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Budapest, 2019. november 20.
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Abstract
Phase Transitions in Evolutionary Potential Games

by Balázs Király

In game theory, player–player interactions are usually defined by so-called payoff matri-

ces, which can be considered as superpositions of elementary games. When an iterated

multiplayer version of such a game lacks certain elementary components and the strat-

egy updates of the players follow the logit rule, the game in question is equivalent to a

classical spin model. This thesis exploits this correspondence: It deals with the analysis

of the general features, phase transitions, and critical properties of a handful of these

games systems using the concepts and methods of statistical physics. The models treated

in this thesis are simple combinations of elementary games that represent archetypical

interaction situations, and thus initiate the systematic analysis of the interplay between

interaction components.



Összefoglaló
Fázisátalakulások evolúciós potenciáljátékokban

Király Balázs

Az értekezés első része a szimmetrikus mátrixjátékok egy olyan, a szuperpoźıció elvét követő fel-

bontását mutatja be, melyben az elemi játékok négy alapvető kölcsönhatási viszony valamelyikét

képviselik: a kölcsönhatási osztályokat az ön- és társfüggő, a koordinációs, valamint a ciklikus do-

minanciát léıró játékok alkotják. Ezen felbontás alapján könnyen azonośıthatók az úgynevezett

potenciáljátékok, ugyanis ezek nem rendelkeznek ciklikus dominanciát léıró komponenssel. A po-

tenciáljátékok seǵıtségével teremthető közvetlen kapcsolat az evolúciós játékelmélet és a statiszti-

kus fizika között: ha a játékosok az úgynevezett logitszabály szerint választják meg stratégiáikat,

akkor a sok játékos által játszott ismételt potenciáljátékok klasszikus spinmodelleknek feleltet-

hetők meg. Az ekvivalencia részleteinek rövid áttekintését követően az értekezés néhány ilyen,

négyzetrácsra helyezett játékmodell általános tulajdonságait és kritikus viselkedését tárgyalja a

statisztikus fizika olyan jól ismert fogalmainak és módszereinek felhasználásával, mint például

az átlagtér- és párközeĺıtés, valamint a Monte-Carlo-szimuláció. Megmutatjuk, hogy a legegy-

szerűbb nem triviális potenciáljáték, az elemi koordinációs játék – ami az Ising-modell kiter-

jesztése közömbös stratégiákkal – egy, az Ising-modell univerzalitási osztályába tartozó folytonos

rend–rendezetlenségi fázisátalakuláson megy keresztül, ha a közömbös stratégiák száma nem túl

magas; ellenkező esetben az átalakulás elsőrendű. Mı́g egy szimmetriasértő önfüggő komponens

jelenlétében a folytonos átalakulások mindenképpen kisimulnak, addig egy olyan önfüggő kompo-

nens, amelyik azonosan hat a két koordinált stratégiára, megváltoztathatja az átalakulás kritikus

pontját és annak rendjét is, vagy akár el is tüntetheti azt. Ezen eredmények helyességét iga-

zolja, hogy az utóbbi rendszer leképezhető a Blume–Capel-modellre. Az Ising-osztályú kritikus

viselkedés robusztusságát vizsgálandó, néhány több elemi koordináció kombinációjaként előálló

játékot is megvizsgálunk. A maximálisan nem átfedő koordinációs játékokat a lehetséges legna-

gyobb számú, közös koordinált stratégiákkal nem rendelkező elemi koordináció alkotja. Az ezek

között fennálló permutációs szimmetria két koordinált pár esetén erőśıti, három esetén viszont

elnyomja az Ising-t́ıpusú viselkedést, noha a rendezett fázis mindkét esetben csak egyetlen pár

szimmetriáját sérti. Végezetül egy Ising- és Potts-t́ıpusú részjátékok közötti versengést léıró mo-

dellt tárgyalunk, melynek kritikus viselkedése általában a két részjáték valamelyikének kritikus

viselkedését követi. Ugyan a rendszer alapállapota mindig annak a részjátéknak a szimmetriáját

sérti, amelyik magasabb nyereményeket biztośıt, entrópiahatások következtében az Ising-osztályú

viselkedés mégis stabilizálódhat a folytonos rend–rendezetlenségi átalakulás környezetében olyan

esetekben is, amelyekben a Potts-komponens csupán kellően kis mértékben erősebb. Ekkor a két

versengő rendezett fázis között egy újabb, elsőrendű fázisátalakulás is megfigyelhető.



Summary
Phase Transitions in Evolutionary Potential Games

by Balázs Király

This thesis begins with a review of the decomposition of symmetric matrix games as su-

perpositions of elementary games representing four fundamental interaction types: play-

ers unilaterally setting either their opponent’s or their own payoff, pure coordination,

and games of cyclic dominance. This decomoposition scheme readily identifies so-called

potential games as lacking cyclic dominance components. These potential games play a

key role in bridging the gap between evolutionary game theory and statistical physics:

Iterated multiplayer potential games that are governed by the logit strategy update rule

are equivalent to classical spin models. After a brief overview of the details of this cor-

respondence, the thesis proceeds to examine the general features and critical properties

of a handful of these game models when the players are located at the sites of a square

lattice using some well-established concepts and methods of statistical physics, including

mean-field and pair approximations and Monte Carlo simulations. It is shown that the

simplest nontrivial potential game, the elementary coordination game—an extension of

the Ising model with neutral strategies—exhibits an order-disorder phase transition that

is continuous and belongs to the Ising universality class as long as the number of neutral

strategies is low enough but is of the first order otherwise. Whereas the presence of a

symmetry-breaking self-dependent component invariably smooths out continuous phase

transitions, a self-dependent component that equally affects both coordinated strategies

can tune the critical point, change the order of the phase transition, or even abolish

it altogether. These results are verified by mapping the system to the Blume–Capel

model. Some simple combinations of multiple elementary coordinations are also dis-

cussed in order to further probe the robustness of Ising-type critical behavior. Maxi-

mally nonoverlapping coordination games are permutation symmetric combinations of a

maximal number of elementary coordinations that do not share coordinated strategies.

This symmetry enhances Ising-type behavior in the two-pair model, but suppresses it

in the three-pair case, although both phase transitions break the symmetry of just one

constituent coordination. Finally, a model of competing Ising- and Potts-type subgame

components is examined, whose critical properties generally correspond to those of one

of the subgames. Even tough the ground state always breaks the symmetry of the sub-

game that provides higher payoffs, Ising-type behavior is still stabilized by entropy effects

near the order-disorder transition when the Potts component is only slightly stronger,

introducing a second, first-order transition separating the competing ordered phases.
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Chapter 1

Introduction

Recent years have seen increased interest in interdisciplinary applications of concepts

and tools widely used in statistical physics in various, sometimes rather new research

disciplines [1] such as theoretical ecology [2, 3], econophysics [4–6] and sociophysics [7–

10], and network science [11, 12]. What is common in many of these applications is

that they aim to model universal emergent collective behavior in complex systems of

numerous interacting individual components by analogy to many-particle physical sys-

tems [13]. This often involves agent-based modeling [14]: identifying the autonomous

microscopic elements of the system in question, determining the salient features of how

these influence each other, and inferring macroscopic properties from these features.

In a system of inanimate particles, the interactions are generally fairly well-known,

measureable, calculable, and derive from the universal laws of physics. In contrast,

agents in a human system are conscious actors whose behavior does not necessarily

follow easily discernible rules and may be quite sensitive to conditions, which makes

comprehensive modeling extremely hard [8]. Consequently, sensible interaction models

should be rooted in behavioral sciences and game theory, the mathematical study of

strategic decision-making [15]. Similar things can be said about ecological systems,

whose population dynamics is driven by Darwinian fitness [16].

The closest correspondence between game theoretic and statistical physical models lies

in the formal equivalence of logit-rule-driven potential matrix games and classical spin

models. Even within this narrowed field, it is hard to predict what most aspects of the

resulting multiagent system’s macroscopic phenomenology would be like at a glance of

the microscopic interaction rule. The recently proposed concept of decomposing such

interactions as superpositions of four fundamental interaction types (self- and cross-

dependent, coordination-type, and cyclic-dominance components) could potentially help

bridge that gap by providing an excellent framework for the investigation of the interplay

1



Chapter 1. Introduction 2

effects between these elementary game components, as well as the systematic exploration

and classification of matrix games.

