the plane.
[7(n, & t)dndE gives the I(t) probability current crossing the particular mea-
surement plane as the function of time. By calculating the indefinite integral
T(t) = [J I(t')dt', we determine the transmission vs. time, i.e. the portion of
the WP that has crossed the measurement plane until time ¢. The T'(t = o)
asymptotic value gives the total transmission for that plane.

Volume integral of o(7;t) for selected V measurement volumes gives the
probability of finding the particle in those volumes at the instant ¢, P(t) =
[ o(7;t)dV. Integration for the whole space gives P(t) = 1.
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Integrating P(t) in time [107] gives the dwell time [108, 109], the average
time spent by the particle in V:

opont = /0 ” ( /V o t)dV) dt . (3.9)

By exchanging the integrals in eq. 3.9 the dwell time can be written as a
volume integral:

tspent: / T(F)dv (310)
v

where

(F) = /0°° o7 t)dt (3.11)

is the dwell time density.
Estimates for the WP transmission time (tunneling time) and reflection
time based on the WPD results will be made in Section 5.6.1.

3.4 Summary

Throughout this chapter, I have introduced the methods I use in the thesis
for the simulation of tunneling in STM tip — CNT — support systems. These
methods go beyond the simple 1D picture of STM tunneling mechanism and
take into account the specific shape of the potential barrier. The STM tip,
the CNT, and the support are modeled by constant potential jellia. Electro-
static field distribution due to the applied STM bias is calculated utilizing the
capacitance matrix method. Open boundary conditions for the wave function
are realized by an absorbing potential. The tunneling probability of the STM
model is calculated from the time dependent wave function by solving the
time dependent Schrédinger equation with the split-operator FFT method.
Specifically designed initial states were applied to eliminate the effects of
wave packet shape on the results. The p(7;¢) time dependent probability
density and the f(F; t) time dependent probability current density is calcu-
lated from the wave function. Measurables, as transmission probabilities and
characteristic times were calculated from these quantities.

46



Chapter 4

Geometrical factors influencing
the STM imaging process

4.1 Tip convolution

As a general rule, it can be formulated that in scanning probe microscopy,
independently of which object was chosen as tip, always the sharper object
(with the smaller radius of curvature) will generate the image (see Fig. 4.1).
The effect of the comparable characteristic radii of the sample and the tip
is generally called tip convolution effect. This denomination comes from the
concept that the sharp features of the sample surface are smeared in the STM
image because of the finite width of the STM tip — sample tunneling channel.
This smearing can be calculated approximately as a mathematical convolu-
tion of the ”real” sample topography with the window function describing
the cross section of the tunneling channel.

1 O 1 _4 & 4L 4h

Figure 4.1: Illustration of the distortion arising due to tip-sample convolution
effects for objects with different shapes. When the object becomes sharper
than the tip, the object will generate the image of the tip. From [70].

Carbon nanostructures are 3D objects with characteristic radii of cur-

vature in the nm range. This value is comparable on the one hand to the
characteristic value of the tip-sample tunnel gap (which is between 0.2 -
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0.5 nm in typical STM experiments) and on the other hand to the apex ra-
dius of the STM tip. This makes the interpretation of STM images of carbon
nanostructures different from that of flat surfaces. Atomic resolution can be
achieved when the STM tip presents a nanoprotrusion effectively terminated
with a single atom. Even with this ideal tip, only the topmost part of a NT
can be imaged. With a blunt tip, no atomic resolution can be achieved on a
NT and the STM provides only a geometric information [110]. Furthermore,
tip-shape convolution effect makes the width D of a cross-sectional profile
along a NT appear typically much larger than the actual tube diameter. This
broadening is very well seen in the line cuts of Fig. 2.6 and Fig. 2.7.

4.1.1 Geometrical line cut

Because of its exponential distance dependence the tunneling current tends
to follow the shortest path between the tip and tube and the corresponding
"off-z” component of the current increases as the tip moves aside to the
tube [111]. Assuming a uniform local density of states (LDOS) on the sample
and tip surfaces the effect of the feedback loop can be taken into account
approximately by keeping the length of the tunneling path at a constant
value. The curve drawn by the apex point of the tip when using this simple
approximation is called a geometric line cut. I have calculated the geometric
line cut by moving the tip along a line in a way that the distance of the
nearest point of the sample and of the tip remain a (pre-selected) constant
value, see Fig. 4.2. This constant distance is chosen to be 0.4093 nm to
allow a direct comparison with the quantum line cut (see Section 4.1.3) at
Xopez = 0. The geometry of the system is the same as described in Section
3.2.

We have used a similar method earlier in simulating larger scale (microm-
eter) AFM images [112, 113]. In this method the AFM image is simulated
by moving the tip along a line in a way that it constantly touches the sample
surface. If the sample surface is not flat the contact point of the tip is chang-
ing and if the curvature radius of the tip is not negligibly smaller than the
curvature of the features of the sample this will cause the apparent broad-
ening of these features on the AFM image. The novelty of my approach is
to enhance this method for the case of STM investigation of nanostructures.
In this case the tip apex radius and the characteristic radius of curvature of
the features of the sample surface are not in the ym range as in case of AFM
but in the nm range. Therefore the tip-sample tunnel gap, beeing in the very
same nm range, can not be neglected in case of STM.

As it is demonstrated in Fig. 4.2, when the tip follows the curvature of the
NT, the tunneling point moves away gradually from the tip apex to its side.
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Figure 4.2: The thick line is the geo-
metric line cut drawn by the apex of
the tip (marked by open circle). The
shaded lower half plane, middle ring
and upper hyperbolas show the verti-
cal cross sections of the sample, nan-
otube, and tip, respectively. The elec-
trodes are bounded by their jellium ef-
fective surfaces (broken lines). Sev-
eral, typical tip positions are shown,
with different shades of grey. For each
tip position shown, the nearest tip and
sample points are joined by a thin
dashed line. From [79].

However, when the tip apex approaches the support surface the tunneling is
switched back from the side of the tip to the apex, but now the tunneling
current is flowing already directly into the support. After this switching the
tip follows a line parallel to the support surface. As demonstrated in Section
4.1.3 this simple geometric model is justified by WPD calculations.

4.1.2 Asymmetric stretching of the SWNT image

The effect of the comparable values of the characteristic radius of the sample
and the tunnel gap is explained in Fig. 4.3. It causes a stretching of the
image of the atomic lattice in the direction parallel to the sample curvature.
To study this effect the tip radius was assumed to be zero throughout this

Subsection.

Figure 4.3: Relation between the po-
sition of the STM tip (y) and that of
an imaged atom (y') of the nanotube
when the tunneling current follows the
shortest path between tip and nan-
otube (dashed line). Ref. [75].

Using the geometric approximation discussed above we assume the tip-
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sample gap to be a constant A value. (The effect of the atomic lattice causes
only a small variation on the order of 0.1 nm to this constant gap.) Hence
when the tip scans above a nano object with radius of curvature r its apex
moves on a circle of radius r + A. As a consequence the features on surface
of the radius r are projected onto the radius r + A surface and are therefore
stretched by a factor of (r + A)/r. In the special case of a CNT, the radius
of curvature is small only in the direction perpendicular to the tube axis
(say, y direction) but it is infinite in the direction parallel to the tube axis
(x direction). This causes an asymmetric stretching in the atomic resolution
STM images of small diameter N'Ts: the atomic lattice is inflated in the y
direction. This stretching is reproduced in tight-binding calculated atomic
resolution STM images of CNTs [8]. It is also seen in experimental STM
images taken on SWNTs [114, 115]. Due to the asymmetric distortion, the
angles between the C-C nearest neighbor bonds measured on the STM image
also deviate from /3.

4.1.3 Quantum line cut

My first application [116, 117] of the WPD method in the field of STM in-
vestigation of carbon nanostructures was to check the validity of the simple
geometric line cut method presented in Section 4.1.1. I have performed quan-
tum mechanical probability current calculations through a simple 2D jellium
potential modeling the STM tip — NT — support system. The geometry of
the system is the same as used Section 4.1.1. The STM constant current loop
was simulated by finding for each X,,., lateral tip displacement that Zp.,
vertical tip displacement which yielded a constant tunneling probability. The
result of this approach hereafter is referred as quantum line cut.

The quantum mechanical tunneling probability is calculated from the
time dependent scattering of a WP on the effective potential model of the
system (see Section 3.2). An infinitesimally small bias approximation was
used, this is justified by the fact that in the experiments analyzed [116, 117]
here (see Section 4.1.4) small bias values were used. The initial WP was a
Gaussian approaching the apex of the tip from inside of the tip bulk with
kinetic energy £ = EFr =5 eV and Az = Az = 0.37 nm.

The probability density of the scattered WP is shown in Fig. 4.4 for
selected time instants and X, lateral tip displacements. Complete time
evolution is shown on the Web as an animation, see

www.nanotechnology.hu/pub/kirchberg98.

(The corresponding Z,,., vertical tip displacements are calculated using
the method described below.)
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Xapex( n m)

0.8

1.6

2.0

Figure 4.4: Probability density of the scattered wave packet for selected time
instants and X, lateral tip displacements (0.0, 0.8, 1.6, and 2.0 nm). Size of
the presentation window is 3.84 nm. Contour lines are drawn on a square root
scale. Each frame is normalized to its maximum density. Maximum density
values are 4.2, 0.6, and 0.07 nm~2 for 1.7, 2.9, and 3.9 fs, respectively. Density
in the tube region becomes appreciable on the lower right frame because of
the renormalization (see the text for explanation). From [116].
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Xapez(nm) Forbidden Tube Total Interface

0.0 0.071 0.084 0.155
0.8 0.079 0.123 0.202
1.6 0.060 0.020 0.080
2.0 0.057 0.0001 0.057

Table 4.1: Average time ty,e,; (in fs) the quantum particle spends in the
different regions. ”Forbidden” region is the region of zero potential. ”Total
interface” region is the union of the ”forbidden” and ”tube” regions.

The average time the quantum particle spends [109] (see 3.3.3) in the
different regions of space,

tmax
o = ([l zst) P dzde) dt, (4.1

are given in Table 4.1.
The time development of the tunneling WP for different characteristic
Xapez tip displacement values is as follows.

e For X,,c; = 2 nm tip displacement the tip is far from the NT. The WP
is tunneling simply from the tip apex into the plane support. The very
small ty,e,; value for the tube region (Cf. Table 4.1, last row) corre-
sponds to the negligibly small probability of entering of the quantum
particle into the tube region.

e For X,,., = 0 nm the tip is above the uppermost point of the NT. The
tunneling process is more complex in this case than for the previous
case. tspent is much longer than for X,,., = 2 nm. The WP has to tun-
nel through two tunnel resistances [73] in series, which is characteristic
to resonant tunneling. The WP first flows around the NT (¢ = 1.7 fs)
then penetrates into the support (¢t = 2.9 fs). At later times the main
mass of the probability is scattered back into the tip bulk. The proba-
bility which remained in the tube region forms standing wave patterns
along the tube circumference and it is leaking into the tip and into the
support in distinct impulses [73].

e For X,,., = 0.8 nm (oblique incidence) the situation is similar to the
previous one but the majority of the probability flows out of the tip
at its side around the nearest points of the sample and tip (denoted
by dashed line in Fig. 4.2). Note that the standing wave patterns are
rotating around the tube symmetry axis because the initial WP has
an angular momentum relative to the tube axis. The ¢, values for
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the tube region (Cf. Table 4.1, second column) are the largest for this
tip displacement, larger than for X,p., = 0.0 nm. This is because the
initial momentum is not perpendicular to the support surface, the WP
needs more time to proceed into the support.

e For X,,.; = 1.6 nm we can observe the switching of the tunneling point
from the side to the apex of the tip. First a part of the probability flows
from the tip apex directly into the support and later another part flows
from a side point of the tip into the tube.

Fig. 4.4 shows the probability density for ¢ = 1.7, 2.9, and 3.9 fs time
instants. The ¢t = 0 fs initial state — not shown — is a Gaussian inside the tip
bulk with a circularly symmetric probability density distribution. As time
advances, less and less probability remains in the presentation window but
the gray scale is renormalized to the maximum density for each subfigure of
Fig. 4.4 for better display. This renormalization causes the otherwise small
density in the tube region become visible on the lower right frame. The
standing wave patterns that appear on the tip are caused by interferences of
the eigenmodes of the tube (see Section 5.3 for a detailed discussion).

Z(nm)
25

Figure 4.5: Comparison of geometric
and quantum line cut. Thick solid line
is the geometric line cut. Crosses show
calculated points of the quantum line
cut. A thin solid line connecting the
crosses was drawn to guide the eye.
From [116].

geometric

15
----- x—x—> quantum

05

Fig. 4./ shows that the majority of the tunnel current is indeed flowing
in a narrow channel around the line section connecting the closest points of
the tip and sample, as was assumed intuitively in Section 4.1.1. The STM
constant current loop was simulated by finding for each X,,., lateral tip
displacement that Z,,., vertical tip displacement which yielded a constant
tunneling probability. This setpoint probability was chosen to be 3-1072 and
it gave a 0.4093 nm separation between the tip and N'T geometrical surfaces
(at Xgpey = 0 nm). The ( Xopex , Zapex ) tip displacement values resulting
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from this procedure give the quantum line cut which is shown in Fig. 4.5
by crosses. The Pgaussian(Er) tunneling probability of the Gaussian WP at
energy EF is calculated according to the procedure described in Section 3.3.3.
The j(x, z;t) probability current density is calculated along a horizontal line
inside the support bulk (at z; = —0.5 nm) from ¢ (x, z; t) for all time instants.
Line integration of j(z, z;¢) along this line gives the I(¢) probability current
and the tunneling probability is Pgaussian(Er) = fgm” I(t)dt . Calculation is
performed until the further change of Pgeussian becomes negligible.

