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Abstract: Diffuse rings from amorphous materials sit on a steep background resulting in a monotonically
decreasing intensity over scattering vector length, frequently with no clear local maximum that could be used to
determine the center of the ring. The novelty of the method reported here is that it successful processes such weak
patterns. It is based on separating the angular dependence of the positions of the maxima on the azimuthal angle in
the measured two-dimensional pattern for a manually preselected peak. Both pattern center and elliptical distortion
are simultaneously refined from this angular dependence. Both steps are based on nonlinear least square fitting,
using the Levenberg–Marquardt method. It can be successfully applied to any amorphous patterns provided they
were recorded with experimental conditions that facilitate dividing them into sectors with acceptable
statistics. Patterns with the center shifted to the camera corner (recording a quadrant of a ring) can also be
reliably evaluated, keeping precalibrated values of the elliptical distortion fixed during the fit. Finally, the limited
number of counts in any pattern is overcome by cumulating many patterns (from equivalent areas) into a single
pattern. Eliminating false effects is facilitated by masking out unwanted parts of any recorded pattern from
processing.
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INTRODUCTION

Electron diffraction patterns recorded from thin films in a
transmission electron microscope (TEM) carry a wealth of
information. However, extraction of quantitative data from
them is based on the accurate knowledge of the pattern center
and the size and orientation of elliptical distortion. It is,
therefore, not surprising that the last decade saw a continual
effort to determine these parameters and correct for their
effects (Lábár, 2000, 2002, 2005, 2008, 2009; Lábár & Adamik,
2001; Capitani et al., 2006; Li, 2007; Hou, 2008; Mitchell,
2008a, 2008b; Carvalho & Morales, 2012; Wu et al., 2012;
Klinger & Jager, 2015; Klinger et al., 2015; Mitchell & Van den
Berg, 2016). Although all of them have their own success for
solving part of the problem, some room was still left for
improvement. Different approaches are followed for single-
crystal spot patterns on the one hand and ring patterns from
nanocrystalline (nc) or amorphous materials on the other.
Locating spots or rings and refining pattern center and
elliptical distortion are central to all the procedures.

For single-crystal patterns (Wu et al., 2012) identifies
the spots with iterative cross-correlation with a circular
mask, identifies the two shortest nonlinear vectors and
ascribes the center of the pattern to the brightest spot. Jansen

(2006) used a double polynomial for the correction of the
positions of single-crystal diffraction spots. Belletti et al.
(2000) fitted an approximate grid of straight lines to the
measured points. Klinger & Jager (2015) fit a regular lattice
to the spots, which are identified by blob detection to locate
the center, whereas Klinger et al. (2015) uses circular Hough
transform (CHT) to locate convergent beam electron dif-
fraction (CBED) disks. Klinger et al. (2015) determines disk
centers separately for each depicted CBED disk using Hough
transform, then finds a regular lattice best fitting those ring
centers which actually refines positions of the disk centers
and, finally, the refined disk center closest to the intensity-
weighted centroid of the image is taken as the pattern center.
Lábár (2005) identifies two short vectors manually and the
program automatically finds the center of gravity in pre-
selected surroundings of both the identified spot and its
mirror image (relative to the assumed center) and refines
center position to the bisector of these two lines. A very
similar approach is named “d-spacing-d-spacing measure-
ment option” in Mitchell (2008b), where pattern center was
also ascribed to the bisector of the two short vectors. As a
starting rough estimate for pattern center, Lábár (2005) also
offers computing the center of gravity of a region close to the
center of the image and makes the subsequent automatic,
brute-force refinement form that position. Mitchell (2008b)
and Mitchell & Petersen (2012) offer four different approa-
ches to obtain the first rough estimate, including simple or*Corresponding author. labar.janos@energia.mta.hu
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thresholding the patterns and a brute-force method. For
manual determination of the first estimate of the pattern
center (Lábár, 2000, 2002, 2005, 2008, 2009; Lábár & Ada-
mik, 2001) offers visual comparison to a reference circle,
while the pattern can be shifted until the symmetrically
equivalent points are seen on the reference circle with vari-
able radius. Mitchell (2008b) offers a similar manual possi-
bility with several reference circles generated simultaneously
on screen.