The overarching aim of the ongoing research work reported in this thesis is to lay a

foundation for this analysis of the matrix game decomposition concept. After brief

reviews concerning the anatomy of two-player matrix games in Chapter 2 and their

relevance to statistical physics in Chapter 3, the thesis discusses the properties of a

handful of multiagent logit-rule-driven potential matrix games that are composed of

just a few elementary games in simple combinations. Chapters 4 and 5 deal with the

elementary coordination game, the simplest nontrivial potential game, and its extensions

with two types of self-dependent components, one that preserves and one that explicitly

breaks the symmetry of the coordination; while Chapters 6 and 7 are about games

composed of multiple elementary coordinations, a highly symmetric combination in the

former and in a configuration geared towards competition between different components

in the latter.

How coordination—and cooperation in particular—emerges and how it is sustained are

among the central questions of game theory [17–20]. The game models treated in this

thesis also contribute to these questions, as they all possess phase transitions between

disordered states stable at high logit noise levels and coordinated ordered states stable at

lower noise levels. On closer inspection, it turns out that the continuous Ising-type tran-

sition characteristic of the few-strategy elementary coordination game is robust and can

be observed in the other, composite models as well, under appropriate circumstances.

Deviations from this behavior seem to be closely related to both elementary game com-

position and entropy effects. The more available strategies (or spin states in the physical

analogy) there are in a system, the higher the entropy of the disordered phase becomes,

which expands the stability region of the disordered phase, and drives systems towards

first-order transitions (Chapters 4 and 5). The universality class of the transition can

also be changed by the presence of a strong higher-symmetry combination of elementary

coordinations (Chapter 6), though the Ising-type phase associated with an otherwise

weaker competing elementary coordination may still gain stability at the order-disorder

transition due to its higher entropy content (Chapter 7) leading to a social trap situation

and also introducing a first-order transition between the competing ordered phases.



Chapter 2

The anatomy of matrix games

2.1 Matrix Games

The following sections introduce some of the basic concepts of game theory. For in

depth and more general discussions of the subject, we refer the reader to textbooks

and reviews by von Neumann and Morgenstern [21], Karlin [22], Vorob’ev [23], Szép

and Forgó [24], Fudenberg and Tirole [25], Gibbons [26], Osborne and Rubinstein [27],

Weibull [28], Hofbauer and Sigmund [29], Samuelson [30], Cressman [31], Szabó and

Fáth [32], Gintis [33], Sandholm [34], Sigmund [35], and Szabó and Borsos [36].

The normal or strategic form of a noncooperative game represents only its most impor-

tant aspects by interpreting it as a single decision situation. Each player x ∈ {1, . . . , N}
chooses independently and simultaneously one of her available pure strategies sx ∈ Sx
that defines her complete sequence of actions throughout the game. The set of chosen

actions, also called the strategy profile, s = {s1, . . . , sN} determines the outcome of the

game from which player x derives utility according to the payoff function ux(s). Usually

players are assumed to be rational, and they intend to maximize their own payoff.

If there are only N = 2 players, and they both have a finite number of discrete strate-

gies S1 = {σ1, . . . , σn} and S2 = {τ1, . . . , τm}, then the possible payoff pairs can be

conveniently arranged into a so-called bimatrix:

G = (A,BT ) =


(A11, B

T
11) · · · (A1m, B

T
1m)

...
. . .

...

(An1, B
T
n1) · · · (Anm, B

T
nm)

 , (2.1)

where A and B are the payoff matrices of the first player (the row player) and the

second player (the column player), respectively, and their elements are defined through

3



Chapter 2. The anatomy of matrix games 4

Aij = ui({σi, τj}) and Bji = BT
ij = uj({σi, τj}). (Here, BT is the transpose of B.) This

notation is further simplified if the strategies are represented by Cartesian unit vectors:

σ1 ≡ s1 =



1

0

0
...

0

0


, σ2 ≡ s2 =



0

1

0
...

0

0


, . . . , σn ≡ sn =



0

0

0
...

0

1


∈ Rn, (2.2)

τ1 ≡ t1 =



1

0

0
...

0

0


, τ2 ≡ t2 =



0

1

0
...

0

0


, . . . , τm ≡ tm =



0

0

0
...

0

1


∈ Rm. (2.3)

In this case the utilities of the players can simply be written in the following way as the

result of consecutive matrix-vector and scalar products:

u1({si, tj}) = si ·Atj , (2.4)

u2({si, tj}) = tj ·Bsi. (2.5)

If the two players are identical, that is, they share the same strategy set (S1 = S2)

and have identical payoff matrices (A = B), then the game is called symmetric. In the

following, we will refer to such games, which are obviously completely defined by a single

payoff matrix, simply as matrix games.

As mentioned earlier, all players aim to optimize their utility, but this task can easily

become very complicated because of their conflicting interests that may prevent players

from simultaneously realizing their maximal possible payoffs. Nash’s equilibrium concept

[37, 38] offers a minimal solution to this problem: In a Nash equilibrium no player can

increase her utility as a result of a unilateral strategy change. This means that the

strategy profile s∗ = (s∗1, . . . , s
∗
n) is a Nash equilibrium1 if it satisfies

ux(s∗x, s
∗
−x) ≥ ux(sx, s

∗
−x) ∀x ∈ {1, . . . , N}, ∀sx 6= s∗x, (2.6)

1More precisely, this is the definition of a pure (or pure strategy) Nash equilibrium, as opposed to
a mixed strategy Nash equilibrium. A mixed strategy is a probability distribution over the strategies
available to the players according to which a player randomly picks her strategy. In a mixed strategy
Nash equilibrium no player can increase her expected utility by unilaterally switching to another mixed
strategy. In this thesis, we are only interested in pure strategies and pure Nash equilibria.
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where s−x = (s1, . . . , sx−1, sx+1, . . . , sN ) denotes the strategy profile of player x’s co-

players.

2.1.1 Prisoner’s dilemma

The most popular example of a matrix game is probably the prisoner’s dilemma, devised

by Merrill Flood and Melvin Dresher, but cast in its dilemma tale form by Albert W.

Tucker [17, 39, 40]. Two prisoners are charged with committing the same crime, and

held separately. The prosecutors are confident that the criminals would be sentenced

to a year in prison for a lesser charge but lack sufficient evidence to convict them on

the principal charge. They offer each prisoner the same bargain: If he testifies against

his partner, he will be released while his partner will serve three years in prison for the

main charge. However, should they both decide to turn state’s evidence, both of them

will be sentenced to two years in jail. The prisoners know that they were both offered

the same deal and are not allowed to communicate before making their decision. The

corresponding payoff matrix reads:

A(PD) =

(
−1 −3

0 −2

)
, (2.7)

where the first strategy is refusing to testify, and the second is betrayal. Clearly, choos-

ing to testify results in a shorter sentence, regardless of the other prisoner’s choice.

Therefore, if both prisoners are rational, they will mutually defect and testify against

their partner in crime (this is a Nash equilibrium), and as a result both will be sentenced

to two years in jail. The prisoners’ dilemma lies in the fact that both prisoners would

receive a shorter sentence if they cooperated and refused to testify.

2.1.2 Potential games

In general normal-form games each player has her own utility function she aims to

maximize through her choice of strategy. In the special subset of so-called potential

games [36, 41], however, there exists a single function, the game’s potential, which

contains all payoff changes any player may achieve by unilaterally switching her strategy.

In particular, a game is a potential game, if it admits a potential V (s) such that

V (s′x; s−x)− V (sx; s−x) = ux(s′x; s−x)− ux(sx; s−x) (2.8)

for every x ∈ {1, . . . , N}, every sx, s
′
x ∈ Sx, and every s−x ∈

∏
y 6=x Sy. A game’s

potential, if it exists, is unique up to an additive constant. An important property of
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the potential is that it attains its maximal value where the original game has a preferred

pure Nash equilibrium. For matrix games the potential can also admit a similar bilinear

matrix form, and can be evaluated quite easily, as we will see later on.

The utility changes that figure into the definition of the potential can be tracked us-

ing a so-called dynamical graph whose nodes and edges represent strategy profiles and

unilateral strategy changes, respectively. Monderer and Shapley have shown [41] that

a normal-form game admits a potential if and only if the sum of the utility changes of

deviators equals zero along any four-edge (and consequently any longer) loops (closed

paths) of its dynamical graph. If the edges of the graph are directed in such a way as

to point toward nodes with higher potentials, then finding pure Nash equilibria reduces

to finding nodes that only have incoming edges. If the directed dynamical graph (flow

graph) has any directed loops, then along this loop the sum of the payoff changes real-

ized by each unique deviator is strictly positive, which means that the game does not

admit a potential.

For example, the previously mentioned prisoner’s dilemma game is a potential game. Its

potential matrix (up to an additive constant matrix) is

V(PD) =

(
−2 −1

−1 0

)
, (2.9)

whose maximal element 0 is attained when both players defect, and this is indeed the

game’s only Nash equilibrium, as we have seen earlier.