The good matching of the geometric and quantum line cut justifies the
constant tip-sample separation approximation. The differences of the geo-
metric and quantum line cut are as follows

e According to the quantum mechanical calculation the tip-sample sep-
aration is larger above the support plane than over the NT. This is
because when tunneling through the NT, the WP has to tunnel two
tunnel gaps (tip-NT and NT-support) but it has to cross only one
tunnel gap when the tip is over the support plane. This causes a larger
tunnel resistance above the NT than above the support plane which
makes the feedback loop to retract the tip somewhat when the tunnel-
ing point is switched from the NT to the support plane.

e The tunnel gap is decreasing when tunneling into the side of the tube as
compared when tunneling into the top of the tube. This is a calculation
artefact caused by the normal incidence of the WP: the momentum
component in the direction of the tunneling channel is decreasing with
increasing angle of the channel with the momentum of the incoming
WP. This effect is further discussed in Section 4.2. When integrating
for all incidence angles this artefact should vanish.

4.1.4 Discussion of experiments

In this subsection I analyse the tip convolution effect on selected images [73]
measured in our Laboratory.

The CNTs used to acquire the experimental data were produced by the
catalytic decomposition of acetylene at 700°C' over a supported transition
metal catalyst [28, 118, 119]. The STM samples have been prepared [25]
by ultrasonication in toluene of a NT containing material purified from the
catalyst. The suspension resulted in this way was drop-dried on freshly
cleaved HOPG and the toluene was left to evaporate at room temperature.
The STM images were acquired in constant-current mode, using tunneling
currents in the range of 0.2 - 1 nA, bias voltages in the range of 0.1 - 1 V,
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and scan frequencies of 1 - 2 Hz. Mechanically prepared Pt tips were used,
the radius of curvature of which were checked with respect to the HOPG
surface [73].
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Figure 4.6: STM measurement on a carbon nanotube placed on other
nanotubes: a) constant current image of a ”raft” of carbon nanotubes,
I, = 0.19 nA, U; = 302 mV; b) the line cut marked in the image by a
black line is taken through a tube well separated from other tubes. Note the
HW/h ratio close to unity. Ref. [25].

In Fig. 4.6 the topographic STM image and the corresponding line cut
are shown for the case of a CNT placed over other CNTs stacked in a regular
way, i. e. on a "raft”. One can observe that the ratio of the measured half
width, HW, to the measured height, h, is close to unity (1.09). This means
that an apparent broadening, (defined as B = 2HW/h), by a factor of 2.18
is present in the image.

In Fig. 4.71show an STM image acquired over a NT which is situated on
HOPG. The apparent broadening found from the comparison of HW with
h is B = 3.24. The broadening B was calculated in the assumption that
the measured height values, h, are correct. If one takes in account that the
NT floats over the support at a height of 0.335 nm, and a similar distance is
found between the N'Ts in a raft, then the corrected broadening B¢ will be:
B = 2.85 for the NT over the raft, and Bs = 4.29 for the NT over HOPG,
respectively.

The comparison of simulated line cuts with the experimental line cuts
shows that when the NT is placed on a support with a similar electronic
structure (the NT placed on the top of the raft, Fig. 4.6), the geometric line
cut does not differ significantly from the quantum line cut (see Fig. 4.5). The

%)



(b)

42/ A

18 /K
. [\

\

HW
1888 A B 28 49 686 B8 188 128

Trace Distance (A)

]

Figure 4.7: STM measurement on a carbon nanotube placed on graphite: a)
constant current image of individual nanotubes (A and C) and of a "raft”
(B) composed of four nanotubes, I, = 0.22 nA, U; = 410 mV; b) the line
cut marked in the image by a black line is taken through object A. Note the
HW/h ratio of 1.62. From [73].

major distortion that influences the apparent tube diameter is the geometric
convolution of the tip shape with the tube shape. When the NT is on a
support with different electronic properties, i.e., when the N'T's are measured
on HOPG, gold, or other substrate, the simplification used in the quantum
line cut calculation: the penetration and propagation parameters (Er and
W) of the WP in the NT and in the support are identical, is not any more
valid. In the case of the geometric line cut this can be taken in account
in the first approximation by increasing the value of the tunneling gap over
the support as compared to the value over the N'T. This is justified because
the graphite support used in the experiments is semimetalic. Increasing
the width of the tunneling gap over the HOPG as compared to the width
over the tube will result in a continuous increase of the distortion found in
the apparent diameter of the N'T with the increase of the difference in the
electronic structure of the NT as compared to graphite.

The ratio of HW to h versus the increase of the width of the tunneling
gap over the support is shown in Fig. 4.8. Comparing the case of the N'T over
the raft, i.e. identical electronic structure, with Fig. 4.8, one may conclude
that in the experimental case the distortion agrees within the experimental
error with the value corresponding to zero tunnel gap increase in the figure.

Another consequence of the fact that the NT is not an integral part of the
support, but it is floating on the van der Waals potential over it is that when
performing I(V') spectroscopy, one has the response of a complex system
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Figure 4.8: HW/h versus the increase of the tunneling gap above the support.
Definition of HW, h, and gap increase is given on the geometric line cut
shown on the inset. From [116].

to the changes of the voltage applied to the tunneling gap. This is shown
by the differences in the average times (see Table 4.1) spent in the different
regions. tpens is three times greater when the WP tunnels through the tube
as compared to the case of tunneling directly into the support. The quantum
particle spends more time in the tube region than in the forbidden region in
this case.

4.2 Point contacts

A CNT is not an integral part of its support; the consequences of this can
not be neglected in the interpretation of STM data [73]. When placed on
HOPG, passivated Si, or other substrate, the CNT will ”float” on the van
der Waals potential [87]. The interlayer spacing of graphene sheets in HOPG
and the distance of SWNTs in bundles are roughly similar, 0.34 nm, therefore
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it is justified to expect the same distance between the CNT and the HOPG
substrate, or other, underlying N'T's. During STM measurements, when the
STM tip scans across the NT, depending on the value of the tunneling current
flowing through the substrate-NT-tip system as compared with the direct
tunneling (in the absence of the NT), the tip comes closer to the NT than
the usual tunneling gap. The actual tube-tip distance can be estimated from
the lateral distortion [75] of the atomic corrugation of the NT.

laa  ZB@ Ju@ 488 5HB

Figure 4.9: Constant current topographic STM image of a MWNT on HOPG,
I, =1.02 nA, Uy = 100 mV. The line cut shown runs along the black line in
the image, the two crosses label the positions of the markers shown in the
line cut. From [74].

The tip may even come into mechanical contact with the CNT, as seen in
Fig. /.9, where the depression in the topmost part of the cross section through
the NT clearly shows the deformation of the NT by the STM tip. The contact
resistance measured at the Au/CNTs interface when no special treatment is
done is of the order of 10M € [120], i.e., of similar magnitude as the resistance
of the tunneling gap between HOPG and a Pt tip. This resistance may drop
to k€2, if e-beam is used to modify the contact [120]. This suggests transition
from tunneling to contact regime. During the compression of the N'T by the
STM tip similar phenomena may occur, the tunneling contact of the free
tube may switch to (point)contact. It is reasonable to admit that in this
case there are two simultaneous point contacts due to the fact that the STM
tip is pressing the NT towards the support.

To explore the effect of point contacts on the STM tunneling phenomenon
I performed detailed calculations [74] for the angle-, energy- and polarity de-
pendence of the WP transmission probabilities. I have analyzed the following
systems:

e an empty STM junction,
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e one nanotube in the STM junction, and
e a nanotube raft.

e Effect of point contacts were investigated for a tip-tube and a tube-
support point contact.

j measuring line

support

kg/ﬂ incoming wave packet

Figure 4.10: Model system. The lower half plane, middle ring and the hy-
perbolic protrusion on the upper half plane show the vertical cross sections
of the support, nanotube, and tip, respectively. The effective surface (broken
line) is 0.071 nm outside of the geometric surface (full line). The arrow la-
beled by kg shows the incidence direction of the incoming wave packet. fpmb
is measured along the dotted line in the tip bulk. The particular wave packet
and measuring line position is for a tip positive situation. In tip negative case
the wave packet is approaching the tunnel junction from the tip bulk and
fpmb is measured in the support bulk. All dimensions are in nm. From [74].

WP tunneling probabilities were calculated for a 2D jellium potential.
Fig. 4.10 shows the geometry of the model system. I used the same model pa-
rameters as described in Section 4.1.1 and 4.1.3. The tip-NT and NT-support
point contacts when considered are represented by 0.2 nm wide conducting
channels. Because of the large lateral size of the raft I used a truncated plain
wave initial WP (see Section 3.3.2).
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4.2.1 Angle dependent transmission for zero bias

0.25
0.20 %
0.15 & T _
0.10 # N Figure 4.11: Transmission probability
. / for the a) STM tunnel junction with
' Angle no nanotube present and b) the same
-60 <40 <20 0 20 a0 60 OSTM junction shortcutted by a point
contact. Full (broken) line is for tip
10 positive (negative) case. Model barrier

geometry (effective surfaces) is shown
in the inset. Note that the vertical
scale of the two graphs is different by
a factor of 40. From [74].
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Fig. 4.11 shows angular dependent transmission probabilities P () as the
function of the incidence angle # which is defined as the angle of the wave
vector kg = (kzo, ko) of the incoming WP measured relative to the normal
direction (2", see Fig. /.10). For each model barrier the angular dependent
transmission was calculated for WPs incident from the support (P (6), tip
positive, solid curves) and for those incident from the tip (P_ (), tip negative,
dashed curves). For these vanishingly small bias calculations the incident
WP energy was fixed to ¥ = Er = 5 eV. To check the consistency of the
results the angular integral of the transmission probability was calculated for
each curve. The integral values for tip positive and tip negative infinitesimal
biases were found to agree within 5 percent, as they should. Because the
P(60) curves were calculated for only 13 equidistant angle values, we should
not expect a better consistency.

4.2.2 Tunneling vs. point contact

Fig. 4.11(a) shows the P"¢l(9) and P™""¢(§) functions for an STM tunnel
junction with no CNT present. Pfr“”"el(ﬂ) will be my reference curve in the
following discussion.

As we will see in Section 4.2.4, this curve is very similar to the angular
dependence of the tunneling probability for a plane-plane barrier. For in-
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creasing angle the tunneling probability is decreasing because of the decreas-
ing normal momentum of the WP. By contrast P*""?!(§) shows a plateau
with a shallow minimum around normal incidence. This plateau is caused
by the curls of the probability current density for waves incident from the
bulk of the tip [121, 122]. According to stationary scattering theory calcula-
tions [122] (see Fig. 4.12), the wave reflected from the curved surface of the
tip interferes with the incoming wave and thus loops appear in the probabil-
ity current on the side of the barrier. These curls also strongly influence the
probability density. Fig. 4.13 shows the time averaged probability density
for a WP coming from the tip. Dark spots in the tip apex region show places
where the quasiparticle is found with largest probability which corresponds
to places of large dwell time density (see Section 3.3.3).

Figure 4.12: Map of the probability
current density between a Gaussian
shape tip with a 0.3 nm height and a
0.2 nm standard deviation and a flat
sample located 0.5 nm from the tip.
The applied bias is 10 mV, the inner
potentials are 14 eV below the vac-

uum level, and the work functions are
4.5 eV. Ref. [122].

...........

Fig. 4.11(b) shows the influence of a point contact (0.2 nm wide conduct-
ing channel) which connects the tip apex to the support. The most obvious
effect is the increase of the transmission probability by a factor of about 40.
The P,(f) angular dependence is also modified. This is the consequence
of switching from tunneling to ballistic flow through the narrow conducting
channel. The angular dependence of PP () however, is very similar
to the tunneling case apart from the overall increased magnitude. There is a
drop of the transmission probability at around 25° which can be attributed
to the narrow aperture angle of the tip. This is simply because WPs incident
at large angles from the tip bulk can not enter the apex. This wave guide
effect can be even more pronounced in real experimental situations where the
end of the tip has a needle like shape in nm scale. The functional form of the
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Figure 4.13: Influence of probability
current curls inside the tip bulk on
the time averaged probability density.
The solid dark line shows the effec-
tive surfaces of the objects. Width of
the presentation window is 5.76 nm.
Darker grey shades correspond to
larger probability density. A nonlin-
ear grey scale was chosen to facilitate
clearer presentation of both the curls
inside the tip (high probability places)
and the small density in the support
region due to the tunneled-through
part of the wave packet. From [74].

pointcontact

plateau in P? () is still influenced by the probability curls inside the
tip apex. For small § values promteontoct -, promntcontact bocause the tip apex
collects the probability waves like a funnel. In the tunneling case this effect
is suppressed because these collected waves have a wide angular distribution
due to the multiple internal reflections inside the tip apex and the tunnel
effect strongly selects only the normal momentum components as contrast to
the point contact where no such self-selection occurs (Cf. the Py (f) curves
for the two cases).

4.2.3 Nanotubes in the tunnel gap

In Fig. 4.14 angular resolved transmission probabilities are shown for one
CNT (left graphs) and a CNT raft (right graphs) placed in the STM gap.
The raft is modeled by three tubes. In the upper row there is no point
contact, in the middle row there is a point contact between the tip and the
tube(s), and the lower row shows a situation with point contacts between
both the tip and tube(s), and between the tube(s) and its (their) support.

The main functional form of the tip negative curves, P_(#) is similar in
each case. This is so because P_ is mainly determined by the details of
the tip apex shape. I have also performed calculations for a point contact
only between the tube(s) and the support, a situation not likely to be found
experimentally but needed in separating the effects in the case of two point
contacts. These results are not shown here because it was found that the
shape of Py (6) is similar to the two point contact case and only the absolute
magnitude is smaller.
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Figure 4.14: Transmission probabilities for different number of nanotubes and
different point contact configurations. Full (broken) line is for tip positive
(negative) case. Model barrier geometries (effective surfaces) are shown in
the insets. Note the different vertical scale of the graphs facilitating clearer
presentation. From [74].

The functional forms of the upper (no point contact) and middle (tip-tube
point contact) tip positive P, graphs are also similar apart from a multiplica-
tive factor. This is because the WP travels through two constrictions and
the angular dependence of the transmission is mainly determined by the first
gap it passes through. Indeed, the CNT which the WP propagates through
widens the angular wave vector distribution of the WP. We can say that the
wave barely remembers its original incidence angle by the time it reaches the
second junction. This reasoning explains why the point contact specific angu-
lar dependence (see Section 4.2.2) shows up only in case of tube(s)-support
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point contact but not for the tip-tube(s) point contact where a tunneling
specific angular dependence remains in spite of that one of the constrictions
is an actual point contact.