As far as the ring patterns are concerned, most of the
methods require some user interaction whereas the fully auto-
matic CHT approach of Mitchell (2008a) determines the pat-
tern center accurately, but cannot deal with elliptical distortion.
Klinger & Jager (2015) computes the difference between the
original pattern and ones rotated around preassumed pattern
center andminimize the difference by refining the center. Lábár
(2000, 2002, 2008, 2009) and Lábár & Adamik (2001) deter-
mines both pattern center and elliptical distortion by manually
overlaying a circle or an ellipse on the pattern and adjusting its
parameters till good visual match is attained. Li (2007) com-
putes intensity profiles both horizontally and vertically to
obtain both pattern center and elliptical distortion. Each step in
his paper can be compared with the solutions in Lábár (2000),
which was used in many laboratories that time, proved by the
large number of independent citations to that paper. Hou & Li
(2008) recommend adjusting the stigmators of the TEM lenses
to a “diffraction-optimal” condition, a hardware solution to
eliminate elliptical distortion. Unfortunately the recommended
condition produces highly distorted images as a price for
distortion-free diffraction patterns. The experimentally deter-
mined elliptical distortion is used differently in different pro-
grams. Lábár (2000, 2002, 2005, 2008, 2009) and Lábár &
Adamik (2001) uses the parameters of the visually adjusted
ellipse to calculate an equivalent circular radius (which is the
root mean square of the major and minor axis lengths of the
ellipse) for calculating the one-dimensional (1D) intensity dis-
tribution (intensity versus radius), but does not warp the image
to render a corrected pattern. Li (2007) andMitchell &Van den
Berg (2016) not only use the corrected distance for generating
the intensity distribution but also additionally warp the pattern
to restore accurate circular appearance. Even the determination
of the parameters of the ellipse is done differently by the indi-
vidual authors. The parameters of the ellipse were determined
by fitting the bright spots of a diffraction ring within a band
(with manually preselected width) around a preselected refer-
ence circle in Lábár (2009), although the mathematical for-
mulas for the canonical form of the shifted and rotated ellipse
were not elaborated in his publication, as these equations were
simply taken from a math textbook. Mitchell & Van den Berg
(2016) went further, on one hand they published each detailed
step of an elaborated ellipse-fitting procedure and fitted to
several rings simultaneously. On the other hand they also
introduced an important further step, namely the elimination
of outer points (very high order reflections), which improved
both robustness and accuracy. In addition, their procedure
determines pattern center and elliptical distortion simulta-
neously. All these procedures were tested on polycrystalline

rings that emerged significantly from the background (BKG)
and were narrower than those encountered in amorphous
materials. These methods were also able to handle incomplete
rings (due to either spottiness or the presence of a beam-stop).
The faint and broad (varying width) rings, over an intense and
steep BKG, from amorphous materials require different treat-
ment, which is the topic of the present paper. An additional
complication is that sometimes the (BKG) intensity is not
uniform around the center (similar to, but not as strong, as that
observed, e.g., in wedge-shaped samples), which calls for sector-
wise treatment instead of applying a BKG determined from the
azimuthally averaged 1D intensity distribution [e.g., to remove
it from the measured two-dimensional (2D) pattern] (see Fit-
ting a Small, Diffuse Peak on a Steep BKG section).

Transformation to polar coordinates is a central idea to
some procedures (Capitani et al., 2006; Hou, 2008; Carvalho &
Morales, 2012). Capitani et al. (2006) plot the ratios between
observed and average interplanar spacings for symmetry
related spots versus orientation measured from the reference
horizontal x-axis and fit a sinusoidal curve to it to determine
the parameters of the ellipse. However, they take the center of
the pattern for granted; Carvalho &Morales (2012) re-plot the
pattern in polar coordinates and make measurement of lattice
spacings along individual angular values. Hou & Li (2008) find
the center and the distortion in two distinct steps. They first
locate the center by minimizing the difference between all
points along the ellipse and their mirror points, which is seen
as a generalization of the procedure by Lábár (2005) to more
points. Next they fit an elliptical function in polar coordinates
to determine distortion. However, this procedure also assumes
well-located ring-maxima.

When incomplete rings are mentioned in the literature,
it usually means spotty rings, small missing sections or the
pattern partially covered by a beam-stop. Significantly shif-
ted ring patterns (e.g., with center in the corner of the charge
coupled device [CCD]) are not examined in the above pub-
lications. The difficulty with such patterns is that only a small
segment (slightly more than a quadrant) is recorded that
produces a great deal of complication. The algorithm
described by Mitchell & Van den Berg (2016) should
not have any principal problem with such patterns,
however, it is not tested in his paper. The present paper
also treats possibilities and limitations with such partial
patterns.

Unwanted features in the patterns (shadow of beam-
stop, numbering, size-marker, etc.) are masked out in several
programs, but they treat the problem differently. Klinger &
Jager (2015) replaces the masked region with a circular
average that produces nice visual appearance in regions,
which in reality do not contain useful measured information.
The masked out pixels in the present paper are left out from
processing by setting their values to 0.

Different functional forms are used in the literature to
describe the dependence of the BKG intensity on the length
of the scattering vector in rotationally (azimuthally) aver-
aged intensity distributions. The polynomial functions used
by X-ray diffraction programs do not seem to be satisfactory
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for electron diffraction. Klinger & Jager (2015) use a hyper-
bolic function. There are several options in the Process-
Diffraction program (Lábár, 2008, 2009), namely a flexible
cubic spline, a Gaussian function (named “normal” there),
and the function selected here [equation (1)], which is called
“log-normal” by Lábár (2008, 2009). It seems to fit to the
BKG in case of many measured patterns over an extended
range of scattering angle. In this paper it is only used in a
limited range, covering the two sides of a diffuse ring.