2.2 Decomposition of matrix games

A general two-player, n-strategy matrix game is defined by n2 independent parameters,

the elements of its payoff matrix. Yet, it can be easily shown that not all different

parametrizations result in different games. For example, the prisoner’s dilemma intro-

duced in Subsection 2.1.1 is clearly not changed by switching the order of the strategies,

and considering defection as the first and cooperation as the second strategy, and yet

its payoff matrix becomes different from the one in Eq. (2.7), namely,

A
(PD)
∗ =

(
−2 0

−3 −1

)
. (2.10)

Shifting all payoffs by the same constant amount may change the framing of the game,

but keeps many of the game’s most important properties intact. For instance, consider
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the payoff matrix

A(DG) =

(
1 −1

2 0

)
, (2.11)

where all payoffs are 2 higher than the corresponding payoffs in Eq. (2.7). This payoff

matrix defines a so-called donation game [35]. There are two players who may choose

to either cooperate and provide a benefit worth 2 units of payoff at a personal cost of 1

unit of payoff, or defect and offer nothing. (Again, cooperation is the first, and defection

is the second strategy.) Because of the uniform shifting of the payoffs, payoff differences

remain the same as in the prisoner’s dilemma, so the Nash equilibrium and the potential

derived from these differences are also carried over.

Similarly, multiplying the payoffs by the same positive number can be thought of as

changing the unit payoffs are measured in, which affects payoff differences and the po-

tential in the same way. The Nash equilibria, however, are unchanged, because the

multiplication of payoffs does not change their order.

These simple examples point toward the possibility of arranging matrix games into

classes based on the similarity of their behavior and characteristics. The concept of linear

payoff matrix decomposition provides such a classification scheme and gives rise to an

anatomy of games that views complex general games as combinations of simple building

blocks and their emergent properties as the manifestation of the interplay between these

building blocks.

At the center of this idea lies the fact that the space of n × n real matrices is a vector

space of n2 dimensions and, as such, its elements can be expanded as linear combinations

of basis matrices. It is the choice of this basis set that gives meaning to the decomposi-

tion. The simplest basis choice in essence follows the defining construction of the payoff

matrix and singles out individual strategy pairings as elementary game components.

This decomposition scheme resolves a general two-strategy game in the following way:

A =

(
A11 A12

A21 A22

)
= A11

(
1 0

0 0

)
+A12

(
0 1

0 0

)
+A21

(
0 0

1 0

)
+A22

(
0 0

0 1

)
(2.12)

and can be straightforwardly generalized to higher strategy numbers. Although it is

very easy to carry out this decomposition, and thus provides a clear illustration of the

formal mathematical side of linear decomposition, it is hardly useful, as it offers no new

insights into the properties of the game in question. The reason behind this is that

individual strategy pairings in themselves are not intrinsically linked to any of the game

properties of interest such as Nash equilibria and the existence of a potential.
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In the following we introduce a basis set of n×n elementary matrices that lends itself to

separating elementary games representing nonstrategic and proper player–player inter-

actions, components that promote coordination or cause social dilemmas, or games that

do and do not admit a potential. This decomposition scheme was developed by Szabó et

al. in Refs. [36, 42–45]. Candogan et al. [46] and Hwang and Rey-Bellet [47, 48] take a

different approach and arrive at a somewhat different decomposition without introducing

a definite set of basis games.

2.2.1 The irrelevant elementary game

As we have said earlier, a uniform shifting of all payoffs does not change payoff differences

and as a result does not significantly change the game’s relevant properties. Our choice

of the first elementary game reflects this by separating the game’s average payoff from

the remaining relevant part of the payoff matrix. The elements of this average payoff

component are all equal to the arithmetic mean of the game’s possible payoffs, that is,

A
(av)
ij = µ =

1

n2

∑
i,j

Aij , (2.13)

where the sum runs over all possible values of i and j, and Aij is the payoff a player

receives when playing strategy i against an opponent playing strategy j. µ can also be

thought of as the strength of the irrelevant elementary game whose payoff matrix is the

all-ones n× n matrix,

m(n) =


1 · · · 1
...

. . .
...

1 · · · 1

 . (2.14)

The irrelevant elementary game is obviously a potential game with a constant potential.

2.2.2 Cross-dependent elementary games

Similar to the average payoff component, the so-called cross-dependent component of

a game detaches the part of the payoff matrix that does not influence the incentives

for an active player changing his or her strategy. In this sense, games that only differ

in this part of their payoff are strategically equivalent. Such payoff changes are of the

form u(i′, j)−u(i, j) = Ai′j−Aij , so for the elements of the cross-dependent component

A
(cd)
i′j = A

(cd)
ij holds for all i, i′, j ∈ {1, . . . , n}, which means that A(cd) has the same

entries in each of its columns. With the average payoff component in mind, let us define
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the cross-dependent game component the following way:

A
(cd)
ij = γj =

1

n

∑
i

Aij − µ. (2.15)

Here γj is the average deviation of a player’s payoff from µ when playing against a

j-strategist. To each coefficient γk belongs an elementary cross-dependent game with

payoff matrix g(k;n). The k-th column of g(k;n) is filled with ones, while its remaining

elements all equal zero:

g(1;n) =


1 0 · · · 0

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

 , . . . , g(n;n) =


0 · · · 0 1

0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

 . (2.16)

Notice that the irrelevant elementary game is in fact a cross-dependent game, because

m(n) =

n∑
k=1

g(k;n), (2.17)

which means that the irrelevant and the n cross-dependent elementary games are not

linearly independent; however, any n of them are. This is also reflected by the γk

expansion coefficients, which are also linearly dependent:

n∑
k=1

γk = 0. (2.18)

Thus the n cross-dependent elementary games and the irrelevant elementary game to-

gether only generate the space of cross-dependent payoff matrices, but do not form a

basis set in this space, because they are not a minimal generator. As a result, expansions

in terms of this set are not unique. One way to enforce uniqueness is to leave out one

of the elementary games and use the remaining n that do form a basis set. As a down-

side, the aforementioned interpretation of the expansion coefficients as averages is lost.

Conversely, the averages in Eq. (2.13) and Eq. (2.15) are by definition unique expansion

coefficients in an (n+1)-element generator of the n-dimensional space of cross-dependent

(including irrelevant) games. We can easily switch from this expansion to the other one

by simply decomposing one of the elementary games in terms of the other n.

The cross-dependent game component also has a constant potential, because a player

cannot change his or her cross-dependent payoff by simply switching to another strategy.
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2.2.3 Self-dependent elementary games

Similar to the player’s opponent being able to set part of the player’s payoff through the

cross-dependent component of the payoff matrix, the active player can also determine

part of her payoff regardless of the opponent’s choice of strategy. For such a game

component we expect u(i, j′) − u(i, j) = 0 to hold, which is satisfied for A
(sd)
ij′ = A

(sd)
ij ,

that is, if the matrix has the same entries in each of its rows. Again with the average

game component in mind, we can define a game’s self-dependent component as

A
(sd)
ij = εi =

1

n

∑
j

Aij − µ, (2.19)

where εi is the average deviation of a player’s payoff from µ when playing strategy i.

By definition these deviations satisfy

n∑
k=1

εk = 0. (2.20)

To each payoff εk we assign an elementary self-dependent game with payoff matrix e(k;n)

whose entries equal one inside and zero outside its k-th row:

e(1;n) =


1 1 · · · 1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , . . . , e(n;n) =


0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

1 1 · · · 1

 . (2.21)

Notice that eT (k;n) = g(k;n).

Just like cross-dependent elementary games, self-dependent elementary games are also

not linearly independent from the irrelevant elementary game, because

m(n) =

n∑
k=1

e(k;n). (2.22)

This again raises the question of expansion uniqueness, which can again be solved by

either dropping one of the n + 1 self-dependent elementary games to get a basis, or

imposing consistent rules like Eq. (2.13) and Eq. (2.19) on the expansion coefficients.

Elementary self-dependent games are potential games. The potential matrix of the

k-th n-strategy elementary self-dependent game (up to an additive constant) can be

written as

V(sd)(k;n) = e(k;n) + eT (k;n) = e(k;n) + g(k;n), (2.23)
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or in matrix form as

V(sd)(1;n) =


2 1 · · · 1

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

 , . . . , V(sd)(n;n) =


0 · · · 0 1
...

. . .
...

...

0 · · · 0 1

1 · · · 1 2

 . (2.24)

In a purely self-dependent game, both players choosing the strategy with the highest εk

coefficient is a symmetric Nash equilibrium.