The P.(0) functions for the raft model (Fig. 4.1/ right panels) have a
diffraction grating like characteristic shape for all point contact arrange-
ments. We can observe a strong peak around the normal incidence and
smaller shoulders around 30 — 40°. This diffraction grating like behavior
is caused by the interference between the resonant states on the individual
tubes. In the real 3D case this behavior is probably less significant for metal-
lic CN'Ts than for semiconducting CN'Ts because the charge can spread along
the metallic CNT easily and it reduces the resonant character of the states
on the CNT.

4.2.4 Effective tunnel distances

To gain better insight into the results presented in the previous subsections
it is instructive to compare my 2D transmission probabilities with those for
a simple plane-plane (1D) case. With the help of the plane-plane model an
effective tunnel distance d.r; will be defined.

The plane-plane tunneling can be solved as a 1D problem [109]. The
tunneling probability for a 1D WP with &y > 0 is

Pio = [ loo(k, ko, a)T (k) Pk (42)

where ky and a are the mean wave number and width of the initial WP,
wo(k, ko, a) is the momentum representation of the initial WP and T'(k) is
the transmission coefficient of the 1D barrier. A step potential (see Section
3.2) is defined by its height Vj and width d. This means that P;p is uniquely
characterized by the variable set {k¢, a, Vp, d} for this type of barrier.

If the WP is incident on a plane-plane barrier not from the normal
but from an oblique direction then its transmission probability is deter-
mined by the normal component k.o of its wave vector ko = (kzos kz0) =
(kosin@, ko cos®). Due to the constant potential in the region where the WP
is launched from, we may write the translational kinetic energy of the WP
as

By = Rol/2 = k20/2 + K22 (4.3)

So we can define its transversal and normal translational kinetic energy
components by

Eo = E,o+ E,0 = Fysin® 0 + F, cos? 0. (4.4)
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Figure 4.15: Effective tunnel distances for different number of nanotubes
and for a) tip positive and b) tip negative case. Inset: the points are the
calculated P, () values for different angles (same curve as on Fig. 4/.11(a)).
The solid line is the transmission for a wave packet incident from the normal
direction with Ey = 5 cos® 0 [eV] energy. See the text for details. From [74].

The transmission probability of the plane-plane barrier depends only on
the E,y normal energy component of the WP:

Pplane—plane(EOa 97 a, Vb, d) = PID (E207 a, Vba d) (45)

Using this formulation we can associate with any transmission function
Pyp(Ey, #) a (generally energy and angle dependent) effective tunnel distance
desr(Eo,0) by the equation

PZD(E(]a 9) = PID(EU COS2 9, a, Vb, deff) (46)

Fig. .15 shows the d.;;(0) functions for different STM situations. dey; is
nearly a constant 0.52 nm for the STM tunnel junction with no CNT present
(solid line) at an infinitesimal tip positive bias. This tells us that the barrier
consisting of a plane and a hyperbolic tip with 0.5 nm radius at 0.409 nm
distance is approximately equivalent for WPs defined in Section 3.3.2 to a
plane-plane barrier with d.fr = 0.52 nm spacing. This constant value of the
effective tunnel distance is a justification of using a 1D model for describing
the operation of the STM in front of a flat surface. The reason behind this is
the negligible mixing of the normal and transversal momentum components.

This separability of the momentum components is further demonstrated
in the inset of Fig. 4.15. The points are the calculated P, () values for
different angles (same curve as on Fig. 4.11(a). The solid line is the trans-
mission for a WP incident from the normal direction with Ey = 5 cos? 0 [eV]
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energy. The good match of these two curves shows that tunneling through
this barrier is only negligibly influenced by the transversal momentum.

All other d.s¢ curves of Fig. 4.15 show a considerable angle dependence
which is the effect of the larger normal - transversal momentum mixing. In
case of the P_(f) curves this mixing is largely dominated by the curls inside
the tip apex. Hence functional forms of P_(f) curves are very similar to each
other independently of the presence and number of CNTs in the junction.
The presence of CNT(s) only introduce a constant shift in d.;; by about
0.027 nm although the tip-support distance is increased by 1.335 nm by
inserting the CNTs.

For tip positive infinitesimal bias, however, the transmission of the raft is
markedly different from that of the single tube: the diffraction grating like
behavior which was already discussed in Section 4.2.3 is clearly visible.

4.2.5 Tunneling with non vanishing bias

To model the non vanishing bias an electrostatic potential calculated by the
capacitance matrix method (see Section 3.2.1 and Appendix A) was added to
the jellium potential. The sign of the potential was always set in agreement
with the WP incidence direction, i.e. the WP was always launched opposite
to the electric field, E - ky < 0. For a positive (negative) tip the WP was
always launched from the support (tip). Thus different potentials are seen
by the WPs coming from the two directions, hence the angular integrals of
P, (0) and P_(#) need no longer be equal and this causes an asymmetry in
the calculated I(V) curves.

4.2.6 Energy dependence of transmission

Fig. /.16 shows the incidence energy dependence of the transmission proba-
bility of WPs with normal incidence through an STM tunnel junction with
no CNT present and through a CNT for tip positive and tip negative 1 V
biases. The zero of the energy scale is always fixed at the bottom band of
the launching side of the WP. On this energy scale always the states between
E =4 eV and E = 5 eV (shaded region on the figure) contribute to the
tunnel current at zero temperature.

The transmission for the STM tunnel junction with no CNT present fol-
lows an exponential like energy dependence characteristic of plane - plane
tunneling (see Section 4.2.4). The presence of CNT, however, causes a
plateau to appear between 3.8 and 5 eV. This plateau is a sign of resonant
tunneling caused by the two tunnel interfaces [73]. The plateau is caused by
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Figure 4.16: Energy dependent transmission of a wave packet incident from
the normal direction for tip positive and tip negative 1 V bias potential. Full
(broken) lines are for one (zero) nanotube. The zero of the energy scale is
always fixed to the band bottom of the launching side of the wave packet. On
this energy scale always the states between E' =4 eV and F =5 eV (shaded
region on the figure) contribute to the tunnel current at zero temperature.

From [74].

quasibound states (see Section 5.3.1) of the tube which are in this energy

region.

4.2.7 Tunnel current calculation

To estimate the tunnel current flowing through the real 3D junction we have
to make some assumptions about the behavior of the system in the direction
perpendicular (y direction) to my 2D calculation plane (zz plane). To this

end, I have used the following simple approximations.
e The y diameter of the tunneling channel at the tip apex is assumed to

be a constant 0.2 nm.
e The transmission is assumed to depend on the in-plane and perpendicular-

to-the-plane angles independently and
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Figure 4.17: a) Tunnel current as function of applied bias for an STM tunnel
junction with no nanotube present, for one nanotube, and for a nanotube
raft. b) Tunnel current asymmetries for the curves in Fig. (a). From [74].

e the perpendicular-to-the-plane angle dependence is taken to be the
same as of a plane-plane system (see Section 4.2.4).
After calculating the total 3D P(Uy, k) transmission probability in the
above approximation the tunnel current is
1 — —
I(U,) = 4—7T3A§{,”; P (U, k) k.dk (4.7)

allowed

where AL, is the effective lateral (zy) area of the WP defined as

Al 1

WP_(

4.8
2 owp (20, 2,t = 0) dz)2 49
and z is the initial = position of the center of the WP.
Assuming a free electron like E(k) relation and DOS, the allowed k space
region is the region between the £ = Er and E = Er—U, hemispheres. I(U;)
curves for the STM tunnel junction with no CNT present, for one CNT, and
for three CNTs are shown in Fig. 4.17(a).

The absolute value of the calculated current is higher than those measured
in typical STS experiments. This is partly an artefact of the WP dynamical
method attributed to the amplification effect [123] of the higher momentum
components in the tunneling process. Further, experimental aspects of this
higher than usual tunnel current are given in Section 4.3 below.
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4.3 Tip polarity

All I(U;) curves of Fig. 4.17(a) show some degree of asymmetry. These
asymmetries are better displayed in the I (U;)+1(—Uy) graphs of Fig. 4.17(b).
Note that while the asymmetry of the STM tunnel junction with no CNT
present shows a linear U; dependence and its magnitude is only 2.5%, the
asymmetry of the tunnel gaps with CNTs are increasing with U, and reach
a value of more than 20% at 1 V bias. It should be emphasized that these
asymmetries are of pure geometrical origin because of the free electron like
DOS assumption.

The experimental STS curves [10, 11, 124, 84, 125] of CNTs frequently
show some degree of asymmetry with respect to bias voltage polarity. In
some cases this asymmetry was attributed to charge transfer between the Au
substrate and the CNT [10]. Asymmetry was observed in STS measurements
of CNTs on HOPG [124, 125], too, where charge transfer should be very
limited. According to the simulation results presented above, two possible
reasons which could lead to asymmetry in the STS data are as follows:

e effects arising from the particular tip geometry,

e effects arising from point contact during imaging and/or during STS
measurements.

The very end of an STM tip may have a shape that deviates drastically
from the idealized geometry used in my model. However, a more complex
tip may be generated by considering the tip as being composed of several
idealized tips. This kind of approach was used earlier for analyzing multiple
tip effects [126, 127] in atomic resolution STM images. In the framework
of my model it follows from this approach that the particular tip shape will
influence the structure of the curls produced in the tip and by this can modify
the particular shape of the P_(#) function. This kind of effect is expected
to influence the negative side of the STS curve when positive polarity means
tunneling from sample to tip. Due to the fact that the tip acts like a ” wave-
guide”, the width/length ratio of the active microtip, i.e., of the tip which
is really responsible for the tunneling may also have a role in deciding the
characteristic vortex structure.

The second kind of asymmetry source is the point contact between the
CNT and its support; in fact this means that there are two point contacts:
one at the STM tip/CNT interface — this will influence the magnitude of the
tunneling current — and the second one at the CNT /support interface. This
later one is produced by pressure exerted by the STM tip on the top of the
CNT. Theoretical arguments point into the direction that differences in the
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electronic structure of the CNT and of the metal which is within tunneling
distance, may introduce an additional energy barrier of 10 eV [128]. This may
lead to the reduction of the tunneling gap over the CNT and to compression
of the CN'T between the STM tip and the support. The second point contact
(CNT /support) will introduce the asymmetry in the STS spectra. In this case
unusual features are expected on the positive side of the STS spectrum when
tunneling takes place from sample to tip, while the negative side will not
differ in shape from symmetric spectra but the magnitude of the tunneling
current will increase significantly.

These expectations are fulfilled by the experimental data reported by L.
P. Bir6 et al [125]. This second kind of asymmetry is expected to show up in
those STS measurements for which larger tunneling current values were used
during establishing the position of the STM tip before the feedback loop is
switched off. If the transmission through the system STM tip/CNT /support
is low, then during the constant current imaging operation (when the width
of the tunneling gap used during the STS measurement is determined, too)
the tip can come into mechanical contact with the topmost part of the CNT.
When this occurs, the topographic image will not be drastically altered. The
compression effects may be visible in transversal line cuts taken across the
CNT like the one shown in Fig. /.9. Although it may affect the image quality,
the point contact will not impede achieving atomic resolution imaging, like in
2.7, taken at a slightly smaller tunneling current as compared with Fig. 4.9.
This is in agreement with earlier point contact atomic resolution achieved on
HOPG [26].

These findings show that it is strongly recommended that topographic
STM images and STS curves be accompanied by line-cuts taken across the
investigated CNT.

Frequently, current imaging tunneling spectroscopy (CITS) is used to
acquire spectroscopic data in several or every pixel point which compose an
STM image. When performing CITS the feedback loop is switched on and
off for every pixel, but again, the value of the STM gap is selected during the
acquisition of the topographic information. It may happen that for different
points of the image the width of the tunneling gap will be different, like in
the case of rafts of CNTs [125]. If this happens symmetric and asymmetric
STS curves may be measured over the same CN'T. Beyond the effects arising
from point contact, it follows from Fig. 4.15 that the particular arrangement
of the CNTs in a raft or a bundle will have its fingerprint on the shape of
the STS curves.

As we noticed in Section 4.2.7, the absolute values of our calculated cur-
rents are higher than those in STS measurements. In STM experiments the
tunneling gap is determined in topographic mode. This means that the 1 nA
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current is expected at say 0.1 V bias at gap of 0.4 nm. Now, when U; is
increased without modifying the gap value — which does not happen during
normal, topographic imaging, because the feedback loop would correct it au-
tomatically — it results a strong increase of the tunneling current. This is
the reason, why when doing spectroscopy, one has to choose a ”starting gap”
large enough that at the edges of the voltage range the allowable current
limit of the electronics are not exceeded. Furthermore, if a certain energy
density is exceeded in the tunneling channel, then permanent modifications
may happen in the sample and/or tip structure, which will alter the shape
of the spectroscopic curve.

4.4 Summary

In this chapter I have identified and investigated in detail the geometrical
factors influencing the STM image and STS spectrum of carbon NTs and
NT rafts.

e Most important geometrical factor is the shape of the apex of the STM
tip. Since the radius of curvature of the tip apex is comparable on one
hand with the radius of SWNTs and with the size of the tunneling gap
on the other, the lateral size of the NT is much larger than its height
in STM images. [ developed a simple geometrical model to account for
these factors and verified the findings with WPD calculations. As long
as the electronic structure of the NT and of its support is similar, the
major distortion arises from the geometric convolution. This is found
experimentally in the case of NTs placed on the top of rafts of similar
NTs. When the electronic structure of the support is different from that
of the NT, i. e., when HOPG, gold, or other support is used, further
distortions arise from the modification of the width of the tunnel gap
over the NT if compared to the value found over the support.

e | have calculated incidence angle and energy dependent WP transmis-
sion coefficients through the STM junction model containing various
configurations of CN'Ts and point contacts. From the 2D scattering cal-
culated from the time dependent Schrodinger equation 3D transmission
coefficients are derived by assuming no mixing of the WP momentum
components along the tube axis and perpendicular to the tube axis.
The total tunnel current at a given bias is calculated by the statistical
average of probability currents for all WPs assuming a free electron
dispersion relation.
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It was found that for tip negative bias (WP approaching the tunnel
junction from the tip) the angular dependence of the transmission is
mainly determined by the tip shape. The particular tip shape deter-
mines the probability current curls inside the tip and this effect intro-
duces an asymmetry on the negative side of the STS spectrum.