As can be seen three main problems remain for
amorphous materials. First, a procedure is needed to deter-
mine and refine the position of faint, diffuse rings that do not
give well resolved local maxima over the steep BKG. Second,
simultaneous determination of pattern center and elliptical
distortion is desirable for broad, faint rings of amorphous
materials (with similar quality as was solved for polycrystalline
rings). Third, patterns with center in the corner of the
camera field are also to be calibrated. These problems,
together with the problem of a huge number of patterns with
extremely low counts in many pixels (especially at the outer
edges) and with slightly jumping centers are discussed in the
present paper.

PRINCIPLES AND IMPLEMENTATION

The sections below discuss the problems in the logical
sequence of processing the patterns. First the unwanted
regions are removed by masking. Next the faint, diffuse rings
are identified and quantified. Third, the pattern center and
the elliptical distortion are simultaneously refined from the
data of the faint rings. Finally, several such patterns recorded
from dose-limited samples are cumulated or summed to
improve statistics and make any tiny signal to emerge from
the noise. In such patterns the more intense region of the
pattern is used for identifying and refining the faint rings and
performing the previously listed operations, whereas the
least intense regions gain the most from summing them.

Masking Out Unwanted Parts of the Recorded
Pattern
The recorded pattern may contain several components that
are superimposed incoherently, so they may be removed
without affecting the information content of the rest of the
pattern. That category involves not only the trivial beam-stop
shadow (Fig. 1), but also true diffraction components, which
originate from unwanted parts of the sample as shown below.
Separation of them is of general importance and not limited to
the case of patterns where the useful information is in the
form of faint diffuse diffraction rings. Such a case is presented
in Figure 1 and discussed in Effect of Masks section. In the
current implementation a composite mask is built from rec-
tangles, circles, and polygons. An arbitrary number of these
elements can be added to a composite mask. As the compo-
nents to be masked out show a wide variety of size, shape, and
position, their identification is manual (except for the auto-
matic masking out of the central cross in a new TimePix

detector (Amsterdam Scientific Instruments, Amsterdam,
The Netherlands), which for the time being, contains false
intensities at the edges of the four quadrants.). Individual
mask elements can be drawn by themouse on screen, or in the
special case of the lattice of spots from a single-crystalline part
of the sample, they can be generated by identifying the two
shortest diffraction vectors pointing to two of these spots.
Another example of automatic generation of a mask element
is the TimePix detector, which shows a bright cross in its
center as a detector artifact. Since the position of the artifact is
fixed, it is masked out automatically. This especially increases
processing speed and improves reproducible processing
when a huge number of patterns from this detector are
accumulated into a single pattern (see Fig. 2 in Limits of the
Approaches section).

The pixels covered by the mask are left out when rota-
tional averages are computed.

Fitting a Small, Diffuse Peak on a Steep BKG
The processing starts similarly to all ring patterns. First a
rough estimate of the center for the 2D patterns is specified
then the pattern is azimuthally (i.e., rotationally) averaged
around this center to obtain a 1D distribution (intensity versus
the distance from the center). The initial rough estimate for
the center can be obtained either as an intensity-weighted
position (center of gravity) or, alternatively, adjustedmanually
using a reference circle as in Lábár (2000). This rough estimate
can automatically refined by a brute-force method as in Lábár
& Adamik (2001) or, alternatively, by calculating the weight of
gravity within the reference circle of preselected radius in the
present version. Identification of rings is not a problem for
well-developed rings that produce significant peaks in the
rotationally averaged intensity distribution. However amor-
phous samples frequently produce faint rings, which do not
create local maxima in the rotationally averaged intensity
distribution as exemplified in Figure 3. In addition, the width
of such a ring can also vary widely (in contrast to the limited
range of width encountered with crystalline materials), pre-
venting us from using a universal setting for the parameters of
a top-hat filter for usual peak-find procedures and making
initial manual interaction advisable. In the present procedure,
the peak is identified bymanual selection of two BKG intervals
on its two sides. The smooth continuous curve in Figure 3 is
the rotationally averaged intensity (of the measured pattern in
Fig. 2a) over the entire circle and the BKG fitted to it is shown
by a dotted line. An intensity averaged over a sector of the
circle only [in the (25–30°) angular range measured from
the horizontal, right-pointing vector] is also shown as a
noisy curve with many false local maxima and minima.
Automatically locating and especially quantifying such a faint
and noisy peak (in 1D or the corresponding ring in 2D) over
a steep BKG is a challenge to any of the existing methods.
In addition to these problems, the BKG may not be evenly
distributed azimuthally (as in Fig. 4). That small deviation
from the perfect rotational symmetry does not increase sig-
nificantly the error of net intensities when strong rings from
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crystalline materials are present. However, with our faint rings
that small deviation is a problem for sector-wise processing. In
our procedure, a faint peak is visually identified in the inten-
sity distribution rotationally averaged over the entire circle
and two BKG intervals are manually selected on its two sides.
Then the pattern is re-processed sector-wise using these same
intervals to quantify the ring-sectors.