2.2.4 Elementary coordination games

After removing the irrelevant, cross-, and self-dependent components, the remaining

game describes a proper player–player interaction where players cannot unilaterally set

a nonzero average payoff for either of the players. Accordingly, the entries of the cor-

responding payoff matrix add up to zero in each of its rows and columns. It is worth

further dividing this payoff matrix into its symmetric and antisymmetric parts. The

symmetric part is the original game’s coordination-type component,

A(co) =
1

2

[(
A−A(av) −A(cd) −A(sd)

)
+
(
A−A(av) −A(cd) −A(sd)

)T]
. (2.25)

Due to its symmetry, the two players receive equal payoff from this component regardless

of their choice of strategy. In general, the coordination-type component’s payoff matrix

is of the form

A(co) =


υ1 −ν12 · · · −ν1n

−ν12 υ2 · · · −ν2n

...
...

. . .
...

−ν1n −ν2n · · · υn

 , (2.26)

where the rows and columns sum to zero, that is,

υi =
∑
j 6=i

νij (2.27)

for all i ∈ {1, . . . , n} with νij = νji if i > j.
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To each of the
(
n
2

)
= n(n−1)

2 independent νkl (k < l) parameters belongs an elementary

coordination game d(k, l;n) whose entries are

dij(k, l;n) =



1 for i = j = k

1 for i = j = l

−1 for i = k and j = l

−1 for i = l and j = k

0 otherwise.

(2.28)

When players are restricted to pick either strategy k or strategy l, the game becomes the

original coordination game that rewards players choosing the same strategy by giving one

unit of payoff to both players and punishes anticoordinated behavior by deducting the

same amount. The remaining n−2 strategies are neutral, in the sense that playing them

provides zero payoff regardless of the opponent’s strategy. These games are obviously

linearly independent from each other and the elementary games mentioned earlier, and

form a basis in the subspace of coordination-type games.

It is quite easy to check that elementary coordination games are potential games, and

consequently their linear combinations, coordination-type games, are also potential

games with V(co) = A(co). As a result, a strategy profile that belongs to a maximal

entry in the payoff matrix is a Nash equilibrium. (This is also true for local maxima

with respect to unilateral strategy changes, but global maxima usually correspond to

preferred Nash equilibria.) The maximal A
(co)
ij value may be one of the diagonal ele-

ments υk, in which case both players follow the corresponding strategy in the preferred

Nash equilibrium. On the other hand, if the maximal payoff max(Aij) = −νkl is in an

off-diagonal position, then in the corresponding Nash equilibrium strategy choices are

anticoordinated, one of the players plays strategy k while the other follows strategy l,

or vice versa.

2.2.5 Elementary cyclic dominance games

The antisymmetric part of the player–player interaction part of a payoff matrix is

A(cy) =
1

2

[(
A−A(av) −A(cd) −A(sd)

)
−
(
A−A(av) −A(cd) −A(sd)

)T]
. (2.29)

in terms of the original payoff matrix and its mean-value (irrelevant, cross-, and self-

dependent) components, and by this definition its row and column sums all equal zero.
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This means that this so-called cyclic dominance component is of the general form

A(cy) =



0 ξ2 ξ3 · · · ξn

−ξ2 0 ζ23 · · · ζ2n

−ξ3 −ζ23 0 · · · ζ3n

...
...

...
. . .

...

−ξn −ζ2n −ζ3n · · · 0


, (2.30)

and the parameters satisfy

ξi = −
∑
j<i

ζji +
∑
j′>i

ζij′ (2.31)

for all i ∈ {2, . . . , n}, where ζij = 0 for j ≤ i or j > n by definition.
∑

i ξi = 0 follows

as a consequence. Notice that this game component can only be present if there are at

least three available strategies.

The different ζij parameters are linearly independent and completely determine the cyclic

dominance component, so it is only sensible to think of these as expansion coefficients

and choose the elementary games accordingly. Setting one of the ζkl to one and the rest

to zero defines the following elementary payoff matrix:

Cij(1, k, l;n) =



1 for i = 1 and j = k

1 for i = k and j = l

1 for i = l and j = 1

−1 for j = 1 and i = k

−1 for j = k and i = l

−1 for j = l and i = 1

0 otherwise.

(2.32)

The corresponding game reduces to the rock-paper-scissors game, a zero-sum cyclic

dominance game, if players are restricted to use only strategies 1,k, and l: strategy 1

dominates strategy k, strategy k dominates strategy l, and strategy l dominates strategy

1. The remaining strategies are neutral. These
(
n−1

2

)
= (n−1)(n−2)

2 elementary cyclic

dominance games are linearly independent and span the space of cyclic dominance games.

It may seem somewhat surprising that this set is generated by the rock-paper-scissors

games involving strategy 1, and suggests that strategy 1 somehow plays a special role.

This just reflects the bias towards strategy 1 inherent in the parametrization used in

Eq. (2.30). Of course, any other strategy could play the same role, and its elementary

cyclic games could define a basis of the cyclic dominance subspace as well. A general
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elementary cyclic dominance payoff matrix can be expanded as

C(k, l,m;n) = C(1, k, l;n) + C(1, l,m;n)−C(1, k,m;n), (2.33)

where 1 < k < l < m ≤ n, and similar equations can be derived for bases defined

by other strategies. Using this expression one of the elementary games of the basis

set introduced in Eq. (2.32) can be replaced with C(k, l,m) and by repeating this step

further bases can be generated. The main advantage of using a strategy-centered basis

like the one in Eq. (2.32) is that it allows us to determine the expansion coefficients at

a glance, without any further calculations. Nevertheless, choosing different bases may

lead to simpler expansions into fewer terms in certain situations.

Cyclic dominance games do not admit a potential. Consider the general cyclic dominance

game A(cy) of Eq. (2.30) and strategy profile sequences of the form (k, l) → (k,m) →
(l,m) → (l, l) → (k,m) for all k < l < m strategy labels. If this game is a potential

game, then the payoff changes of deviating players add up to zero along each loop:(
−A(cy)

km +A
(cy)
kl

)
+
(
A

(cy)
lm −A(cy)

km

)
+
(
−A(cy)

ll +A
(cy)
lm

)
+
(
A

(cy)
kl +A

(cy)
ll

)
=

= 2
(
A

(cy)
kl −A

(cy)
km +A

(cy)
lm

)
= 0.

(2.34)

This gives two kinds of constraints on the parameters:

ζkl − ζkm + ζlm = 0 for 1 = k < l < m (2.35)

ξl − ξm + ζlm = 0 for 1 < k < l < m. (2.36)

Plugging Eq. (2.31) into Eq. (2.36), rearranging the terms, and applying Eq. (2.35) yield

ξl − ξm + ζlm = ζlm −
∑
i<l

ζil +
∑
i′>l

ζli′ +
∑
j<m

ζjm −
∑
j′>m

ζmj′ =

= ζlm +
∑
i<l

(ζim − ζil) +
∑

l≤j<m
ζjm +

∑
l<i′≤m

ζli′ +
∑
j′>m

(
ζlj′ − ζmj′

)
=

= ζlm +
∑
i<l

ζlm + ζlm +
∑

l<j<m

(ζjm + ζlj) + ζlm +
∑
j′>m

ζlm =

= ζlm +
∑
i<l

ζlm + ζlm +
∑

l<j<m

(ζlm) + ζlm +
∑
j′>m

ζlm = nζlm = 0. (2.37)

Thus, a general cyclic dominance game can only be a potential game if ζlm = 0 for all

1 < l < m ≤ n, but that is a contradiction, because for a proper cyclic dominance

game at least one of the ζlm has to be nonzero. As a consequence, the presence of the

cyclic dominance component in a matrix game’s decomposition precludes the game form

having a potential.
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2.2.6 Elementary external benefit and hierarchical games

Setting apart the symmetric and antisymmetric parts of the mean-value component of

a game can also offer new insights into its properties. The symmetric part reads

A(mvs) =
1

2

[(
A(av) + A(cd) + A(sd)

)
+
(
A(av) + A(cd) + A(sd)

)T]
, (2.38)

which in terms of the previously introduced elementary payoff matrices becomes

A(mvs) = µm(n) +

n∑
k=1

εk + γk
2

[e(k;n) + g(k;n)] , (2.39)

because eT (k;n) = g(k;n). In the following, we will call the sum appearing beside the

average game component µm(n) the external benefit component of the game and denote

it by A(ex). We can also introduce a matching set of elementary games and expansion

coefficients for each term of the sum, namely,

f(k;n) = e(k;n) + g(k;n) and ϕk =
εk + γk

2
. (2.40)

Notice that the k-th elementary external benefit game’s payoff matrix is identical to the

potential matrix V(sd)(k;n) of Eq. (2.24). In a possible interpretation of the k-th ele-

mentary external benefit game an outside actor offers to evenly distribute among the two

players payoff equal to twice the number of players following strategy k. Equivalently,

we can think of ϕk as a measure of the average benefit the presence of a k-strategist

provides to the community.