For tip positive bias (WP approaching the tunnel junction from the
support), however, the angular dependence of the transmission depends
strongly on the nature of the nanosystem placed into the STM gap. The
tip positive transmission of an STM tunnel junction with no N'T present
can be well represented by a plane-plane model while all other con-
figurations studied show a considerable amount of normal-transversal
momentum mixing. The angular dependence of the transmission of the
NT raft shows a diffraction grating like behavior.

Point contacts between the N'T and its support caused by mechanical
pressure exerted by the STM tip cause an asymmetry to appear in the
positive side of the STS spectrum.

While for an STM tunnel junction with no N'T present the calculated
STS spectrum shows only a small, and linear in U; asymmetry, for NTs
there is a considerable degree of asymmetry present in the 7(V') curves.
Because of the free electron DOS assumption these asymmetries are of
purely geometrical origin.
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Chapter 5

3D simulation of the STM
tunneling process

Recent advances in computer power permitted me to perform three dimen-

sional (3D) WPD calculations on the NT-in-STM system within the frame-

work of the jellium model. A detailed analysis of the distribution of the

probability current and of the probability density is given in this Chapter.
Four systems were investigated:

e an infinite SWNT on an atomically flat support as reference case,
e a capped SWNT protruding a step of the support surface,
e a quantum dot (short finite tube), and

e a SWNT Y-junction.

WPD calculations on the 2D jellium model (see Chapter 4) were successful
in explaining several factors of geometrical origin influencing the STM images
of carbon nanosystems. These include the tip caused apparent broadening,
and the displacement of the tunneling point on the surface of the tip during
scanning of the CNT which causes an apparent asymmetric distortion [75] of
the atomic lattice. STS spectra were also computed [74] by the same tech-
nique. The calculations revealed asymmetric I-V curves — found frequently
in STS experiments [124] even when using HOPG substrate — of pure geo-
metrical origin. The asymmetry was found [74] to depend on the nature of
the contact between the tip and the CNT. There is a greater asymmetry if
this contact is not a tunneling contact but an electronic point contact [26],
as the result of a mechanical deformation of the N'T exerted by the STM tip
— as is often the case in experiments [74].
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The main new phenomenon in 3D calculations is the axial spreading of
the WP along the CNT during tunneling. This WP spreading is caused
by the different dimensionality of the two tunnel junctions. Indeed, the tip
— CNT tunnel junction is zero dimensional but the CNT — support tunnel
junction is one dimensional. After the WP goes through the narrow tip —
CNT tunnel junction, its lateral ”size” is small, around 0.1 nm (see Section
5.2) This spatial confinement of the WP causes a spreading along the tube
axis. By calculating the WP spreading during tunneling we can calculate
how far the influence of a local perturbation (e.g. the different electronic
structure of the center of the Y-junction) is extended along the NT. Recent
advances in computer power permit us to address the full 3D geometry of
the problem and thus to handle the WP spreading phenomenon. This kind
of calculation is exposed in the present Chapter.

5.1 Model systems

The four model systems are shown in Fig. 5.5, Fig. 5.9, and Fig. 5.23. The
geometrical and material parameters of the CNT, the tip, and the support
are the same as described in Section 3.2 and applied also in 2D calculations
of Chapter 4.

The STM bias is chosen to be zero throughout this Chapter, because
the computationally intensive 3D calculations did not permit to repeat the
calculation many times what would be necessary to calculate momentum
space integrals as was done for the 2D case in Chapter 4. The vanishingly
small bias approximation is, however, suitable for small bias experiments, or
when the imaging process is not bias dependent.

The high aspect ratio of the NT made it necessary to calculate for a
long cuboid (rectangular box). The axial (longitudinal) length of this cuboid
was chosen in such a way that the majority of the tunnel current flows from
the tube into the support surface within this length. The calculation- and
presentation boxes (see Section 3.2.2) are shown in Fig. 5.1 and Fig. 5.2

Fig. 5.2 shows the calculation box and the absorbing potential (see Sec-
tion 3.2.2). The total complex potential (real part: jellium potential, imag-
inary part: absorbing potential) is shown by color coding. Because the y
(axial) length of the calculation box is longer than the z and z length, the
absorbing region is cylindrical closed by two hemispheres.

After the WP has tunneled into the N'T, it partly tunnels into the support
within the -7.68 nm < y < 7.68 nm axial interval of the presentation box
and partly flows outside the box at the tube end(s), see Fig. 5.3. (As shown
later (Section 5.5), the probability of tunneling back from the NT to the tip
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Figure 5.1: (color) (left) Presentation box used in the 3D calculation with the
STM tip, nanotube, and support. (right) yz and xz cross sections of the 3D
jellium potential. All dimensions are in nm. Axial length of the presentation
box is 15.36 nm.

Figure 5.2: (color) yz and xz cross sections of the 3D potential in the calcu-
lation box. Blue color shows the jellium potential (real part), yellow shows
the absorbing potential (imaginary part). Axial length of the calculation box
is 23.04 nm.

is negligible.) These [iypeena current components, however, would eventually
also tunnel into the support surface when the axial length of the presentation
box went to infinity (see Section 5.6).

An infinite tube on a flat support is our reference system.

For the case of the capped NT hanging outside a step an 1 nm high step
is considered with a hemisphere-capped cylinder protruding to a length of
3 nm. The STM tip is displaced 1.8 nm along the tube from the step edge
above the lower terrace.

To identify the contributions of the tip — NT and NT — support tunnel
junctions, a special, hypothetical ” quantum dot” system was also considered:
a 5.1 nm long tube closed at both ends. This system is hypothetical because
the nanostructure is free standing, i.e. it has no support surface in this
model.

The Y-junction is modeled by joining symmetrically three 1 nm diameter
semi-infinite cylinders. Two tip positions were analyzed: the tip is either
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Figure 5.3: Probability currents analyzed in this Chapter are shown by ar-
rows. Cross section of the geometric (effective) surface of the STM tip,
nanotube, and support are shown by full (broken) line. From [129].

above the trigonal symmetry point or displaced 1.2 nm along one arm.

5.2 Calculation method

The calculation is done as described in Chapter 3. A Gaussian WP is
launched with the Fermi momentum & = (0,0, —kp) from inside the tip bulk
towards the apex of the tip. The real space width of the WP is chosen to be
Azx,y,z = 0.37 nm which is significantly larger than the Ax,y = 0.108 nm
value for the tip — sample tunneling channel obtained from my calculation
(see Section 5.3).

The method of analyzing the resulting large four dimensional wave func-
tion dataset is described in Section 3.3.3.

First I calculated the probability density o(7}t) = [¢(x, vy, 2;t)|* and the
probability current density j(F, t) from the time dependent wave function.
Time evolution of p(7t) is shown by snapshots of an iso-density surface
for two model geometries in Fig. 5.5. To analyze the probability density
distribution along the NT, the 3D probability density is integrated on the
tube cross section:

Otube (Y3 1) :/tb o(z,y, z;t) dedz (5.1)

where [, ,,. means integrating between the effective surfaces of the tube.
Oupe (y; t) axial probability density distributions are shown in Fig. 5.6 by 2D
filled-contour graphics. Integrating o (y;t) again for the length of the tube
gives the total probability Py (t) of finding the electron on the tube as the
function of time which is shown in Fig. 5.7.

Next I calculated the jgupport(%, y;t) probability current density flowing
into the support surface and integrated it along the coordinate x perpen-
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Table 5.1: Summary of observables calculated from ¢ (z,y, z; t).
Quantity Definition Explanation
Otube (U3 1) Joupe 0(2, Y, 2;t) dedz  Time dependent linear probability
density on the tube
Prupe(t) e otube (Y5 ) dy Total probability on the tube as
the function of time
Jsupport (Y3 ) [ Jsupport(®,y;t) dx Linear probability current density
flowing into the support surface
Lsupport(t) [ Jsupport(x, y; 1) dxdy Probability current flowing
into the support
Tsupport(Y) [ Jsupport(z,y;t) drdt  Total transmission into the dy slice
below the tube

dicular to the NT, this gives the jsupport(y;t) function — the current density
flowing into a dy slice on the support surface — shown in Fig. 5.6.

Integrating this quantity for the length of the tube gives the Ig,ppor(t)
total probability current flowing into the support at the given time and inte-
grating from ¢ = 0 to ¢ = oo gives the Ts,pp0rt(y) axial dependent transmis-
sion. In the same way the Iypeena(t) and Tiupeena(y) as well as the I, (t) and
Tiip(y) quantities are calculated, which are the current and transmission for
a plane perpendicular to the tube at the end of the presentation box and for
a plane below the tip apex. See Fig. 5.3 for the definition of these current
components.

Time development is followed until Py (t) becomes negligibly small.

Table 5.1 gives a brief dictionary of the notation used throughout this
Chapter.

5.3 Infinite tube on atomically flat support

Fig. 5.4 shows the initial stages of the time evolution of the probability
density. I performed this calculation earlier [130] for a smaller calculation
box (3.84 nm) and shorter time (4.2 fs).

e In the panel ¢t = 0.0 fs of Fig. 5.4 the initial WP is shown. It is
a spherically symmetric Gaussian, hence the isodensity surface is a
sphere. The sphere surface is clipped at the upper boundary of the
presentation box.

e At t = 1.4 fs the WP has already penetrated into the tip apex region.
The part reflected back into the tip bulk forms interference patterns
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Figure 5.4: Time evolution of the probability density of the WP approaching
the STM junction from the tip bulk and tunneling through the nanotube
into the support. The upper left image is the model system used in the
calculation. The labeled box is the presentation box. All dimensions are
in nm. The subsequent images show snapshots of a constant probability
density surface. This surface is clipped at the six faces of the presentation
cube. From [130].

with the incoming wave. A fraction of the WP just begins to enter into
the tip-CN'T interface.

e At t = 2.1 fs the WP flows around the tube and simultaneously tun-
nels through it. The incoming and outgoing waves form interference
patterns in the tip apex region. When the two WP parts (one mov-
ing on the left side and another on the right side of the tube) meet at
the lowest point, standing wave patterns begin to form along the tube
circumference.

e Subsequently the WP tunnels through the CNT-support junction and
enters into the support surface (at ¢t = 3.5 fs). In the meantime the
probability density is gradually spreading along the tube axis.

o At ¢t = 4.2 fs the CNT-support tunnel channel begins to open along the
tube axis. The isosurface is clipped at the front- and rear faces of the
presentation cube.
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Later I had the possibility to extend the simulation [129] for a long enough
time (150 fs) and large enough calculation box (15.36 nm) to study the
complete dynamics of the process. This numerical work was done on the 180
GFlops SMP supercomputer of the Hungarian NIIF.

The left column of Fig. 5.5 shows the geometry of the system and the time
evolution of the o(i;¢) probability density. The particular snapshot times
were chosen according to the features of jgﬁ%i%“be(y; t) shown in Fig. 5.6(g),
(see Section 5.4). Complete time evolution can be seen on the Web

(http://www.mfa.kfki.hu/int/nano/online/longspread2004/) by com-
puter animation.

e Byt = 2.54 fs the middle part of the tube is already ”charged”, the WP
flows around the tube. At this particular instant oy (y; ) is maximal,
see Fig. 5.6(a).

e After this time the majority of the WP is scattered back into the tip and
the part remaining on the tube spreads along it and gradually tunnels
into the support surface. The large part of the WP scattered back
into the tip produces interference patterns with the incoming wave.
These interference patterns are still visible in the tip bulk region until
t = 8.47 fs, after that the backscattered WP part is travelling out of
the presentation box and is absorbed in the drain potential bordering
this box.

e As seen on the series of snapshots for ¢t = 6.05 fs, t = 8.47 fs, and
t = 17.84 fs the NT-support tunneling channel is gradually opening
along the tube axis as the WP is spreading along the tube. This channel
is not any more seen on the subsequent iso-surface snapshots because
the overall probability density decreases as a consequence of the gradual
flowing out of the WP from the presentation box. As a result of this
decrease, the density in the tube-support junction becomes smaller than
the density corresponding to the particular iso-surface. As discussed
below, however, the tunnel current is still flowing for these times but
with a decreasing intensity and in a channel with increasing width in
the axial direction. It has to be mentioned, that in the case of a real
tunneling experiment there is a continuous supply of electrons.

The long, axial structures seen from ¢ = 6.05 fs in the iso-surfaces are
standing wave patterns along the circumference of the tube. These are caused
by the interference of different radial eigenstates of the tube (see Section
5.3.1). Because the tunneling coupling of the tube wave function with the
tip and the support is relatively weak, one can consider that the system has
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Figure 5.5: Time evolution of the probability density of the wave packet
approaching the STM junction from the tip bulk and tunneling through the
nanotube into the support. The left column is for the infinite tube on an
atomically flat support and the right column is for the capped tube hanging
above a step of the support surface. Geometries of the two systems are shown
on the upper subimages. The cuboid shows the presentation box boundaries.
All dimensions are in nm. The subsequent subimages show snapshots of an
iso-density surface with density value of o(7;t) = gy = 2.0245 - 107% nm~3.
The iso-surfaces are clipped at the presentation box boundaries. From [129].
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translational invariance along the y axis, hence the wave function of the tube
can be approximated as (see Section 5.3.1)

T/)(F; t) ~ wfreetube(ra @, t) wfreetube(y; t) (52)

where y is the axial coordinate and r, ¢ are the radial coordinates in
the cross sectional planes perpendicular to the tube axis. According to our
recent calculations [131, 132], the energy of the first few radial eigenstates
of a free standing jellium tube falls into the energy window of the incoming
WP, hence ¢(r, ¢;t) is a superposition of these states. The time dependence
of the phases of the superposition components yields the time dependent
density waves around the tube seen in the iso-density surface plots.