The Levenberg–Marquardtmethod (Press et al., 1996) for
nonlinear fitting is selected in this paper to fit both the BKG
and the peak simultaneously to such measured 1D intensity
distributions. The empirical function of equation (1) from
Lábár (2008, 2009) is used to describe the shape of the BKG.

y= exp a1 � log xf g2 + a2 � log xf g + a3
� �

: (1)

The peak over this BKG is modeled by a Gaussian function.
The nonlinear fit is done in two steps. The first step provides a
good starting value for the second. First the two BKG intervals
on the two sides of the peak are only used to fit with the
function in equation (1). The endpoints of the two BKG
intervals are indicated by asterisks in Figure 3. A first estimate
of the net peak is calculated, using this fitted BKG, by
numerical summation over the points within the BKG

intervals. In the second step both the BKG (which is a function
of log{x}) and the Gaussian (which is a function of x) are fitted
simultaneously to provide a better model of the total mea-
sured data in each sector.

To provide useful values for the next step (in the
Different Dependence of the Measured Distance from the
Center on a Small Shift in the Position of the Assumed
Center and on Elliptical Distortion section) the entire 2D
pattern is divided into sectors, using an initial estimate of the
pattern center. The BKG intervals in the 1D distribution are
selected only once (by clicking on the endpoints of the inter-
val) on the intensity distribution recorded over the entire
pattern. The same BKG intervals are reapplied automatically
here to all sectors (e.g., 90 sectors in the case of 4° sector width
for a complete circle). The sector width (azimuthal extent) is
manually preselected. The fitting procedure above is carried
out in each sector independently. Each sector is labeled with
the azimuthal angle (at its center) measured from the right-
pointed horizontal line and the position of the fitted peak is
plotted as a function of this azimuthal angle (see Fig. 5). The
resulting set of angle-position data pairs serves as input for
Different Dependence of the Measured Distance from the

Figure 1. Diffraction rings from nanocrystalline TiN–AlN thin film on a single-crystal silicon (sc-Si) substrate. The
shadows of both a Beam-stop and a numbering unit are seen together with the incoherent superposition of single-crystal
diffraction spots from the incompletely removed Si substrate below. a: The original diffraction pattern. b: The masked
version that removed both the shadows and the effect of the substrate. c: Comparison of rotationally averaged
intensity distributions without and with masking. Phase composition can only be determined from the latter one. nc,
Nanocrystalline.
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Figure 2. Example of summing (cumulating) two diffuse patterns. a: Faint diffuse pattern recorded from an amor-
phous aerosol thin film on a TimePix camera. The bright cross is a recording artifact of the camera. The artifact is not
masked out to show it. b: A similar pattern from a different area of the same sample. The bright cross artifact is
masked out. c: The cumulated, masked version. As the pattern centers were at different positions relative to the bright
cross artifact at the individual patterns, two cross-shaped regions must be masked out at the final result when the
pattern centers are shifted together. The size of the final patter is slightly reduced (502 × 497 pixels in contrast to the
original 512 × 512), as only the common pixels are kept.

Figure 3. Example of rotationally averaged version of a faint, diffuse ring that does not produce local maximum in this
one-dimensional representation. Calculated from the measured two-dimensional pattern in Figure 2a. BKG,
background.
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Center on a Small Shift in the Position of the Assumed Center
and on Elliptical Distortion section.

Different Dependence of the Measured Distance
from the Center on a Small Shift in the Position of
the Assumed Center and on Elliptical Distortion
Separation of the two effects is based on the fact that they
have different, well-defined periodicities. When the pattern
is shifted in any direction the distances of maxima will be
increased in that direction and reduced in the opposite

direction. As the points along the circle are evaluated
one-by-one, they follow a cos(α) function, where α is the
azimuthal angle of the measured point. If the pattern is
elliptically distorted, there will be two long and two short
distances as they follow each other by 90° separation, so the
distance measured from the center is described by a cos(2α)
function. Phase shifts on both cases represent the orientation
of the deviation. The two effects together are modeled by
equation (2).

r= r0 +A1 cos α +φ1ð Þ +A2cos 2 α +φ2f gð Þ: (2)

Figure 4. An example why sector-wise processing is preferred to background (BKG) subtraction method for faint diffuse
rings over large and slightly uneven BKG. Slight deviation of the BKG from perfect circular symmetry results in errors,
comparable with the peak of interest. a: Circularly averaged intensity over the entire circle (logarithmic scale) together with
the fitted BKG. b: The net peaks calculated from (a), shown in a linear scale. c: The net two-dimensional pattern after
having removed a circularly uniform BKG determined in (a). Deviation from rotational symmetry becomes significant. The
effect of the same small deviation would be negligible if strong rings from polycrystalline materials were measured.
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The five parameters are fitted simultaneously by the Levenberg–
Marquardt method (Press et al., 1996). r0 gives the true radius of
the circle. The shift of the circle is given by equation (3a),
whereas the numerical eccentricity by equation (3b). The
orientation of the major axis of the ellipsis is given by φ2.

dx=A1 cos φ1ð Þ dy=A1sin φ1ð Þ; (3a)

ϵ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

r0 -A2

r0 +A2

� �2
s

: (3b)

That functional form is fitted automatically to the data from
Fitting a Small, Diffuse Peak on a Steep BKG section. Depending
on the relative values of the two amplitudes and the two phase
shifts, very different functional forms result. An example of the
fitted function is seen in Figure 5.