The antisymmetric part of the mean-value game is

A(hi) =
1

2

[(
A(av) + A(cd) + A(sd)

)
−
(
A(av) + A(cd) + A(sd)

)T]
. (2.41)

Expanding the above in terms of self- and cross-dependent elementary games yields

A(hi) =
n∑
k=1

εk − γk
2

[e(k;n)− g(k;n)] =
n∑
k=1

χkh(k;n), (2.42)

where h(k;n) = e(k;n)− g(k;n) is the k-th elementary hierarchical game and χk is the

corresponding expansion coefficient; in matrix form

h(1;n) =


0 1 · · · 1

−1 0 · · · 0
...

...
. . .

...

−1 0 · · · 0

 , . . . , h(n;n) =


0 · · · 0 −1
...

. . .
...

...

0 · · · 0 −1

1 · · · 1 0

 . (2.43)
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The k-th elementary hierarchical game is a zero-sum game that describe situations where

k-strategists can take one unit of payoff from players following other strategies. We can

also think of it as a stick to the elementary external benefit game’s carrot: Whereas

the external benefit game attracts players toward choosing strategy k by promising an

increased payoff for each member of the whole community, the hierarchical game does

not directly reward k-strategists, but instead allows them to exploit players following

other strategies.

In this sense the external benefit game represents an extreme version of Adam Smith’s

invisible hand concept, insofar as the self-interested player’s interests coincide with the

interests of the community. On the other hand, the hierarchical game acts more like

the invisible hand of Atë, the goddess of mischief, delusion, ruin, and folly in Greek

mythology; it promises a higher payoff at the expense of other players, but actually

withholds this incentive once all players have been swayed. This effect can also lead

to social dilemma situations when such a component is strong enough to guide players

away from what would otherwise be a mutually beneficial strategy arrangement.

From the linearity of the potential under matrix composition, it follows that the k-th

elementary external benefit and hierarchical games both share their potential with the

k-th elementary self-dependent game, that is, V(ex)(k;n) = V(hi)(k;n) = V(sd)(k;n) as

defined in Eq. (2.24). As a result, both players choosing the strategy with the highest

ϕk +χk is a symmetric Nash equilibrium in games made up of only external benefit and

hierarchical components. Since both the ϕk and the χk coefficients add up to zero, the

highest ϕk, χk, and ϕk + χk are all non-negative, but they do not necessarily belong to

the same strategy.

2.2.7 Dimensions of interaction subspaces

Finally, let us briefly check that the construction described above does indeed define a

game through n2 independent parameters. The average payoff component is defined by

a single number µ, so it contributes N (av) = 1 parameter. There are n elementary cross-

dependent games, but only N (cd) = n− 1 of them are independent from the elementary

irrelevant game. This also reflected by the fact that their expansion coefficients are

linearly dependent, in particular,
n∑
k=1

γk = 0. (2.44)
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Similarly, only N (sd) = n− 1 of the n elementary self-dependent elementary games are

linearly independent, and the same is also true for their expansion coefficients, because

n∑
k=1

εk = 0. (2.45)

All elementary coordination-type games can be chosen independently when constructing

a general game. The number of these components is the number of combinations of two

strategies selected from all n strategies, which is N (co) =
(
n
2

)
= n(n−1)

2 . When n ≥ 3

strategies are available, there are a total of
(
n
3

)
elementary cyclic dominance games, the

number of ways three strategies can be selected without regard for their arrangement.

However, only

N (cy) =

(
n

3

)
−
(
n− 1

3

)
=

(
n− 1

2

)
=

(n− 1)(n− 2)

2
(2.46)

of these can be chosen linearly independently, because by Eq. (2.33)
(
n−1

3

)
of these games

can be expressed as the linear combination of three cyclic dominance games that belong

to the same fixed strategy. Notice that accordingly N (cy) is the number of two-strategy

combinations of the n − 1 remaining strategies. In the n = 2 case there are no cyclic

game components. In conclusion, the total number of independent game components

and their corresponding expansion coefficients is

N = N (av) +N (cd) +N (sd) +N (co) +N (cy) =

= 1 + (n− 1) + (n− 1) +
n(n− 1)

2
+

(n− 1)(n− 2)

2
= n2,

(2.47)

which is exactly the number of the traditional payoff parameters.

2.3 Summary

This section gives a brief summary of the anatomy of matrix games based on the linear

decomposition of payoff matrices presented in this chapter.

Two-player symmetric normal-form games are defined by their payoff matrices. If players

can choose among n strategies, then the payoff matrix is an n×n matrix that tabulates

the outcome of the game for each n2 possible strategy pairings. The central idea behind

the linear payoff matrix decomposition concept is that different parametrizations may be

better suited to adequately characterize games. The decomposition scheme presented in

this chapter considers games as superpositions of simple games that describe archetypical

interaction situations. Alternative approaches can be geared more toward employing



Chapter 2. The anatomy of matrix games 18

basis sets with advantageous algebraic properties like orthogonality and normality, such

as the Fourier decomposition approach [42] or the construction of basis sets as dyadic

products [43], or identifying games with certain characteristic features.

In our decomposition scheme, games are made up of elementary games describing five

distinct interaction types. Accordingly, we write a game’s payoff matrix as a sum of five

components in the following way

A = A(av) + A(cd) + A(sd) + A(co) + A(cy). (2.48)

The first three terms together comprise the mean-value part of the game A(mv), and

each represent decision situations where at least one of the players has no control over

the outcome of the game.

A(mv) = A(av) + A(cd) + A(sd) (2.49)

The average payoff component A(av) considers the mean value of possible payoffs µ as a

baseline for the outcome of the game, the initial capital players start the game with. Its

payoff matrix is proportional to the irrelevant elementary game m(n), which gives one

unit of payoff to both players regardless of their choice of strategy.

A(av) = µm(n) with µ =
1

n2

∑
ij

Aij (2.50)

The cross-dependent payoff component A(cd) establishes similar baselines for playing

against each strategy by columnwise detaching the mean signed deviation of payoffs

γk from the average payoff µ. This part of a player’s payoff is solely defined by her

opponent’s chosen strategy. The cross-dependent component is the linear combination

of elementary cross-dependent games g(k;n).

A(cd) =

n∑
k=1

γkg(k;n) with γk =
1

n

∑
i

Aik − µ (2.51)

The final mean-value-type component, A(sd), is called the self-dependent component of

the game. It accounts for partial payoffs that can be earned regardless of the opponent’s

strategy. The corresponding payoff matrix is the linear combination of the elementary

self-dependent payoff matrices e(k;n) with coefficients εk, which are the row-wise mean
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signed payoff deviations from the average payoff µ.

A(sd) =
n∑
k=1

εke(k;n) with εk =
1

n

∑
j

Akj − µ (2.52)

Alternatively, the mean-value component can also be divided into its symmetric and

antisymmetric parts to separate social and private interests.

A(mv) = A(mvs) + A(hi) (2.53)

The symmetric part can be further split up into the average payoff component A(av)

and the external benefit component A(ex).

A(mvs) = A(av) + A(ex) (2.54)

The external benefit component combines elementary games f(k;n) in which both play-

ers receive ϕk payoff for each player following strategy k. Thus these games incen-

tivize choosing their corresponding strategy only at the community level and equate

community- and self-interest.

A(ex) =
n∑
k=1

ϕkf(k;n) with ϕk =
εk + γk

2
(2.55)

The antisymmetric part of the mean-value component A(hi) is composed of elementary

hierarchical games h(k;n) that also promote playing strategy k but instead of rewarding

both players it allows k-strategists to exploit other players and directly take χk payoff

away from them. These games, as opposed to external benefit games, incentivize follow-

ing one of the strategies at the individual level without any benefit to the community

as a whole.

A(hi) =
n∑
k=1

χkh(k;n) with χk =
εk − γk

2
(2.56)

The remainder of the payoff matrix, A(pp), describes pure player–player interactions, in

which both players have an equal influence on the outcome.

A(pp) = A(co) + A(cy) (2.57)

The coordination-type component A(co) is the symmetric part of pure player–player

interactions, and it is composed of elementary coordinations d(k, l;n) between each
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distinct strategy pair (k, l) with strength νkl. The corresponding payoff matrix is sym-

metric, and its entries add up to zero in each of its rows and columns.