Fig. 5.6(a) shows the time dependence of o(y;t), the probability density
integrated over the cross section of the tube (cf. eq. (5.1)) as a spacetime
density plot [133, 134] (a "quantum carpet”). White corresponds to zero
density and black to 2.10- 1073 nm~! .

e For ¢t < 1.2 fs there is only negligible probability on the tube because it
takes a finite time for the WP to reach the tube region from its initial
position in the tip bulk.

e When the WP reaches the tube, the central part (i.e. that below the
tip) of the tube gets ”charged” which is seen in Fig. 5.6(a) as a high
intensity, narrow peak around t = 2.54 fs.

e After this time the WP is gradually spreading along the tube.

Asseen in Fig. 5.6(a), o(y;t) is a smooth function, because the oscillations
along the tube circumference are integrated out. In the approximation of
negligible coupling of the tube wave function with the tip and the support
(cf. eq. (5.2)) o(y;t) & | rectube(y;t)[>. In this approximation the jellium
potential seen by the WP does not depend on the y coordinate, hence the
WP is spreading along the tube like in free space. The coupling of the tube
wave function with the support, however, does cause a gradual tunneling of
the WP into the support surface while it spreads along the tube.

As can be seen in Fig. 5.6(a), the iso-density contours are linear for small
t values. By calculating the tangent of the contour corresponding to the
3D density value o(7;t) = g = 2.0245 - 1075 nm™3 | i.e. those displayed in
Fig. 5.5 by the iso-surfaces, a spreading velocity of vspreqa = 1.04 nm/fs is
obtained which is close to the vy = 1.33 nm/fs Fermi velocity calculated
from Er =5 eV.

The Jsupport(y; t) linear probability tunneling current density flowing into
the support is shown in Fig. 5.6(c). White corresponds to zero current and
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Figure 5.6: Analysis of the tunneling process as the function of time and the
y position along the tube. (a-d) is for the infinite tube above an atomically
flat support and (e-h) for the capped tube protruding a 1 nm high step. yz
cross sections of the potential are shown on the left. (a) and (e) o(y;t) on
the tube. (b) and (f) o(y;t) on the tube at ¢ = 2.54,3.75,4.96 fs. (c) and
(g) j(y; t) flowing into the support. (d) and (h) Transmission probability into
the support. From [129].
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black to 8.03-10 ® nm ! fs~!. The onset of the tunnel current occurs around
t =2.1fs, 0.9 fs later than that of o(y;t) because the WP has to flow around
the circumference of the tube before it can tunnel into the support. The
maximum of the tunnel current density (black dot) occurs at ¢ = 4.11 fs.

The overall structure of jsuyport(y; t) consists of an axial spreading and a
temporal oscillation. The axial spreading of the current density is caused by
the axial spreading of the WP along the tube. As seen in Fig. 5.6(c), the
o(y;t) and Jsupport(y; t) functions spread with the same velocity and the axial
shape of the linear current density is similar to the axial shape of the prob-
ability density along the tube. The temporal oscillation seen in jgupport (Y3 t)
is, however, not present in o(y;t). This oscillation takes place because the
tunneling current is determined by the density close to the ”lowest” fiber
of the tube (i.e. that closest to the support surface) and not by the overall
density on the tube. Along a generator of the tube o(t) oscillates as a result
of the interference between the azimuthal eigenstates discussed above.

Fig. 5.6(d) shows the y dependence of the Tsupport(y) = [ Fsupport(y; t) dt’
transmission function. (The integral of jsuppert(y;t) over its other variable,
y gives Igupport(t), which is discussed below.) Tsupport(y) dy is the probability
that the electron eventually tunnels into the dy wide slice of the support
surface around y. As seen in Fig. 5.6(d) the largest tunneling probability
is right below the tip and the tunneling probability is gradually decreasing
along the tube axis, approximately like a Lorenzian. The total transmission
into the support,

Tsupport = /y . Tsupport(y) dy = /0 Tsupport(t) dt (53)

is 0.3271 - 1073 (see Table 5.2).

The half width at half maximum (HWHM) of the tube — support tunnel-
ing channel is 0.105 nm in the x direction and 2.37 nm in the y direction.

Fig. 5.7(a) is the comparison of the ”probability charge” Py (t) found
on the tube at a given time with the T;(¢) time-cumulated transmissions,
i.e. those parts of the WP that went through the given measurement planes
in the [0,¢] time interval, where i is the index of the measuring plane. The
definition of these quantities is as follows

Ymaz

Ymaz

Prupe(t) = /y . o(y;t) dy (5.4)

71 = | Lyt (5.5)

I have calculated the transmissions for four measuring planes, called ”tip

” N

plane”, ”support plane”, and ”tube end planes (right or left)”, which are the
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Figure 5.7: Time cumulated transmis-
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Table 5.2: Wave packet transmissions (in 1073) through the different mea-
suring planes defined in Fig. 5.3 for the case of the simple tube above an
atomically flat support and the capped tube protruding the step.
Support Tube right end Total
Flat support 0.3271 0.3714 1.1287
Step 0.2017 0.8109 1.1252

planes below the tip apex (in the vacuum gap), below the support surface
(inside the bulk), and perpendicular to the tube at the y = ynin and y = yimas
ends of the presentation box, respectively. Thus ie{tip, support, tubeend}.
As can be seen on the Py, function of Fig. 5.7(a), the tube is first quickly
charged by the WP. The narrow peak around ¢ = 2.96 fs shows that some of
the WP is immediatelly reflected from the tube to the tip. The ”probability
charge” remaining on the tube is decreasing slowly in time. As shown by
the full line in Fig. 5.7(a), Tsupport(t) + 2L upeena(t) + Puve(t) has a constant,
1.1287-1072 value (see Table 5.2), which proves that the decrease of Py (t) is
caused by tunneling into the support surface and by direct flowout at the tube
ends. As shown in Section 5.5, the tunnel resistance of the tip—NT interface
is much higher than that of the NT-support interface, hence the contribution
of tunneling back from the tube to the tip can be safely neglected here.
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5.3.1 Stationary states of the jellium CNT

In this section I present analytical solutions for the stationary states of the
jellium tube. This work [131, 132] was done together with Levente Tapaszto.

In order to calculate the analytical, stationary wave functions of a jellium
CNT model, I solved the stationary Schrodinger equation for the one electron
potential modeling a CN'T with geometrical and material parameters chosen
to be consistent with my WPD simulations. In the case of the freestanding
NT, from symmetry considerations, it was feasible to write the Schrédinger
equation in cylindrical coordinates, because the jellium potential of an infinite
CNT depends only on the radial coordinate 7:

1m? — 1/4 —9.81eV re T'tube _j, Ttube +]
V(?"a @, Z) = V(?") = 577”2 + { 0 [ othervise ]
(5.6)
where m is the azimuthal quantum number (see below) and j = 0.071 nm
is the jellium radius (see Section 3.2).
Because of translational symmetry along the axis of jellium CNT, the

axial component of the wave function is a plane wave for infinite tube length:

1/)(7”7 ¥, Z) = 1/)2D(7n7 90) : eik;z (57)

Thus the energy of the axial motion can be separated from the total
energy:

E(m, k‘z) = EQD(m) + Ea:vial(kz) (58)

where Fsp is the cross sectional component of the energy, i.e. that cor-
responding to the ¢,p(r, ) wave function component. For the case of the
free standing infinite CNT it is enough to consider only the cross sectional
component of the wave function and the energy, i.e. ¥op(r, ) and Esp.

Solving the Schrodinger equation for the real cylindrical geometry elim-
inates the widely used zone folding approximation [4]. Deviation from zone
folding results is of particular importance in the case of small diameter
tubes [131, 135].

Ry, m(r), the radial solution can be written as a combination of first and
second order Bessel and associated Bessel functions, n is the radial quantum
number. For our range of parameters there is only one radial solution for
each m, hence we omit the radial quantum number. The azimuthal solution
is quantized due to the periodic boundary condition in 27 and is doubly
degenerate for m > 0:
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Figure 5.8: Gray scale cross sectional view of stationary wave functions of a
jellium tube for different angular momentum quantum eigenstates m = 0,1, 2
respectively. Fy = —5.05 eV, By = —4.89 eV, Ey = —4.41 e¢V. The m =0
ground state is non-degenerated, all the excited states are doubly degener-
ated. Black corresponds to negative and white to positive wave function
values. Upper left subfigure shows the one dimensional band structure of the
jellium tube for m =0, 1,...5. Energy is measured from Ep. From [131].

Yap(r, ) = Ry (1) [Ch cos mp + Sy, sin m] (5.9)

Fig. 5.8 shows the ground state and the first two excited states. The
ground-state is non degenerate, while all excited states are doubly degenerate.
By choosing the orthonormal states cos m¢p and sin my one of the states is
an even, the other is an odd function of ¢ (where the ¢ = 0 direction points
"up” towards the tip apex). The 1D band structure of the jellium CNT is
shown on the upper right subfigure of Fig. 5.8. All bands are parabolic in this
model, i.e. the band structure is similar to that of a doped semiconductor
CNT.
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5.4 Semi-infinite tube protruding from a step
of the support

The right column of Fig. 5.5 shows the geometry of this system and the time
evolution of the o(7;t) probability density. As can be seen in the snapshot
for t = 2.54 fs, the first stages of the time development for the infinite tube
and for the capped tube above the step are very similar. One can also realize
this by comparing the o(y;t) functions displayed in Fig. 5.6(a) and (e). This
is because for both systems the WP is transmitted first through the tip-NT
interface then flows around the tube circumference. After this time, however,
the time development of the two systems becomes different because the WP
reaches those parts of the model potential different for the two models.

The most important characteristics of the iso-density surfaces shown in
Fig. 5.5 is the effect of the reflection from the tube end. As seen on the
snapshot for ¢ = 6.05 fs, the right part of the iso-surface (that corresponding
to the infinite half of the tube) is similar to the iso-surface for the infinite tube.
The left part, however, shows the onset of reflection of the WP from the tube
end: there are axial standing wave patterns in the probability density, which
are caused by the interference of the electron waves spreading towards and
those reflected from the tube end. These probability density waves are also
clearly seen in Fig. 5.6(¢) and (f), the interference maxima are propagating
along the tube.

As seen in Fig. 5.6(c) and (g), the jsupport(y; t) linear current densities are
also very different for the two cases. The most obvious effect is caused by
the partial lack of support for the tube hanging above the step. Because the
tube section protruding from the step is hanging at a "height” of 1.335 nm
above the lower terrace of the step, the tunneling probability from the tube
to the support is much lower than for the case of the flat support where the
tube—support distance is only 0.335 nm.

The probability current flowing into the lower terrace (Fig. 5.6(g)) is small
in magnitude and one can notice a fast oscillation vs. time. This oscillation
can be explained as follows. The incoming WP has a finite energy width
of AE = 1.17 eV. The tunneling effect, however, effectively amplifies [123]
the higher momentum components. The fact that the probability current
flowing into the lower terrace is originating mainly from this higher energy
WP parts is the cause of the higher frequency of the temporal oscillation of
the current above the lower terrace than that above the upper terrace. The
overall magnitude of the current flowing into the lower terrace is small, as
seen on the Ty,p0rt(y) total transmission function of Fig. 5.6(h). This small
current, however, becomes visible in Fig. 5.6(g) because of the square root
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gray scale used for the presentation.

Majority of the tunnel current flows into the upper terrace of the step
(cf. Fig. 5.6(h)). The particular, complicated structure of jsupport(y;t) seen
in Fig. 5.6(g) is influenced by: i) the propagation of the o(y;t) standing
waves (caused by the reflection from the capped end) seen in Fig. 5.6(e)
along the tube and ii) the interference of the angular momentum eigenstates
(see Section 5.3) of the tube. The series of ridges seen in j(y; t) are in registry
with the maxima of the probability density waves seen in o(y;t).

The T;(t) transmission functions (ie{tip, support, tubeend}) of Fig. 5.7(b)
are also more complicated than for the reference case, of Fig. 5.7(a). Tiupeena(t)
is about doubled in magnitude because in the case of the capped tube the WP
can leave the tube only at one end as compared to the not capped tube, where
it can emerge at both ends. Tyyppore(t) is slowly, linearly increasing. This is
because the WP, after tunneling from the tip to the tube and ”charging” the
tube section below the tip (see the ¢ = 2.54 fs snapshot of the iso-surface
in Fig. 5.5) can reach the upper terrace of the step only after longitudinal
transport along the tube. Hence, Tyupport(t) is slowly increasing as the WP
is moving from the tube section above the lower terrace to that above the
upper terrace. (Only this direction of the propagation is possible because of
the closed end.) Notice the shoulders negative to each other in the Pjy.(t)
and Tiypeena(t) functions. These are because the longitudinal density waves
in o(y;t) (Fig. 5.6(e)) travelling out from the presentation box cause peaks
at the Lypeena(t) current.

The most interesting observation to make, however, when comparing
Fig. 5.7(a) and Fig. 5.7(b) is the identical full curves for the two cases.
As T will show in Section 5.6, this constant value corresponds to the total
transmission of the system. The (nearly) identical value of the transmissions
is further discussed in Section 5.5.

5.5 Quantum dot

By ”quantum dot” I mean here a tube closed at both ends, and having no
support surface. This hypothetical system makes it possible to investigate
the behavior of the tip—tube tunnel junction alone, without the contribution
of the tube—support junction, which has a much smaller tunnel resistance.
The time accumulated transmission measured at a plane under the apex
of the tip, T};,(t) is shown in Fig. 5.9 for the three different models. This
quantity gives the total WP transmission from the tip apex calculated from
t = 0 to the given moment. After the launching of the WP there is a thin
peak in all the three transmission functions, with a large value of about
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Figure 5.9: Time cumulated transmissions measured below the tip apex.
Dotted, dashed, and full lines are for the infinite tube above atomically flat
support, for the capped tube hanging above the step, and for the ”quantum
dot” tube, respectively. The YZ cross sections of the potential for the three
model situations are shown by grayscale plots near the curves. The inset
shows the initial, large intensity peak (same for all the three models within
the line thickness). See the text for details. From [129].