Cumulating Several Patterns
In addition to improving statistics by increasing the number of
counts per pixel, it is also desirable sometimes to increase the
probed volume, e.g. when electron diffraction is to be compared
with X-ray diffraction to see the behavior of the average.
Although in most cases the advantage of TEM is to see the local
in contrast to the average, sometimes examination of the
average is also needed. Probing a large volume is impossible in
any single patterns in the TEM. The only way to reach that goal
is to collect many diffraction patterns from areas that should be
identical and sum (cumulate) their information content. Such a
series of patterns is frequently collected by automatic beam-
scanning procedures and the number of patterns in any one set

varies between 1,000 and 2,000, usually each with poor stati-
stics for beam sensitive materials and occasional small jumps
in the position of the center. Usual noise reducing cumulating
procedures are only designed to unify a few patterns of varied
exposure time and are not able to deal with beam-stepping, etc.
The procedure presented here was developed for automatically
cumulating a huge number of patterns after having refined
their centers individually. As the patterns are usually measured
in a session without significant changes to the lenses and the
distortion depends on the lens settings, the elliptical distortion
is the same for a series of patterns. As far as the masked regions
are concerned, a region masked in any one of the patterns
must be omitted from the total. In that way the total will be a
collection of pixels collected with the total dose valid for the
entire set of patters (sum of the individual doses), while any
one measured spatial region of the sample received only a
limited dose. Figure 2c shows such a masked cumulated
pattern with the combined effect of the individual masks. The
black pixels are left out of further processing.

RESULTS AND DISCUSSION

Materials and Methods
Experimental patterns were collected from a TiN–AlN nc layer
over a Si single-crystal substrate in a Philips CM-20 TEM
(Philips, Eindhoven, The Netherlands) operated at 200kV. The
patterns were recorded on Ditabis imaging plates, which record
intensity linearly over 20 bits dynamic range. An amorphous
Si3N4 thin film and nc-Ni film were measured in a JEOL3010
TEM (JEOL, Tokyo, Japan), operated at 300kV and the patt-
erns were recorded on a GATANOrius CCD camera (GATAN,
Pleasanton, CA, USA). Some of the amorphous patterns were
recorded from an amorphous aerosol with a TimePix detector on
a CM-30 TEM (Philips, Eindhoven, The Netherlands) operated
at 200kV. Simulated rings with well-defined parameters were
also used in a special test. All processing was done with the
ProcessDiffraction program (Lábár, 2000, 2005, 2008, 2009)
using the new features described in the present paper.

Effect of Masks
Even the simplest beam-stop, namely a wire with constant
thickness gives a shadow, which covers different fractions of
the entire circle if the circles with different radiuses are taken.
That is why its effect is a function of the scattering angle and
must be taken into account.

A more important example is shown in Figure 1. The
sample is the same, which is used in a publication of Barna’s
group (Székely et al., 2014). It is shown in Lábár (2008, 2009)
that phase fractions and preferentially oriented (textured)
fractions can be determined from the rotationally averaged
continuous rings recorded from nc thin films. However, the
procedure assumes that the measured peaks in the 1D
distribution (that corresponds to the rings in the 2D pattern)
originate from the nc material alone. In the example in Figure 1
the nc-AlN–TiN composite film was grown on a native oxide
covered single-crystal silicon (sc-Si) substrate. In order to