A(co) =
∑

1≤k<l≤n
νkld(k, l;n) with νkl = −1

2

[
A

(pp)
kl +A

(pp)
lk

]
(2.58)

Last but not least, the cyclic dominance game component A(cy) is given by the anti-

symmetric part of A(pp). It can easily be expanded in terms of the elementary cyclic

dominance games C(1, k, l;n) of strategy 1. In this case the expansion coefficient are

simply the appropriate entries of the payoff matrix component A(cy). (The remaining

elementary cyclic dominance games could be also be used instead with different expan-

sion coefficients.) The cyclic dominance game component can only be present in games

with at least three available strategies.

A(cy) =
∑

1<k<l≤n
ζklC(1, k, l;n) with ζkl =

1

2

[
A

(pp)
kl −A

(pp)
lk

]
(2.59)

The only game component whose presence prevents the existence of a potential is the

cyclic dominance component A(cy). The potential of a game without such a component

can simply be written as

V = A(sd) +
(
A(sd)

)T
+ A(co) (2.60)

in terms of its payoff matrix components, which means that potential games that only

differ in their average or cross-dependent components have the same potential associated

with them.

2.4 Examples

2.4.1 General two-strategy games

A general two-strategy matrix game is described by a general 2 × 2 payoff matrix that

can be written as

A(2×2) =

(
R S

T P

)
. (2.61)

In the language traditionally employed in the study of social dilemma situations [35, 49,

50] (including the prisoner’s dilemma of Sec. 2.1.1), R is the players’ reward for mutual

cooperation, T is the temptation to defect, S is the betrayed sucker’s payoff, and P is

the punishment for mutual defection. This interpretation is best suited to describe a
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prisoner’s dilemma, in which these payoffs are ordered such that T > R > P > S, but

becomes less fitting in other situations, as we will later see.

The decomposition of the payoff matrix [36, 45] yields

A(2×2) =
R+ T + S + P

4
m(2) +

R− P
4

[f(1; 2)− f(2; 2)] +

+
S − T

4
[h(1; 2)− h(2; 2)] +

R+ P − S − T
4

d(1, 2; 2).

(2.62)

This result tells us that R promotes coordination in general through d(1, 2; 2) and co-

ordination on strategy 1 in particular through f(1; 2) but also discourages coordination

on strategy 2 through f(2; 2), assuming R > 0. P plays a similar role but prefers de-

fection instead of cooperation. S supports anticoordination, but conversely also drives

players towards coordination on strategy 1 in a hierarchical way through h(1; 2) while

suppressing coordination on strategy 2 through h(2; 2). T acts in a very similar way but

changes the roles of the strategies.

All two-strategy matrix games are potential games, because of the lack of 2 × 2 cyclic

dominance payoff matrices. From the decomposition Eq. (2.62) one can straightfor-

wardly determine the game’s potential matrix, which up to an additive constant is given

by the matrix

V(2×2) =

(
R− T 0

0 P − S

)
. (2.63)

Local maxima (locality here is meant row- and columnwise) correspond to the pure

Nash equilibria of the game. Based on the structure of the potential matrix, we can

distinguish four game classes with different Nash equilibrium sets [45].

In the first case, mutually choosing strategy 1 is the game’s only Nash equilibrium, and

the payoff parameters fulfill the condition R − T > 0 > P − S, which is equivalent to

both R > T and S > P being true. Similarly, coordination on strategy 2 becomes the

sole Nash equilibrium if T > R and P > S. In fact, these two game classes can easily be

transformed into each other by simply switching the labels of the strategies, so in the

following we will assume R > P without any loss of generality. Notice, however, that

the game having only one Nash equilibrium does not necessarily mean that players could

not possibly achieve higher payoffs by switching their strategies to the other non-Nash

equilibrium coordinated strategy profile. If the coordinated Nash equilibrium has the

higher payoff (i.e., R > T and S > P and R > P ), then the game is called a harmony

game. On the other hand, when the Nash equilibrium and the higher payoff coordinated

strategy profile do not coincide (i.e., T > R > P > S), the players face the prisoner’s

dilemma. In this case, the hierarchical game components are stronger and prefer a

different coordinated strategy arrangement than their external benefit counterparts. It
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is worth mentioning that if T + S is higher than 2R, then the players can achieve the

highest per capita average payoff by following an anticoordinated strategy arrangement

in both the harmony and prisoner’s dilemma games. In a single shot game this gives one

of the players less payoff than the Nash equilibrium coordinated strategy profile would.

In a repeated game, however, the players gain the highest total payoff by alternately

playing strategies (1, 2) and (2, 1).

The two coordinated strategy profiles can also both be Nash equilibria at the same time

if R > T and P > S. This is called a stag hunt game based on a story described by

Jean-Jacques Rousseau in his Discourse on Inequality [51]. Two hunters can individually

choose to hunt a stag or a hare. They can both surely catch a hare by themselves, but

have to work together in order to successfully take a stag. Of course, the stag, even

when shared, is worth more than the hare. We may again assume R > P without any

loss of generality, thus designating hunting stag strategy 1 and hunting hare strategy 2.

T accounts for the difference between hunting for hare alone or in competition. S is the

lone stag hunter’s payoff. The payoff dominant Nash equilibrium, hunting stag together

does not necessarily have the highest potential, and other equilibrium selection criteria

(e.g., risk dominance) may also prefer hunting hare.

Finally, when T > R and S > P , the two anticoordinated strategy profiles are the

game’s two pure Nash equilibria. This is characteristic of hawk–dove games [16, 52].

(This game is also known as the snowdrift game [53] or the chicken game [15, 35].) The

two players contest a valuable resource and in doing so can employ one of two strategies.

’Hawk’ strategists (in our case strategy 2) are aggressive and willing to fight over the

resource, while ’doves’ are peaceful. As a result, hawks will scare off doves and take the

resource worth T . We denote the dove’s payoff by S. Two doves, on the other hand,

will divide the resource and both take shares worth R < T . A hawk confronting another

hawk will either win and take the resource or lose and sustain severe injuries in the fight,

and thus on average stands to gain P < S amount of payoff. We may further assume

without any loss of generality that R > P , or exchange the labels of the two strategies

otherwise. Even though the two anticoordinated Nash equilibria have equal potential

they do not provide equal payoffs to the two players, one of them will earn more than

the other.

Figure 2.1 puts the above classification in a nutshell [45]. Dashed lines separate the four

quadrants of the parameter space with differing Nash equilibria: the prisoner’s dilemma

region (PD quadrant), the hawk–dove region (HD quadrant), the harmony game re-

gion (H quadrant), and the stag hunt region (SH quadrant). The smileys indicate the

structure of the game’s Nash equilibria, white and black smileys correspond to players

following strategy 1 and strategy 2, respectively. If the faces are next to each other, the
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Figure 2.1. Classification of 2× 2 matrix games based on their pure Nash equilibria
and player contentment when R > P is assumed. For a detailed explanation of the
used notations, see the main text on page 22. This is the slightly modified version of a

figure that originally appeared in Ref. [45].

players receive equal payoffs (like in the PD and H quadrants), the better performing

strategy is drawn above the other one otherwise (e.g., in the hawk-dove game). If there

are multiple different Nash equilibria, the one with the higher potential is drawn above

the other, as in the stag hunt game case. A face smiles when it represents a ‘content’

player, that is, someone who receives more payoff than his opponent, or when at least

the equilibrium provides the two players with the possible highest total payoff, or in

other words, when at least their community as a whole is the best off it can be. In the

figure, dash-dotted lines indicate changes in player contentment within game classes;

the lines are dotted where no such change occurs. Across the T − S = R − P line,

different strategy profiles maximize the potential, causing a change in contentment if

higher potential strategy arrangements are preferred. Above the T + S = 2R line anti-

coordination provides the highest total payoff and thus coordination leads to discontent.

Along the T = S line the hierarchical components vanish; below it external benefit and

hierarchical components both benefit strategy 1; above it they push players in oppo-

site directions: external benefit components still promote choosing strategy 1, but the

hierarchical components prefer picking strategy 2.

Unhappy faces point to social dilemmas where individual interests represented by Nash

equilibria and the value of the potential clash with societal interests represented by the

total payoff of the two players. In all four game classes, we can identify some kind

of a social dilemma in Figure 2.1. In the harmony game the social dilemma arises
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when the coordination component of the game actually describes anticoordination. In a

hawk–dove game, however, the opposite is true; the dilemma is caused by the presence

of a proper coordination component with positive strength. The prisoner’s dilemma

is always a social dilemma situation, because the hierarchical component of the game

is stronger than its external benefit component and the two components incentivize

choosing different strategies. The stag hunt game does not inherently pose a social

dilemma, because it always has a payoff dominant Nash equilibrium. In this case the

concurrence of two Nash equilibria is what can cause the dilemma. Certain solution

concepts (also called refinements of the Nash equilibrium in the literature) may favor the

lower payoff Nash equilibrium. For example, as Figure 2.1 shows, the payoff dominant

equilibrium does not necessarily have the highest potential.