5-1073. The inset shows this peak in detail. The meaning of the peak is
the WP coming out of the tip apex and then returning there. Plots of the
Ty (t) functions for the three models are identical within line thickness for
t < 10 fs. After this initial peak, the transmission function for the ”simple”
and ”"step” situations converges to a constant value which is the fraction of
the WP that does not return to the tip. This WP part eventually partly
tunnels into the support and partly flows out at the tube end(s), as shown
in Fig. 5.7.

The Ty, (t = oo) asymptotic values, (cf. Table 5.2) for these two models
have a nearly identical value, but as visualized by the enlarged vertical scale
applied in Fig. 5.9, however, one can notice the small, 0.58% difference, the
transmission for the tube above the step is somewhat lower.

This difference can be explained as follows. The magnitude of the tunnel-
ing current flowing back from the tube into the tip depends on the probabil-
ity density of the tube below the tip apex. For the case of the tube hanging
above the step, however, there is no (or much less) possibility to tunnel di-
rectly from the tube section under the tip into the support surface because of
the large tube—support separation. The WP can leave the tube only after a
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longitudinal transport process. This means that o remains somewhat larger
than for the case of the tube above the flat support, which creates a slightly
more probability for the electron to go back into the tip.

Note in Fig. 5.9, that Ty, (t) for the quantum dot model does not converge
to a constant value but it is monotonously decreasing. This is caused by
the lack of the support surface and the lack of the open tube ends. In
this model the WP part ”entrapped” on the tube has no other choice than
to tunnel back to the tip. It can do this, however, only slowly because
the only ”exit” is a narrow, tunneling channel. The gradual decrease of
the ”probability charge” of the QD is seen in the figure by the decreasing
transmission function. This function would eventually converge to zero which
means that the entire WP returns back to the tip. As seen in the figure,
during the 130.6 fs simulation time, however, the transmission decreases only
by 4.2 %. Assuming an exponential decay of the ”probability charge” of the
tube, Ty,(t) = Ty Exp(—t/7), the fitting for the full line of Fig. 5.9 gives a
value of 7 = 2817 fs.

5.6 Detailed analysis of the STM tunneling
process

As we can conclude from the results of the preceding Sections, the WP tun-
neling proceeds according to the following steps.

e The WP first "charges” the NT. This process is composed of two sub-
processes:

— the WP arriving from the tip bulk approaches the tip apex region,

— majority of the WP is reflected back into the tip bulk but a small
part does tunnel into the tube.

e The WP spreads along the N'T.

e The WP leaves the tube section in the presentation box through four
exits: majority of the WP tunnels into the support surface; part of the
WP flows along the tube and then leaves the presentation box through
the left and right ends; a small fraction of the WP tunnels back into
the tip.

While the WP is spreading along the tube, it is gradually tunneling into
the support. From this it follows that if we increased the length of the
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presentation box, less and less fraction of the WP would flow out from the
box at Ymin and Ymer (see Fig. 5.3). In a real STM experiment the length of
the N'Ts typically exceeds 100 nm. For such a long presentation box, only a
negligible fraction of the WP would flow out at the tube ends. This means
that in a real experiment (which corresponds to a very long presentation
box) those parts of the WP flowing out at the presentation box ends in my
calculation would also tunnel into the support surface. Thus

experiment __ pcalculation calculation
Psupport - Psupport + nPtubeend ) (510)

where n is the number of the open tube ends, n = 2 for the ”plain tube”
model, n = 1 for the "tube hanging above the step” model, n = 0 for the
"quantum dot” model, and n = 3 for the ”Y” model.

Moreover after a long enough time, all of the WP would leave the N'T. This
means that Pff;’;gf?mt = P3r eriment which simply means that the current
flowing out from the tip flows into the substrate under stationary conditions.

As I have shown in Section 5.5 the charging and the discharging of the
NT occurs in two different time scales. The charging process is much faster,
it occurs within 4 fs as seen at the inset of Fig. 5.9. The time scale of the
discharging process, however, is 100 fs (see Fig. 5.7).

During the ”charging” process, there is a resonant transfer of electrons
from the tip into the tubular jellium, which behaves like a quantum well.
The so-called buildup time that this charging process requires is approxi-
mately 3 fs. After this time, the transmission 7'(¢) below the tip starts to
saturate (see the inset in Fig. 5.9). Theory of tunneling through 1D barriers
predicts that this saturation should proceed through damped oscillations,
with a characteristic frequency proportional to the deviation of the incident
energy from the resonance, and a decay time equal to twice the lifetime of
the resonant state [136]. The situation is more complex here, due to the 3D
geometry of the potential, and because the WP covers a large energy window
that encompasses several eigenstates of the jellium tube [131]. The plot of
T'(t) in the inset of Fig. 5.9 shows a single oscillation, marked by the peak
at about 2 fs. Then it saturates, except for the quantum dot where all the
buildup charge slowly returns to the tip.

During the decay of the probability charge of the tube not only the geom-
etry of the tip-support barrier is important (there is no such barrier for the
dot), but also the fact that the electrons in the NT have no permanent mo-
mentum perpendicular to the barrier. As the animation on the web site shows
(http://www.mfa.kfki.hu/int/nano/online/longspread2004/), the prob-
ability density oscillates around the tube, while spreading along it. The WP
tunnels to the support by packets, each time there is an accumulation of
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charge at the bottom of the tube. The characteristic oscillation period is
around 5 fs, as can be inferred from the plots of j(y;t) in Fig. 5.6. The char-
acteristic time for the decay of the probability charge on the tube is around
25 fs (plot of P in Fig. 5.7), much shorter than the decay time for the
dot (2817 fs as derived in Section 5.5) because the barrier with the tip is
extremely localized in space.

Once the WP is on the tube it can tunnel into the support much easier
than back into the tip, hence the magnitude of the tunnel current is mostly
determined by the characteristics of the tip-NT tunnel junction. This is
somewhat similar to joining two resistances [73] in series, the net resistance
R = Ry + R, is mainly determined by R, if Ry >> R,.

(a) (b)
_ tlp Figure 5.10: Equivalent circuit repre-
sentation of STM tunneling. (a) Tun-
. R neling directly into the support, R,
tip gl is the gap resistance. (b) Tunneling
R through the nanotube, Ry and Rg
—

t are the resistances of the two gaps.
R is the resistance of the nanotube.

(’2
- From [73].

This is the explanation why the total tunneling probability is nearly the
same for the ”plain tube” and for the ”tube hanging above the step” models,
although for the first case the tube section directly below the tip is supported
but for the second case it is not supported. The details of the WP transport
process are different for the two cases, when the tube section below the tip is
supported, most of the WP directly tunnels into the support, see Fig. 5.6(c),
but when the tube section below the tip is not supported, the WP can tunnel
into the support only after a ballistic transport [89], see Fig. 5.6(g) — still
the total transmission probability is nearly the same for the two cases.

Ballistic conduction was found in conducting AFM experiments [89] in
length sections over 5 um in SWNTs which proves that the electrons preserve
phase coherence over such a long length scale. The independence of the total
tunneling probability on the presence of the support surface under the tube
section below the tip is in fact verified by STM experiments on SWNTs
crossing a step on the graphite surface [25], crossing over another NT [137],
or hanging over grains of platinum surface [137].
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Figure 5.11: STM current flow when
the tip is over the SWNT part hanging
over the step. Probability density in
the plane perpendicular to the support
and including the tube axis is shown
on a logarithmic gray scale. The thick
white lines show the geometrical sur-
face of the tip, nanotube, and support.
From [130].

In both experimental situations a section of NT is lifted from the support
surface because of its stiffness. According to the topographic STM images
and elasticity theory calculations presented in these papers, the SWNT is
not supported over a length of 10 - 20 nm.
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Figure 5.12: Bending of a nanotube crossing an 1 nm step on graphite sub-
strate computed from linear elasticity. The x and z scales differ from each
other and, so, the apparent tube diameter varies with the slope of its axis.
Ref. [25].

The calculations in [25] indicate that the deformation of the NT is taking
place from roughly 20 nm before to 10 nm after the step. After the step edge,
there is a slight overshoot of the NT, where it rises above its normal distance
from the plateau surface. Though there is no support surface directly below
the tube section protruding from the step, still there is no step seen in the
topographic line cuts above the edge of the support (see Fig. 5.158) which
shows that there is no abrupt change in the tunnel current when the tip
moves from above the supported N'T part to above the unsupported part.
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! ' ) Figure 5.13: Topographic STM image
’ /\___ of a crossing of SWNTs. I, = 20 pA,
Uy = —1 V. The height profile along
the dotted line is plotted below the im-
age. The gold substrate is taken as

reference height. Ref. [137].
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Of course the jellium method does not account for the effect of the dif-
ferent local band structure at different places of the tube and this can cause
different tunnel current at different places.

For the capped tube hanging above the step the backscattering [85] of
the electron waves from the cap causes axial oscillations in the probability
density. Periodic oscillations of the differential conductance along the tube
with A = 2kp periodicity were indeed measured in STS experiments [138]
on short SWNTSs and calculated by tight-binding [139] and ab-initio [140]
methods.

For MWNTs the conduction mechanism is different, however. Fig. 5.1
shows a 3D STM image measured in our Laboratory [130] of a short and thick
MWNT being adsorbed on a step edge in such a way that part of the tube is
protruding from the step edge. This tube is produced by the arc method, the
diameter is 10 nm and the tube protrudes over the lower terrace of the step
to 200 nm. This is a similar situation as in our calculation for the capped
SWNT but the dimensions are much larger and the tube is a MWNT.

Z 12.000 nm/div

Figure 5.14: Constant current 3D STM image of a MWNT crossing a step
on the HOPG surface. Note the transition region at the step edge and the
gradual decrease of the apparent height of the tube section above the lower
terrace. From [130].
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The tube part above the lower terrace is suspended above the HOPG
surface at a distance of 1.3 nm. As shown by molecular mechanics calcula-
tions [87], such multiwall structures behave like rigid objects. As a conse-
quence, the short tube does not bend to make contact with the substrate on
the lower terrace of the step. If bending to contact would occur, one should
measure the same height value on the lower terrace as on the upper one
which was contrary to the experimental observation, Fig. 5.14. The appar-
ent height of the tube part above the higher terrace is constant (some noise
is present) because of the translational symmetry along the tube. Right at
the step edge there is a transition region in the apparent height, the width of
this region corresponds to the length over which the charge spreading takes
place along the tube. When the distance of the STM tip as measured from
the step edge is larger than the lateral WP spreading length, the electrons
can reach the support of the tube only after transport has occured along
the tube. The decrease of the apparent height along the tube section above
the lower terrace suggests a dependence like ohmic law, I = U/R, where R
increases with distance from the step [141]. As a consequence, a more pro-
nounced drop is found in the apparent height of the tube than the geometric
height of the step in that part where the tube is not supported.

STM tip
STM tip
STM scan line
( l )nanotube
No tunneling
;here |VIT v IT HOPG

Figure 5.15: (color) Schematic picture of STM current flow when the tip is
over the MWNT part over the lower- and the upper terrace of the step. Size
proportions are distorted to facilitate presentation. See the text for details.

5.6.1 The tunneling time

The tunneling time (TT) issue is almost as old as quantum mechanics it-
self [142, 143]. From then it remained almost ignored until the 50-60-th, when
the more general problem of defining the quantum collision duration began
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to be investigated [144, 145, 146]. Development in technology, especially the
advent of high speed electronic devices based on tunneling processes revived
an interest in the TT analysis. A lot of theoretical studies was performed
during the 80’s [147, 148|.

Measuring the TT on particles is not an easy task, because of the small
value of the T'T and of the many body effects. This explains why the first
measurements of TTs were done on photons [149, 150, 151], utilizing the
formal analogy of the Schrédinger and Helmholtz equations. Electronic tun-
neling times were measured only recently [152, 153].

The TT is the answer to the following question: "How long time did a
particle with a given energy spend in the classically forbidden region, as it
tunneled through the barrier?” The question is posed after it has become clear
that the particle has, indeed, tunneled through rather than been reflected
from the barrier. In principle the T'T can be easily calculated by following
the peak (more precisely the center of mass) of a WP with a narrow spread of
energy AF in a simulated scattering experiment (see Fig. 5.16). At the initial
state the WP is well separated from the barrier (Fig. 5.16(a)) — its center of
mass is a well defined quantity, x; on the Figure. After the scattering event
(Fig. 5.16(b)), at the final state (Fig. 5.16(c)), the initial WP is split into
two WPs, one reflected (back to the region around z;) and one transmitted,
around x7. These WPs are again well separated from the barrier.

ta) Figure 5.16: Schematic picture of WP
/)Q L scattering on a 1D rectangular poten-
3 Xea  Nog tial. Heavy line shows the probabil-

ity density o(x) and the arrows show
(b) the direction of the WP group velocity.
J\ﬂﬂ[\ After [154]. (a) Initial WP well sepa-

. rated from the barrier. (b) The WP

begins to penetrate the barrier, incom-
(e ing and reflected components cause in-

terferences in the probability density.
75\ . (c) The final state, reflected and trans-

Xa Xy

mitted WPs leave the barrier region.

The tr(zy, xp, k) quantity defined above is called the asymptotic phase
time [145, 155]. The analytical calculation for the AE — 0 gives:

T — X 1 do
Vg vy dk

(5.11)

tr(zr,or, k) =
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where v, = h™'OE/0k = hk/m is the group velocity of the incoming
WP and o = argT'(k), the complex phase of the transmission amplitude.
The second term in eq. 5.11 shows that the speed of the transmitted WP
is slightly shifted with respect to the initial one, ik/m. If the barrier V (z)
is more transparent for higher energies, the barrier preferably transmits the
faster parts of the initial packet, and preferably reflects the slower ones. As
a result, the average speed of the transmitted packet is shifted upwards.