Figure 5. Angular dependence of the peak positions (squares)
measured sector-by-sector form the amorphous pattern in
Figure 2a using the procedure described in Fitting a Small, Diffuse
Peak on a Steep BKG section. The continuous line is the fitted
function used to determine both shift of the center and the ellip-
tical distortion simultaneously (see Different Dependence of the
Measured Distance from the Center on a Small Shift in the Posi-
tion of the Assumed Center and on Elliptical Distortion section).
Both effects are significant in the figure.
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be able to examine larger volume of the thin (20nm) film
the substrate was back-thinned till perforation to produce
a plan-view sample with nominally self-supporting parts of
the nc film close to the perforation. However, the recorded dif-
fraction pattern in Figure 1a shows that the substrate was not
removed perfectly and its spot pattern incoherently superposed
over the pattern of the examined film. The rotationally averaged
distribution (in Fig. 1c) was dominated by the strong reflections
of the sc-Si, hindering (semi)quantitative evaluation of the
pattern. Figure 1b shows how a lattice was generated from
the manually identified two shortest diffraction vectors to
produce a mask with disks of predefined radiuses. Although a
non-negligible area fraction of the pattern is discarded this way,
a large enough fraction of each ring still remained for processing
(rotational averaging) shown in Figure 1c. Uniformity of the
original rings ensured that the rotational average is the same
irrespective of whether they were computed from these clean
sections of the rings or if they had been computed from an entire
clean ring. This corrected distribution (from themasked pattern)
was appropriate for phase evaluation. The pattern was calibrated
with the sc-Si spots, so it became obvious from Figure 1c that the
diffraction lines of both the cubic silicon nitride and the hex-
agonal aluminum nitride phase were significantly shifted from
their nominal values (indicated as “Marker-lines” named
AlN_hP4_Random_Kin and TiN_cF8_Random_Kina in Fig.
1c). The shift is caused bymutual solution of Al in cubic TiN and
Ti in hexagonal AlN. Because of the different crystal structures of
these two phases the Vegard-law cannot be applied, so the
amount of dissolution cannot be quantified from the diffraction
directly. The observed shifts are in accordance with the empirical
atomic radii (125pm for Al and 140pm for Ti). Dissolution of
the larger Ti increases the lattice constant of the AlN, resulting in
a shift of the ring to the shorter diffraction vectors. For the
dissolution of Al into TiN produces the shift in the opposite
direction. It is possible to determine with the ProcessDiffraction
program (Lábár, 2008, 2009) the relative volume fraction of the

two phases, the volume fraction if preferentially oriented and
the shift of the diffraction lines. Such analysis is impossible if
the effect of the substrate spots are not removed by masking.

Test on Simulated Patterns: Robustness and
Accuracy
The simplest basic test is when a simulated pattern, without
noise, is processed to see to what extent the known para-
meters of the center and elliptical distortion are confirmed.

First, a full circle on a steep BKG was generated. Figure 6
shows a pattern simulated with parameters very similar to a
true measurement. The main difference is that all parameters
are exactly known and there is no noise. The true center of
the circle is at xc = 256, yc = 260 in the 512 × 512 pixel sized
pattern. Processing was started from an assumed center of
xc = 259, yc = 255. The true center was found with an
indication of tiny elliptical distortion of <0.1% (i.e., devia-
tion from the true radius of the circle of 100 pixels with 0.09
pixel, corresponding to ε = 0.06 instead of 0).

Next a similar full pattern with simulated elliptical distor-
tion was generated. The parameters of the simulation were xc
= 256, yc = 260, ε = 0.25, α = 70 (parameters that resemble
real life, but visually hard to distinguish from the pattern in
Fig. 6). The refinement procedure was again started from xc =
259, yc = 255 with sector width = 2° and both the pattern
center and the elliptical distortion parameters were refined.
Again, all parameters were retrieved with sub-pixel accuracy
(xc = 255.91; yc = 259.95; ε = 0.249; α = 71.6). When the
procedure was re-started from the newly found approximation
of the center, it resulted in xc = 255.96; yc = 260.01; ε = 0.252
and α = 70.3, proving that the procedure is convergent and
does not change when the true parameters were found.

Both the above tests demonstrate perfect functioning of
the process on simulated full patterns that result in the true
values for both the center and the elliptical distortion with
sub-pixel accuracy. Next, the effect of incompleteness (large
missing sectors) was examined.

As a third simulation test an elliptical pattern was gen-
erated with the true center in the corner of the simulated area,

Figure 6. Simulated diffraction pattern and the distribution calculated from it by circular averaging. The parameters of
simulation are very similar to a true measurement. No noise, known parameters. It serves as a test-bed both for fitting
the BKG+peak and for the refinement of center and distortion.

aThe name of the calculated Marker lines contain the name of the phase, its
structure and the fact that calculation assumed random orientation dis-
tribution of such small grains that kinematical approximation is expected
to prevail.
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with xc = 5, yc = 502, ε = 0.25, α = 70 to see if slightly more
than a quarter of a circle (ellipse) is enough to find the true
parameters. As shown below, fit to these partial data results
the same sub-pixel accuracy only if the elliptical distortion is
precalibrated and kept fixed during the refinement of the
center. Otherwise a systematic error of a few pixels will be
present, whose value depends on the starting conditions.

For this test, the refinement procedure was started with
four different starting and boundary conditions. First, the pro-
cedure was started from a slightly shifted assumed center
(xc = 1, yc = 498) with sector width = 2° and both the center
and the elliptical distortion was fitted simultaneously (Fig. 7a).

The result (xc = 2.29; yc = 504.73; ε = 0.227; α = 94.9) showed
a systematic error, which amounted to 2–3 pixels. It is not
critical, and it is not surprising that such a partial data set cannot
give perfect results even if there is no noise present. To test the
reproducibility and convergence the procedure was re-started
from the results of the previous fit. As seen in Figure 7b the
previous result was reproduced with sub-pixel accuracy, indi-
cating both that the procedure is convergent and that the small
error is systematic in nature and arises from the interaction of
the two functions (the measured deviation cannot be de-coupled
unambiguously into the two cosine functions if the measured
values are available only in a very limited angular range).