2.4.2 Voluntary prisoner’s dilemma

The voluntary prisoner’s dilemma extends the usual prisoner’s dilemma by giving players

a third option, choosing not to take part in the game [54–56]. This third strategy is

usally referred to as the loner strategy. If at least one of the two players picks the loner

strategy, both players receive σ payoff. The game’s payoff matrix then reads

A(VPD) =


R S σ

T P σ

σ σ σ

 . (2.64)

The linear decomposition of the matrix [44] leads to the following expansion:

A(VPD) =
R+ T + S + P + 5σ

9
m(3)+

+
S − T

6
[h(1; 3)− h(2; 3) + C(1, 2, 3; 3)] +

+
4R+ T + S − 2P − 4σ

18
[f(1; 3) + d(1, 3; 3)] +

+
4P + T + S − 2R− 4σ

18
[f(2; 3) + d(2, 3; 3)] +

+
4P + 4R− 5S − 5T + 2σ

18
d(1, 2; 3) +

4σ −R− T − S − P
9

f(3; 3).

(2.65)

Clearly, this game has a much richer elementary game content than the traditional

prisoner’s dilemma of the previous example. The shared game components are present

with different expansion coefficients, and the new components involve the loner strat-

egy in multiple different ways. Thus the decomposition of the matrix reveals that the

loner strategy is far from being neutral. Beside having an external game component,

it also shares a coordination component with both other strategies, and—perhaps more
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importantly—a cyclic game component is introduced as well that prevents the exis-

tence of a potential in the voluntary prisoner’s dilemma. Furthermore, this cyclic dom-

inance component and the hierarchical components, which are responsible for the social

dilemma aspect of the game, are inseparable in this game, as their strengths are propor-

tional to each other. In an evolutionary game theoretic context, however, it is exactly

this cyclic dominance component that maintains diversity and ensures the survival of

cooperative behavior [32, 57, 58].



Chapter 3

Evolutionary potential games and

statistical physics

Chapter 2 deals with the decomposition of single-shot two-player matrix games mostly

within the confines of classical noncooperative game theory, where players are assumed

to be individualistic, self-interested, pursuing well-defined preferences, rational, and also

aware of the rationality of their opponents, their awareness of this awareness, and so

on ad infinitum. Classical game theory, however, cannot give an adequate description

of all decision situations. One such example is the backward induction paradox related

to repeated social dilemmas, like the iterated prisoner’s dilemma [17, 32, 33, 59]. In a

finitely repeated social dilemma, classical game theory dictates that both players should

play a subgame perfect Nash equilibrium, which requires the fulfilment of the equilib-

rium criterion for the remainder of the game at every stage. This includes the subgame

that consists of the last iteration of the social dilemma, where players should definitely

mutually defect as this is the single-shot game’s sole Nash equilibrium. With the last

game’s outcome now fixed, it follows from the same argument that the players should

do the same in the penultimate game as well, which in turn implies the same for the

game before that, and then the one before that, and so on. In conclusion, this backward

induction tells self-interested rational players to always defect in a finite iterated pris-

oner’s dilemma. In spite of that, real people in real psychoeconomic experiments still do

cooperate [40, 60, 61]. This means that real people are not as rational and well-informed

as classical game theory demands them to be. Evolutionary game theory tries to ex-

tend the classical description toward bounded rationality by loosening the assumption

of the players’ decision making being perfectly rational. This puts a special emphasis on

the dynamics of decision making, because players are no longer capable of immediately

anticipating the decisions of their opponents. Typically we assume players to take a

trial-and-error approach to figuring out an optimal strategy in this situation and try to

26
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find dynamical strategy update rules that hopefully emulate the important aspects of

real human behavior [32, 62]. The importance of population dynamics is clearly high-

lighted by the application of game theory to evolution as it naturally replaces utility

with Darwinian fitness [16].

This chapter introduces one such update rule, the so-called logit rule. What makes the

logit rule interesting is that it establishes a connection between the evolutionary game

theory of potential matrix games and the classical spin models of statistical physics. In

the following, we highlight the critical points of this correspondence and present some

of the concepts and methods of statistical physics that can be employed in the study of

potential matrix games whose strategy updates are controlled by the logit rule.

3.1 Spatial evolutionary matrix game models on lattices

In the following, we will consider spatial evolutionary game models of a specific structure:

Players are located at the sites of a finite two-dimensional square lattice of N = L× L
sites with periodic boundary conditions, so that all players have z = 4 nearest neighbors

on the lattice. Neighboring players repeatedly and simultaneously play the same matrix

game defined by the same n × n payoff matrix A. In a single round of the game, the

player at site x uses the same strategy, sx against all z of her opponents. The players do

not keep an account of their past winnings, they are only interested in their total payoff

based on the games they play in a single round, which in the case of player x is

ux(sx, s−x) =
∑
δx

sx ·Asx+δx , (3.1)

where δx runs over the nearest neighbor sites of player x. After each round a randomly

chosen player revises her strategy according to the so-called logit rule introduced in the

next section.

This setup can of course be generalized in almost all of its aspects. The underlying

square lattice can be replaced by lattices of different dimensionality and geometry [63–

66], complex network structures [32, 67–71] with inhomogeneous coordination number

distributions, or even adaptive networks [72, 73] that also evolve in time. The pair

interaction games need not be symmetric [74–76] and can also vary from player to

player [77, 78] or lose their matrix form altogether, for example, to accomodate games

with a continuum of available strategies [79] or group interactions [80] that cannot be

reduced to a sum of pair interactions. The strategy update rule that dictates the time

evolution of the system can be changed as well [62, 81, 82].
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3.1.1 The logit rule

The logit or log-linear rule [5, 83–85] is a probabilistic strategy update rule that assigns

the following probability w(sx → s′x) to player x changing her strategy from sx to s′x:

w(sx → s′x) =
eux(s′x,s−x)/K∑

s′′x

eux(s′′x,s−x)/K
. (3.2)

This formula exponentially favors choosing strategies that promise higher payoffs under

the assumption that remaining players maintain their strategy choices, but takes into

account the promised payoffs attenuated by the noise level parameter K.

This interpretation of K is justified by the asymptotic behavior of w(sx → s′x) in both

the K → 0 and K →∞ limits. Let

ûx(s−x) = max
s′x

ux(s′x, s−x) (3.3)

denote the highest payoff player x can achieve in a fixed strategy environment s−x and

BR(s−x) =
{
s′x | ux(s′x, s−x) = ûx(s−x)

}
(3.4)

be the set of player x’s best response strategies for which this maximal payoff obtains.

Using these notations and expanding its numerator and denominator, we can reformulate

w(sx → s′x) and evaluate its K → 0 limit as

w(sx → s′x) =
e[ux(s′x,s−x)−ûx(s−x)]/K∑

s′′x

e[ux(s′′x,s−x)−ûx(s−x)]/K
−−−→
K→0


1

|BR(s−x)| for s′x ∈ BR(s−x)

0 otherwise.
(3.5)

This means that when K vanishes, the logit rule becomes the best response update rule

that randomly picks one of the strategies that provide the best payoff in a fixed strategy

environment and thus emulates self-interested rational behavior.

On the other hand, in the opposite K →∞ limit the logit update probabilities are

w(sx → s′x) −−−−→
K→∞

1

nx
, (3.6)

where nx is the total number of strategies available to player x. So for very high values

of K the logit rule represents a completely uninformed strategy choice, an adequate

unbiased action when all information regarding the game is drowned out by excessive

noise.
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The most important feature of the logit strategy update rule is that it drives potential

game systems into a so-called Gibbs state [36, 83], a probability distribution over the

space of strategy configurations, in which the probability p(s) of finding the system in

configuration s is given by

p(s) =
1

Z
eU(s)/K . (3.7)

Here U(s) is the potential of the whole system derived from the potential V of the pair

interaction matrix A,

U(s) =
1

2

∑
x

∑
δx

sx ·Vsx+δx , (3.8)

and Z is simply a normalization factor given by a sum over all configurations

Z =
∑
s

eU(s)/K . (3.9)

These Gibbs states are the only stationary distributions of the system, and they are also

translation-invariant. Furthermore, the weak limit points of Gibbs state sequences along

which K → 0 are stationary distributions for the best-response strategy update rule and

are concentrated on the pure strategy Nash equilibria of the multiplayer game [83].