Because in the derivation of the asymptotic phase time both the initial
and the transmitted WP has to be well separated from the barrier region
(in order to prevent interference with the barrier), the asymptotic phase
time measures a time interval during most of which the particle did not
tunnel. It is possible, however, to substitute formally x; = xjeft , 21 = Tright
into eq. 5.11 where x5, and x4, are the left and right boundaries of
the tunnel barrier. This quantity, t7(Zies:, Tright, k) is called the extrapolated
transmission phase time [155]. For an opaque rectangular barrier of height
Vb, i.e. a barrier for which T" < 1,

2m

= hek’

where k = y/kZ — k? and ko is derived from Vj = h*k?/2m. As shown

in Fig. 5.17, t5°"*P°'e%d is Jarge when the energy E of the incoming WP is
small (because v, is small) and also when E — Vj (because x is small).
For the jellium parameters used throughout this work, 1, = 9.81 eV and
E = Ep =5 eV, (see Section 3.2) t5rerelated — 13 5. It is an important
property of the extrapolated transmission phase time that it is independent of
the barrier thickness x,;gn; — Zief;. This phenomenon, the so called Hartman
effect has been indeed verified by extensive numerical simulations of 1D WP
scattering [156] and evanescent microwave experiments [149].

Apart from the phase time there exists several other TT definitions. We
can arrange the majority of the approaches into several groups [157] which
are based on

t;xtrapolated(k_) — tT(xlefta Tright k) (512)

1. time dependent WP development. The phase time discussed above
belongs also to this group.

2. Averaging over a set of kinematic paths, distribution of which is sup-
posed to describe the particle motion inside the barrier.

3. Introducing a new degree of freedom, constituting a physical clock for
the measurement of the TT.
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There is no clear consensus about the existence of a simple expression
for the T'T and the exact nature of that expression. The different formulas
proposed give different values, the TT can even be complex [158] in some
of the approaches. Less precise questions may, from a practical point of
view, have definite answers. If one does not care about numerical factors of
order unity, all proposals give values [154] of the same order of magnitude.
The tunneling time scale is 10715 s for electrons and 107° s for photons in
typical tunneling situations. These values are indeed found in experiments
with photons [150] and with electrons [152].

For our WPD calculation those approaches following the WP motion
can be applied most consistently and easily. The simple picture behind the
asymptotic phase time, however, breaks down for more complicated barriers,
because the TT distribution is not any more a narrow function with one
peak as in the simple situation shown in Fig. 5.16. A typical case is a double
barrier, shown in Fig. 5.18. This resonant tunneling situation is composed
of a fast buildup phase and a slow decay phase. First a quasi localized state
is built up in the barrier region. As this state decays, it "emits” a series
of reflected and transmitted WPs, shown shematically in Fig. 5.18. In the
statistical interpretation of the quantum mechanics this means that if we
perform the same scattering experiment several times, using the same initial
condition, a batch of particles will arrive at time ¢;, another batch at time
ta, etc. The 3D situation is even more complicated, because the tunneled-
through particles can have different directions.

As seen in Fig. 5.5 and in Fig. 5.6, in the 3D jellium model of the STM tip
— NT — support tunnel junction the probability flows from the NT into the
support surface in distinct impulses, packets. This is a signature of resonant
tunneling.
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Figure 5.18: Sketch of a 1D resonant tunneling situation. Probability density
is shown by a thick line. The quasi localized state in the double barrier region
is decaying in distinct impulses.

Though we can not calculate a precise value for the TT, we can still
estimate the TT scale, as explained above. This can be identified with the
time scale of the discharging process introduced in Section 5.6. As seen in
Fig. 5.7, this discharge time scale is tgischarge = 100 fs. This value is much
larger than the 0.13 fs given by eq. 5.12. This 1000 ratio is caused by the
resonant tunneling character of the STM tip — N'T — support tunnel junction,
the TT for a resonant tunneling situation [155] is indeed much longer than
that for a non resonant case. For a numerical estimate we can utilize the
relation [155] between the dwell time (see Section 3.3.3), the reflection time,
and the TT:

tawen = Rtgp +Ttr, (5.13)

where R and T are the reflection and transmission probabilities, respec-
tively. We can use the T ~ 1073 value calculated in Section 5.3, from this
R =1-—T ~ 1. The tg reflection time can be estimated from the width of
the buildup peak in Fig. 5.9 of Section 5.5: tg ~ 1 fs. Putting these num-
bers together we receive a value of ¢4,y = 1.1 fs for the dwell time which
has indeed the same order of magnitude as t4,.; values calculated in Section
4.1.3.

5.7 Y-junction

In this Section I placed a SWNT Y-junction into the STM model.

SWNT ”T” and ”Y” junctions were first proposed theoretically [44, 45]
(see Fig. 5.19(a)). Our group was the first to observe SWNT Y-junctions by
STM [14]. The Y shaped NTs were produced by thermal decomposition of
fullerene in the presence of transition metals. Techniques for high yield and
reproducible production of Y-junctions were developed [159, 15] later.
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Figure 5.19: SWNT Y-junction. (a) Structural model. Nonhexagonal rings
are highlited. Ref. [45] (b) Topographic STM image. Image courtesy of Z.
Osvéath, MTA MFA, Ref. [160].

To explore the formation of STM image of Y-junctions I placed a jellium
model of an SWNT Y-junction [161] into my STM model. The Y-junction
is modeled by joining symmetrically three 1 nm diameter semi-infinite cylin-
ders. Two tip positions were analyzed. In Fig. 5.20(left) the STM tip is
above the center and in Fig. 5.20(right) the tip is displaced by 1.2 nm along
one of the branches.

o -4 -2 -4

4 2 -2 4 2
: ;1 1

Figure 5.20: Jellium model of SWNT Y-junction in STM configuration. (left)
Tip is above the center. (right) Tip is displaced by 1.2 nm. All dimensions
are in nm. From [161].

Fig. 5.21 shows the time evolution of the probability density for the sym-
metric tip position.
e In the panel t = 0.0 fs of Fig. 5.21 the initial WP is shown. The sphere

surface is clipped at the upper boundary of the presentation box.
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Figure 5.21: Time evolution of the probability density of the wave packet
approaching the STM junction from the tip bulk and tunneling through the
Y-junction into the support. The upper left image is the model system used
in the calculation. The labeled box is the presentation box. All dimensions
are in nm. The subsequent images show snapshots of a constant probability
density surface. This surface is clipped at the presentation box boundaries.
From [161].

e At t = 1.2 fs the WP has already penetrated into the tip apex region.
The part reflected back into the tip bulk forms interference patterns
with the incoming wave. A fraction of the WP just begins to enter into
the tip—Y interface.

e At t = 2.4 fs the WP flows around the star shaped junction of the
three tubes and simultaneously tunnels through it. The incoming and
outgoing waves form interference patterns in the tip apex region.

e When the two WP parts (one moving on each sides of the tubes) meet
at the lowest point, standing wave patterns begin to form along the
circumference of the tubes (at t = 3.6 fs).

e Subsequently the WP tunnels through the CNT-support junction and
enters into the substrate (at ¢ = 4.8 fs). In the meantime the probability
density is gradually spreading along the tube axis.

e Note that the shape of the Y-junction — support tunnel channel devel-
ops in time along a complex pattern. By around ¢ = 7.0 fs most of the
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Figure 5.22: Time evolution of the probability density of the wave packet for
the case of a tip displaced 1.2 nm from the center along one of the branches.
The upper left image is the model system. From [161].

incoming WP is already reflected back into the tip bulk. Hence the
structures seen in the tip region at the frames ¢ = 7.2 fs and ¢t = 8.4 fs
show the WP parts tunneling back from the Y-junction to the tip.

In Fig. 5.22 the tip is displaced from the joining point along one of the
branches. Hence the first part of the time development (¢ = 0.0 fs, ¢t = 1.2 fs,
and ¢ = 2.4 fs) shows the same features as for the case of a single CNT (see
Section 5.3).

However, when the part of the WP spreading along the tube in the direc-
tion of the center reaches the joining point it begins to split along the other
two tubes (at t = 3.6 fs).

Fig. 5.23 shows a snapshot of the z integrated tube probability density,
Oube (,y) and the probability current density flowing into the support sur-
face, Jsupport(,y) for a NT Y-junction at ¢ = 6.71 fs, where

ounel,9) = [ oy, = 6.716) Oupe(w, 3, 2) dz, (5.14)

1, if (z,y, z) is between the tube jellium surfaces;
0, otherwise .

@tube(xa Y, Z) = {
(5.15)
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Figure 5.23: Snapshot of the tunneling process through a nanotube Y-
junction at t = 6.71 fs. (a) and (b) Z integrated tube probability densities
for the d = 0 nm and d = 1.2 nm tip displacements. (c) and (d) Probabil-
ity current densities flowing into the support surface for the d = 0 nm and
d = 1.2 nm tip displacements. Axial position of the tip is shown by small
black circle on each subfigure. Contour shades are drawn on a square root

scale. White corresponds to zero and black to maximum density (current),
for (a) and (b) [(c) and (d)]. From [129].

The (x,y) projection enhances the probability density in the NT walls,
analogous to transmission electron microscopy (TEM) imaging of NTs.

As seen in Fig. 5.23(a), for the symmetric tip position, the three 4 nm
long arms (NT sections symmetrically joined at the junction) shown in the
presentation window are symmetrically charged. The symmetrical probabil-
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ity charge on the tube causes also a symmetrical tunnel current, as shown in
Fig. 5.23(c).

When the tip is displaced by d = 1.2 nm along one arm, most of the
probability density is accumulated on this arm, cf. Fig. 5.23(b), but still a
considerable density is found on the other two arms. The tunnel current (see
Fig. 5.23(d)), on the other hand, mainly flows into the support surface from
the arm below the tip. Note that in both Fig. 5.23(b) and Fig. 5.23(d) the
probability density and the probability current do not decrease monotonically
from the point below the tip apex (shown by small circle on the figure) in
the direction of the center of the Y-junction but it has oscillations along
the arm. These spatial oscillations are caused by interference of the WP
spreading from the point below the tip apex in the direction of the junction
center and those reflected from the center region.

I have also calculated the time accumulated probability of the WP tunnel-
ing out of the tip apex for both the symmetric tip position and for the 1.2 nm
tip displacement. As I showed in Section 5.6 based on results of Section 5.5,
this quantity gives the total tunneling probability of the whole STM model
junction. I found that the tunneling probability for the off-the-junction tip
position is the same as for the infinite tube above the flat support (Section
5.3). For the case of the symmetric tip position, the tunneling probability is
larger by 14%. This difference in the tunneling probabilities is caused by the
different geometries of the tip—tube junction for the above-the-junction and
off-the-junction cases. In the off-the-junction case the tip is above an arm,
which is a cylinder of 1 nm diameter but in the above-the-junction case the
tip is above the trigonal joining point of the three tubes, which is a locally
flat surface. The diameter of the tunneling channel is larger when the STM
tip is above a flat surface as compared with a curved surface and this explains
the enhanced tunneling probability.

As shown in Fig. 5.23, however, when the tip is above the arm, displaced
1.2 nm from the junction, the WP penetrates into the junction region and the
other two arms with considerable probability. This means that the influence
of the local electronic structure of the junction region have to be present in
the tunnel current measured above the arm. As shown in Fig. 5.24, this
conclusion is verified by STS experiments [162] performed in small diameter
SWNT Y-junctions, the signature of the junction is still observed in the STS
curves when the tip is displaced several nm from the junction.

The same effect is seen in atomic resolution STS maps of semiconductor
NT junctions [163]. The two different NTs have different Van Hove sin-
gularity positions in the STS curves but according to the experiments and
calculations [163] the Van Hove singularity on each side penetrate and decay
into the opposite side across the junction over a distance of 2 nm.
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Figure 5.24: (left) 230 nm x 230 nm STM image of a carbon nanotube Y-
branching. The arrow indicates a crossing of two nanotubes. The direction of
STS map measurements are shown in the detail in the inset by arrows. (right)
dI/dV recorded along the line o as approaching the junction. Ref. [162].

5.8 Summary

Throughout this chapter, I have investigated in detail the tunneling process
in the STM model containing carbon nanosystems. WPD calculations were
done using a 3D jellium model.

e For a 1 nm diameter NT on an atomically flat support and a 0.4 nm
tip-NT separation only 0.1% of the WP is tunneling into the NT. The
”probability charge” is first accumulated in the tube section below the
tip apex. Next the WP begins to spread along the NT while it is
tunneling into the support surface. Interference of the angular momen-
tum eigenstates excited by the incoming WP creates time dependent
azimuthal interference patterns to appear in the probability density
along the circumference of the tube. Because the tunneling current
is determined by the probability density along the lowest fiber of the
tube, the time dependence of the azimuthal probability density waves
causes oscillations in time of the probability current flowing into the
support. These oscillations on the femtosecond scale are probably too
fast to be detected electronically but may give measurable effects in a
light scattering experiment on the tunnel junction.

e For a hemispherically capped 1 nm diameter SWNT protruding to a
length of 3 nm above a 1 nm hight step of the substrate I positioned
the STM tip along the tube 1.8 nm ”out” from the step edge, i.e. above
those part of the NT hanging above the lover terrace of the step. In
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this case the WP can not tunnel directly from the tube into the sup-
port, it has first to flow axially along the tube until it reaches the step
edge. It is found that the total tunneling probability is still the same
for this system as for the infinite tube on flat support. From this we
can conclude that the WP flows ballistically along the tube. Reflection
of the WP from the closed end causes longitudinal probability density
wave patterns to appear along the tube. These interference patterns
are travelling towards the open end and the distance between two con-
secutive density maxima is increasing in time (see the snapshots on the
right column of Fig. 5.5). The cause of this increase is the free electron
like dispersion relation along the tube axis: those components of the
WP with smaller de Broglie wavelength move with larger velocity (see
Appendix B), hence these components leave the presentation window
faster.

In case of a similar situation with a 10 nm diameter MWN'T protruding
to a length of 200 nm above a 1.3 nm high step found experimentally,
the situation is different. In this case we found a gradual decrease of
the apparent height over the lower terrace which is an indication of
ohmic current flow along the tube axis.