Figure 7. Testing convergence, accuracy, and robustness for a simulated pattern with center at the corner. A two-
dimensional pattern, similar to that in Figure 6 was generated with center in the corner of the pattern, so about one-
quarter of an ellipse is only present. Both the starting boundary conditions and the results are written on the figures
(see text for details). a,b: Both the pattern center and the elliptical distortion are determined simultaneously. c,d: The
known value of the elliptical distortion is kept fixed while the pattern center was fitted. a,c: First iteration starting from
(the same) slightly incorrectly assumed center. b: Second iteration from the result of the first in (a). Convergence is
proved. d: Second iteration from the result of the first in (c). Convergence is proved. Sub-pixel precision is achieved in
(a and b). Sub-pixel accuracy and precision are achieved in (c and d).
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Next, the procedure was repeated (started from the same
shifted assumed center xc = 1, yc = 498) refining only the
center and keeping the known value of the elliptical distor-
tion (ε = 0.25, α = 70) fixed during the fit, as shown in
Figure 7c. (It corresponds to a situation when the elliptical
distortion was calibrated in a full pattern and its value is kept
for the partial pattern measured under identical conditions.)
It resulted in xc = 5.16 and yc = 501.62, which is again sub-
pixel accuracy. When the procedure was re-started from that
position it resulted xc = 4.74 and yc = 502.15 as seen in

Figure 7d. Both convergence and sub-pixel accuracy are
demonstrated with this result.

Test on True Measured Patterns: Robustness and
Accuracy

Figure 8 shows the 1D distribution over the entire measured
range in logarithmic scale. Three small diffuse peaks are
identified visually within this distribution. The second one is
selected first to demonstrate the effect of refining the center
and distortion simultaneously. During the first test, the
center was assumed at x = 256, y = 260 and both the pat-
tern center and the elliptical distortion were refined. Using
an arbitrary manual selection of BKG regions at the two sides
of the peak, the refinement gave dx = 3.2, dy = 6.4,
ε = 0.250 and α = 96°. After resetting to the same starting
conditions, the positions of the BKG points were slightly
modified. The refinement resulted in dx = 3.4, dy = 7.6,
ε = 0.248 and α = 95°. It shows robustness as far as selec-
tion of the BKG points is concerned (within reasonable
limits). An example of the starting distributions for a selec-
tion of sectors (calculated with the initially assumed center)
is shown in Figure 9a, whereas after refinement the

Figure 8. The circularly averaged intensity from Figure 2a over
the entire scattering angle range in logarithmic scale. Three dif-
fuse peaks are identified visually.

Figure 9. Circularly averaged intensity distribution over the entire circle and for four selected sectors. a: Before and
(b) after the refinement of the center and elliptical distortion. Both scattering of peak positions (among the four sectors
shown) and the peak width are reduced due to the refinement.
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recalculated distributions for the same sectors are shown in
Figure 9b (when the refined center was used for calculating
sectors). The quoted values result from a fitting procedure
shown in Figure 10a, which demonstrates the measured and
fitted angular dependence of the peak positions as a function
of the sector’s orientation relative to the (right pointing)
horizontal line.

In a second test, the refinement was re-started from the
newly determined center. Measured and fitted angular
dependences are seen in Figure 10b. That refinement resulted
dx = − 0.6, dy = − 0.4 from the previously refined center
together with ε = 0.243 and α = 95°. It is seen that the pro-
cedure is robust and converges to the same values by
sub-pixel accuracy even if it is started from different points of
assumed center (starting reasonably close to the true values).
The improvement induced by the refinement of the center and
of the parameters of the elliptical distortion is proved by the
reduced width of the diffuse peak over the BKG. The width of
the peak improved to 17 pixels after the refinement (in Fig. 9b)
from 21 pixels before the refinement (in Fig. 9a).

Next, a measured pattern with the center at the corner of
the CCD was evaluated. Based on the experience with the
simulated patterns, the elliptical distortion was separately
predetermined for the measurement setup and re-used for a
measured diffraction pattern recorded from an amorphous
Si3N4 thin film with the beam at the corner of the CCD
(Fig. 11b). For that purpose, additional full diffraction rings
were recorded first from a nc-Ni thin film to precalibrate the
elliptical distortion. The measured distances of the selected
peak maxima (of the nc-Ni) from the assumed center are
shown in Figure 11a together with the fitted curve, which
resulted in ε = 0.168 and α = 42. These values were kept
fixed when the pattern from the amorphous Si3N4 sample
were processed (Figs. 11c, 11d). In Figure 11c both the effect
of the shift in center and of the elliptical distortion are sig-
nificant and the refinement showed that the center must be
shifted by 7 and 4 pixels in the x and y directions from the
starting value. To test convergence as a next step, the pro-
cedure was re-started from the result of the first refinement
and proved to converge to the same center with sub-pixel
accuracy. In accordance with that fact, the distribution of
distances in Figure 11d is dominated by the elliptical dis-
tortion effect alone, but this was kept un-altered from the
precalibrated value, resulting in the sub-pixel accuracy.