By launching a WP into a NT closed at both ends placed on a non
conducting substrate I was able to isolate the effects of the tip — tube
interface from the tube — support tunnel junction. It was found that the
buildup of the probability charge on the tube is a fast process but the
probability charge can decay only slowly through the tip — tube junction
hence the overall tunneling probability of a tip — tube — support jellium
model system is mostly determined by the characteristics of the tip —
tube tunnel junction.

For a NT Y-junction the tunneling probability is the same as for the
straight tube when the tip is displaced 1.2 nm along one arm but it is
14 % higher when the tip is placed above the trigonal symmetry point.
In the off-the-junction case the WP, however, still samples the junction
region because of its spreading during tunneling.
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Chapter 6

Conclusions

6.1 General conclusions

Exploring the applications of carbon nanostructures in a reliable way re-
quires a sample characterization as precise as possible. To that end, very few
techniques to characterize an isolated nanostructure at the atomic scale are
available. STM is one of the main techniques to investigate carbon nanos-
tructures and devices fabricated from them. It is a unique advantage of this
method that STM is able to study both the atomic and electronic structure
of the same nanostructure with sub-nanometer resolution.

The interpretation of the STM images of carbon nanostructures involves
complications that are normally absent in the study of planar crystalline
surfaces. The complications typically appear from a number of quantum
effects responsible for distortions in the microscope image of a nano-object.

To analyze these quantum effects in detail I developed a WPD STM
simulation software package. With the help of this computer code I studied
the geometrical factors responsible for distortions seen in experimental STM
images.

By simulating the STM feedback loop I could verify the simple geometric
approximation of calculating the apparent broadening of the NT due to the
curvature of the tip (tip convolution). This broadening was also shown to
depend on the electronic structure of the support. The two wrapping indices
of an SWNT can be deduced in principle from the STM image by measuring
the diameter and the chiral angle. This kind of characterization, however, is
not easy. The STM image is often distorted by the curvature of the lattice,
which entails a systematic error in the measurement of the angles. Deriving
the diameter from STM information is also challenging, because of the tip
convolution effect and of the changes of the tip—tube distance. Today, the
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most reliable way to evaluate the diameter by an STM consists in measur-
ing the positions of the van Hove singularities in STS measurements and
calculating the diameter from the plateau width AFy;.

Mechanical pressure exerted by the STM tip causes point contacts to
develop in the tip-NT and NT-support tunnel junctions. According to my
calculations these point contacts cause an asymmetry to appear in the STS
spectrum.

Exploring the way the electron tunnels through the STM tip — NTs —
support tunnel junction is not an easy task because of the complex geom-
etry of the system. I studied the time dependent probability density and
probability current density for several NT configurations in the STM model.
These calculations were done using a full 3D jellium model.

I was able to isolate the effects of the tip—tube and tube—support tun-
nel junctions. It was shown that the overall tunneling probability is mostly
determined by the characteristics of the tip—tube tunnel junction. This ex-
plains why the support can be neglected in STM image calculations in most
of the cases.

Next I examined a tube hanging over a step of the support surface. For a
1 nm diameter tube protruding to 3 nm I calculated the tunneling probability
from the tip through the tube into the support for two tip positions: when
the tip was above those part over the lower terrace and above those part over
the upper terrace. The tunneling probability was the same for the two cases.
This was a surprising result for me at first sight because from the intuitive
guess one would expect a smaller transmission probability of the whole system
when there is no support below the tube into which the WP could tunnel.
But this result shows that the conduction is ballistic along the tube (as it
must be in the jellium model) and as it is found in experiments on SWNTs.
Also it can be understood by considering that the overall transmission is
mostly determined by the tip-tube interface. For larger diameter and longer
MWNTS, however, we found an ohmic conduction along the tube in our
STM measurements.

I also examined the tunneling through a NT Y-junction. The tunneling
probability at the symmetric tip position is only slightly increased from its
value over an arm but in the off-the-junction case the WP still samples the
junction region for an 1.2 nm tip displacement.

These results show the importance of computer simulation in the analysis
of experimental STM data.
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6.2 Future work

Sphere of applicability of the WPD method in the field of STM image sim-
ulations can be greatly increased by removing some of the approximations
used throughout this work.

e Material parameters of the tip, NTs, and support was assumed to be
identical in my calculations. If we included material parameters into the
model, we would handle, e.g. the differences between semiconducting
and metallic NTs.

e Capacity of computers makes it possible even today to include the
atomic structure into the WPD calculation. This can be done by us-
ing a one electron pseudopotential [164] on a fine enough spatial mesh.
I published first results of such a calculation in the Kirchberg 2004
conference [165] but more work is necessary to study this model thor-
oughly.

e The dynamical response of the electron system can be taken into ac-
count by using a time dependent potential.

e Larger computers would it make possible to calculate for more complex
nanostructures, e.g. for coiled NTs.

109



Appendix A

The capacitance matrix method

Given a set of electrodes (conducting bodies) A, B,C,... with given elec-
trostatic potential values U, Ug, Ug, ... or given charges Q4,Qg,Qc, ... we
would like to calculate the electrostatic potential distribution U(7) in the vac-
uum among them. This could easily be done if we knew the charge density
distribution ox (1, £) on the surface of each of the electrodes Xe{A, B,C, ...},
where 7 and & are the parametric coordinates (inner coordinates) on the sur-
face of the electrodes. Knowing the potentials (or charges) of the electrodes
the ox(n,&) can be calculated using the capacitance matrix method [97].

The array of the electrostatic potentials U = {U4, Up, U, ...} is a homo-
geneous linear function of the array of the charges @ = {Q4,Qp,Qc, ...}
Thus we can write Q = CU , i.e. for example for three electrodes (see.
Fig. A.1):

Qa Caa Cap Cac Ua
@p | =| Cpa Cpp Cpe Us (A1)
Qc Cca Ce Cec Uc

C' is called the capacitance matrix [166].

If we quantize the surface charge distributions ox (7, £) using a fine enough
mesh (see Fig. A.1), the capacitance matrix has to include the partial capac-
itances for all pairs of the finite elements:

qal Calal """ Calbl *'° Calel Uq1
G | = Cbrar 0 Ceipl Gl Upy (A.2)
gc1 Celyal  * Ceipl " Celyel Uer

[ call ¢ the partial capacitance matrix.

110



UB’ QB

UA! QA
Qas
@ qas qaz
-/auc, Qc qas Qa3

Figure A.1: (left) Three electrodes of arbitrary shape and position. (right)
Finite difference mesh on the surface of an electrode.

Take now the inverse of the partial capacitance matrix d = ¢ !:

Uqgl dal,al s dal,bl s dal,cl Qa1
up | =\ dyar -0 dpp 0 dpa b1 (A.3)
Uel dcl,al s dcl,bl T dcl,cl qc1

Elements of the matrix d can be calculated using the following simple
procedure. Put one of the g;-s to 1 and all other g;-s to 0, i.e. give one of the
finite elements a unit charge and give zero charge to all other finite elements:
¢ij = 0;;. Now we can calculate the electrostatic potential due to the finite
element j at the place of all other finite elements:

1

Ui:U(f;;Qi':@”):ﬁ- (A-4)
S 7]
From eq. A.3 it follows that the vector {u;} gives column j of d:

If we repeat this procedure for all j then we receive all columns of d.
Then we can calculate the partial capacitance matrix from ¢ = c:l_l.

With the help of the partial capacitance matrix we can determine the
charge distribution for any given potential distribution from eq. A.2. If
the electrode potentials Uy, Upg,Ug, ... are given, then we have to put the
potential values for all of the finite elements on that electrode to the given
electrode potential:
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Ugl = Ug2 = = Ua (A.6)
Upy = Upp = ... = Upg (A.7)
Ul = U= ... = Ugc (A.8)

(A.9)

By summing then the charges for all of the finite elements of the given
electrode we can determine the charges of the electrodes Q4,Qg,Qc,. . ..
From this it follows that the elements of the capacitance matrix C' are given
by summing the blocks of the partial capacitance matrix c:

CXY = Z Criyj (AIO)
irj
i.e. the capacitance between the conducting bodies X and Y is the sum
of the partial capacitances c,;,; between the finite elements ¢ on the surface
of X and the finite elements j on the surface of Y for all ¢ and ;.
If for one electrode not its potential Ux but its charge Qx is given (e.g.
@ x = 0 for an isolated electrode) then we can determine the corresponding
Ux from the system of linear equations A.1 and then determine the potential
distribution as described above.
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Appendix B

Properties of wave packets

This Appendix gives an overwiev of the most important formulae [167, 101,
168] and properties of wave packets.

A WP represents a quantum system that is localized in its position co-
ordinate. From the Schrédinger equation we obtain equations of motion for
the (), <l§> expectation values of the position and momentum.

o _ (k) (B.1)

)~ iovey (52

Solutions of these equations give the trajectory of the WP. Note that in
general

(VV () # VnV(r) (B.3)
i.e. the quantum mechanical trajectory may differ from the classical one
for which equality holds in eq. B.3.
The width of the WP in coordinate and momentum space is:
A?"i == <7"i2> - <TZ'>2 (B4)
Ak = (k) = (ki) (B.5)

where ie{x,y, z}. According to the Heisenberg inequality Ar; - Ak; > 1/2
for all WPs. The equality holds for the Gaussian WP defined as:

3
4

wGauss (T, a,To, kO) - (@) - exXp (Zk() . 7”) - exp (—
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The width of the Gaussian is Ar; = a/2 . In the general case the width
can be different in each direction, i.e. different a,,a,,a, values can be used
in eq. B.6.

The momentum space wave function, (k) = F[i(7)](k) is also a Gaus-
sian with Ak; =1/a .

In free space V' = 0 the momentum distribution does not change (see eq.
B.2), the momentum wave function is only multiplied by a phase factor:

o(k;t) = @o(k) exp (—i@t) : (B.7)

Hence the coordinate wave function is the convolution of the initial wave
function with the free time propagator:

(5 t) = Prree(it) * tho(F) (B.8)
Prree(75t) = \/% exp (—2%) exp <2%> (B.9)

Fig. B.1shows the time development of the real part of a Gaussian WP in
free space. Center of the WP moves with a constant velocity while the packet
is spreading along the = axis. Note however, that the spatial distribution of
the momentum is also changing during the time development: the function is
oscillating more rapidly at the front of the WP and more slowly at the rear.
This is because the higher momentum components (those oscillating faster)
move with a larger velocity.

e e = -

Figure B.1: Time evolution of the real part of a Gaussian wave packet in free
space. From [168].
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Appendix C

Computational issues

The wave packet dynamical software package I developed contains a direct
implementation of the split time FFT method, as described in Section 3.3.1.

The ¢ (7 t) wave function is discretized in space and time. The program
first calculates the initial wave function ¢ (7, = 0) = () then applies a
numerical algorithm representing the time evolution operator (see eq. 3.6)
to calculate the v for the next time increment:

Yni1(7) = Usahn(7) (C.1)

where 1, (7) = ¢(7, t = ndt).
The time advance algorithm for a time step 6t is composed of three con-
secutive operations:

L. U = FET [Prinesic(0t/2) FFT (9,,)]

-2
where Pyinetic(0t/2) = exp <z|k| 5t/4> is the kinetic energy propagator
for time 6t/2

2. \11(2) — Ppotential(ét)\pg)

n

where Ppoential(0t) = exp (—iV (7)0t) is the potential energy propagator
for time 6t

3. \Iln—l—l = FFTil [Pkinetic(ét/2) FFT (\117(12))]

If we are not interested in the value of ¥, for every time step then we
can combine the 3. operation of step n with the 1. operation of step n + 1
into a single operation of a kinetic energy propagator for a full time step dt.
Since most of the computing time is spent in calculating the FFT-s, this trick
decreases the total computing time to nearly half.
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The 1, (7) wave function is discretized on a 2D or 3D mesh,

Ualigy = Y(idw, joz;nét) (C.2)
Uiisw = v(idz, joy, kdz;not) (C.3)

0x,y,z has to be fine enough to sample the smallest de Broglie wave
length found in the WP and also to sample the potential V() with enough
detail. For Ey = Er = 5 eV kinetic energy Ar = 0.55 nm According to my
numerical experiments a spatial grid of 0.03 nm gives a precision of more
that 107¢ in the current density. For the 3D calculation I increased the grid
size to 0.06 nm, which gave a factor of 8 gain in memory and 8In8 in time
on the price of a factor 10 reduction in the accuracy.

0x,y, z and 0t can not be chosen independently because the kinetic energy
propagator contains a pure imaginary quantity in the exponent and this
exponent has to be < 27 to prevent unphysical aliasing effects. The largest

reciprocal lattice vector k)7 = 27 /dx,y, z, hence the condition for 0t is:

4 (6z,y,2)?
D (C4)

where D is the number of dimension, D = 2 or D = 3 in this work.
According to this requirement a time step of 6#2” = 0.2 au = 4.8 as and
6t*P = 0.5 au = 12.1 as was applied for the 2D and the 3D case, respectively.

The j probability current densities were calculated by a 5 point finite
difference formula. For enough accuracy the ¢ wave functions have to be
calculated on double precision (16 digits precision).

For the 3D calculation of Chapter 5.3 the size of the calculation box was
11.52 - 23.04 - 11.52 nm. With the 0.06 nm step size the number of mesh
points is 192 - 384 - 192 = 14,155,776. Using COMPLEX*16 data type the
storage requirement for one wave function is 216 Mbyte.

Most of the computing time is spent by calculating the Fourier trans-
forms. CPU time of the Fast Fourier Transform (FFT) algorithm is scaling
with nlogn, hence the split operator FF'T method can handle large problems.
The multidimensional FFT algorithm can be parallelized very efficiently. The
ideal computer architecture to calculate FF'Ts is the shared memory archi-
tecture.

The WPD simulation package is written in FORTRAN, because of sev-
eral reasons. FORTRAN compilers are available for all computer system,
these are mostly good optimizing and parallelizing compilers, FORTRAN
programs are very well portable, and FORTRAN can handle complex num-
bers efficiently and easily. Numerical experiments and visualization work
were done mainly in the PV-WAVE and Mathematica systems.

0t <
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