Limits of the Approaches
Peak-1 and Peak-3 in Figure 8 represent two different limits
to the application of the new algorithm. Peak-1 is close to the
center. Due to the small size (512 × 512 pixels) of the pattern
any one pixel close to the center extends over a “wide-”
angular range. For example the circumference of a circle with
diameter of 30 pixels is about 90 pixels, resulting in a fact that
a single pixel extends in a 4° angular range around the cir-
cumference. This is the radius range where the BKG points
are selected for Peak-1 at the left side. It is further compli-
cated by the fact that some of those pixels are masked out, so

they are missing from the averaging. Consequently, the
intensity in the 1D distribution scatters largely from point-
to-point for small lengths of the scattering vector. This is
illustrated in Figure 12. A few sectors are colored for
demonstration in Figure 12a. The 1D distributions calculated
by angular averaging within the marked sectors are plotted in
Figure 12b. The angular average over the entire circle is
smooth, in accordance with our expectations. The men-
tioned variation of the intensity values prevents us from
properly processing Peak-1 sector-by-sector in many sectors.
In principle, the angular width of the sector could be
increased to alleviate this problem, however, the same act
would reduce the number of sectors and consequently the
number of points that could be used to fit the angular
dependence of the peak position. A compromise must be
achieved. A good selection for the sector width seems to be
3–5°, depending on the number of pixels in the pattern and

Figure 10. Demonstration of the procedure by fitting to the
angular dependence of the peak positions on the direction of the
sectors. The distributions from the four sectors in Figure 9 gave
4 points in this figure. The rest is calculated similarly. a: First
refinement, resulting in dx = 3.4, dy = 7.6, ε = 0.248, and α = 95°.
b: Second refinement starting from the result of the previous one.
The new results are dx = − 0.6, dy = − 0.4, ε = 0.243, and α = 95°.
It shows sub-pixel precision. Convergence is proved.
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also on the position of the selected peak (i.e., the radius of the
selected circle). The best solution to the problem is to record
the pattern with more pixels around the circle of interest
(a larger camera with more pixels, less binning or, occa-
sionally, increased camera length).

Peak-3 in Figure 8 poses another problem. The peak is
so shallow, even in the circular average over the entire circle,
that it is unsurprising that it is lost in the noise when the

circular average is calculated over the limited angular range
of the sectors only. This means that, although the new
algorithm expanded the range of possibilities from well-
developed peaks to small diffuse peaks over a steep BKG,
which does not show local maxima, it still has its own limits.
The small diffuse peak needs to be detectable within the
majority of the sectors, too. This limitation can only be
overcome by improved statistics.

Figure 11. Using precalibrated elliptical distortion in refining the pattern center when the beam is at the corner of the
CCD. a: A pattern with full rings was recorded from nanocrystalline-Ni thin film to calibrate the elliptical distortion.
Angular dependence of peak maxima is shown for the Ni full pattern, which was used to calibrate the actual elliptical
distortion of the experimental setup. b: Measured pattern from amorphous Si3N4 thin film with beam at corner of the
CCD under identical experimental conditions as the Ni pattern [used in (a)]. Logarithmic intensity scale: rendering is
limited to image max = 3,000 counts (to show low intensity parts) while at beam position the measured value is one mil-
lion counts (resulting from summation of several exposures with different exposure times). c,d: Angular dependence of
peak maxima from the amorphous Si3N4 in (b) used to refine the position of the pattern center. The value of elliptical
distortion is kept at the value calibrated in (a). The procedure is started at two different assumed centers in (c and d)
(see text) and resulted in the same pattern center with sub-pixel precision. The result proves that the procedure is robust
for the rough selection of the assumed pattern center.
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CONCLUSIONS

The procedure of refining the assumed pattern center and
the parameters of the elliptical distortion is extended to work
successfully even on broad diffuse rings on a steeply chan-
ging BKG where no local maxima are present at the centers
of the rings, which is frequently the case for amorphous
materials. These corrections are also important for further
processing of such patterns, namely combining the infor-
mation content of similar patterns, when the low intensity
part is lost in the noise, and performing ePDF analysis from
the combined pattern. The procedure is based on analytical
functions, whose parameters are determined by nonlinear
fitting. Even patterns with the beam at the corner of the CCD
are successfully processed, provided that the elliptical dis-
tortion is precalibrated on full-ring patterns. The procedure
starts with manual interaction (rough starting value for the
center and selection of two BKG intervals) and lasts about
30 s on a Dell XPS13 Ultrabook (Dell, Round Rock, TX,
USA) with Inter Core I5-3337U at 1.8 GHz processor with
8GB RAM and a 256GB solid state drive when processing of
a 512 × 512 pixel2 pattern.
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