3.1.2 Equivalence to classical spin models

Our evolutionary game model coincides with a general classical spin model described

in the canonical ensemble [83, 86]. Individual players correspond to spins, and their

strategies to spin states. The negative potential of the game plays the role of the spin

system’s Hamiltonian, since players aim to maximize their payoff, while in physics the

energy of the system is minimized. In particular, coordination-type and external benefit

game components correspond to spin–spin interactions and external magnetic fields,

respectively. Hierarchical game components also contribute to the magnetic-field-like

part of the potential, but they have no impact on the total payoff of the community due

to their zero-sum property. The Gibbs state describing the game system’s equilibrium

is identical to the Boltzmann distribution used in statistical physics, the noise-level

parameter K acts just like temperature, and the normalization factor Z is the partition

function. All of the above correspondences hinge on the choice of the logit strategy

update rule, which is essentially a version of the Glauber dynamics used in Monte Carlo

simulations, and thus satisfies the detailed balance condition.

Consequently, the concepts and methods of statistical physics can also be applied to the

spatial evolutionary game theoretic model introduced in Section 3.1. The next section
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gives an overview of two such methods that can be used to explore the macroscopic

behavior and properties of these model systems.

Models that fit the general spin model framework on the basis of similar analogies

can be found in a diverse range of research topics beyond the statistical physical de-

scription of magnetism and game theoretic models, which includes, without any claim

to comprehensiveness, lattice-gas models [87], the modeling of economies and financial

markets [88–91], opinion dynamics [92–94], social segregation [95–97], spatial population

dynamics in ecology [98], and disease propagation [99].

3.2 Methods

3.2.1 Monte Carlo simulations

The Monte Carlo simulation [100, 101] or importance sampling method originally pro-

posed by Metropolis et. al in Ref. [102] is a technique used in statistical physics to

calculate ensemble averages of observables as time averages of a properly chosen Markov

process. As we have seen in the previous section, our game theoretic model is exactly

such a Markov process for its analogous spin model. This means that the utility of

the Monte Carlo method in the investigation of logit-rule-driven evolutionary potential

games is two-fold: In addition to giving exact experimental access to the model via

computer simulations, it also lets us estimate the equilibrium properties of the system.

The experimental aspect of the Monte Carlo method can shine a light on the dynamical

details of the microscopic behavior of the system. It allows us to directly observe the

evolution of spatial patterns in the distribution of strategies, possibly including domain

formation processes or the emergence of self-organizing structures. Many of these phe-

nomena are also closely related to the macroscopic properties of the system, and as a

result their analysis can bolster other methods probing equilibrium behavior. For exam-

ple, the direction and the velocity of interfacial fronts between domains can be indicative

of the stability of competing ordered phases.

The logit dynamics picks subsequent strategy profiles with a probability proportional

to their Boltzmann factor, and as a result the evolutionary process actually samples

the equilibrium probability distribution of strategy configurations. This means that

the equilibrium expectation values of observable macroscopic quantities can also be

evaluated as time averages over an infinite sequence of strategy profiles generated by

the logit evolutionary process. We can formalize this the following way for a general
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configuration dependent quantity Q(s):

Q =
∑
{s}

Q(s)p(s) = 〈Q〉 = lim
T→∞

〈Q〉T = lim
T→∞

1

T

T∑
t=0

Q [s(t)] . (3.10)

Here we introduced a handful of notations: Q is the equilibrium expectation value of

the quantity Q in the Boltzmann distribution, and 〈Q〉T is its time average over the

course of the first T time steps of the process. Obviously, exactly calculating Q becomes

prohibitively hard for large populations, and precisely evaluating 〈Q〉 is impossible due

to the infinite number of required iterations. The latter, however, can be approximated

by 〈Q〉T when T is sufficiently high.

The efficacy of this estimation can be improved by modifying the averaging technique to

circumvent certain adverse properties of the dynamics. Since individual logit strategy

updates only affect single sites, consequent strategy configurations are highly correlated.

As a result, using measurements separated by a sufficiently high number of steps (after

which correlations can be assumed negligible or significantly small) to estimate averages

is one such possible improvement method. This effectively redefines the elementary

step of the Monte Carlo process. Henceforth, by a Monte Carlo step we will refer to

N subsequent logit strategy revisions by randomly chosen players, so that during one

Monte Carlo step all players get one chance on average to update their strategy, and

thus allows any configuration to possibly evolve into any other. For similar reasons, it

is also worth discarding data points belonging to the first tt (called pre-thermalization

time) Monte Carlo steps to compensate for the initial state not being representative of

thermal equilibrium.

In the vicinity of continuous phase transitions, relaxation times, correlation lengths, and

fluctuations diverge, which also affect the results provided by the Monte Carlo method.

Increasing relaxation times (critical slowing down) demand longer pre-thermalization

and sampling times to provide accurate results. Once correlation lengths become com-

parable to the linear size L of the system, finite-size effects dominate the system’s be-

havior. These can be dampened by increasing the system size, or even exploited by the

finite-size scaling approach.

3.2.2 Mean-field and pair approximations

Cluster variation methods in general give an approximate description of a system as a

patchwork of uncorrelated clusters, and then estimate thermodynamic functions via a

variational extremum principle using the probabilities of finding the clusters in certain
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configurations [32, 103–107]. Here we only introduce the two simplest of these methods,

the mean-field and pair approximations.

The mean-field approximation employs one-site probabilities p1(i) of finding strategy i

at any of the sites of the translation-invariant lattice system, which we can also interpret

as the frequency ρi of i-strategists in the population. These probabilities are, of course,

normalized so that
n∑
i=1

p1(i) = 1. (3.11)

In the canonical ensemble the Helmholtz free energy Φ = U +KS of the game model is

maximal. Here U is the expectation value of the potential of the system, S denotes its

Gibbs entropy, and K is the noise-level parameter.1 These quantities are estimated at

the level of mean-field approximation by the following expressions:

U =
∑
{s}

U(s)p(s) ≈ U (1) =
Nz

2

∑
i

p1(i)Vijp1(j), (3.12)

S =
∑
{s}

p(s) ln p(s) ≈ S(1) = −N
∑
i

p1(i) ln p1(i). (3.13)

The maximization problem of Φ(1) = U (1) +KS(1) can be approached in multiple ways.

The direct numerical approach reduces the maximization problem to solving a set of

coupled partial differential equations. The normalization constraint Eq. (3.11) can be

taken into account by adding an additional term to the free energy via a Lagrange

multiplier Λ to get

Ψ(1) = Φ(1) + Λ

[
n∑
i=1

p1(i)− 1

]
=

=
Nz

2

n∑
i,j=1

p1(i)Vijp1(j)−NK
n∑
i=1

p1(i) ln p1(i) + Λ

[
n∑
i=1

p1(i)− 1

]
.

(3.14)

Now the local extremal points of Φ(1) satisfying the normalization constraint are the

stationary points of Ψ(1) as a function of probabilities p1(i) and Lagrange multiplier Λ,

that is, the following equations obtain:

∂Ψ1

∂p1(i)
= 0 ∀i ∈ {1, . . . , n},

∂Ψ1

∂Λ
= 0.

(3.15)

1In statistical physics the free energy is given by F = E − TS, where E is the energy and T is the
temperature of the system, and it is minimal in equilibrium in the canonical ensemble. In the game
theoretical analogy, however, E is replaced by −U , and thus Φ plays the role of −F .
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Solving these equations may yield multiple local maxima solutions for a fixed value of

K, indicating the presence of competing metastable equilibrium states.

The other approach to determining equilibrium one-site probabilities exploits the under-

lying dynamics [108–110]. Starting from any arbitrary strategy frequency distribution,

we can calculate the rate of change for all p1(i) based on the logit rule and the assump-

tion that the strategies at neighboring sites are independently drawn from the same

strategy distribution at the mean-field approximation level. These ‘equations of motion’

are of the form

δp1(i)

δt
=

n∑
j 6=i
j=1

p1(j)w(1)(j → i)−
n∑
k 6=i
k=1

p1(i)w(1)(i→ k) (3.16)

for each available strategy i. Here the rates w(1)(i → j) are the expected probabilities

of a random player changing his strategy from i to j during a Monte Carlo step δt,

w(1)(i→ j) =
n∑

k,l,r,v=1

p1(k)p1(l)p1(r)p1(v)
e[Vjk+Vjl+Vjr+Vjv]/K∑
q e[Vqk+Vql+Vqr+Vqv]/K

. (3.17)

The resulting dynamic equation system can be solved numerically using the Euler

method, for example.

The pair approximation method takes a very similar approach but instead of one-site

probabilities it has two-site probabilities of finding possible i–j strategy pairings on

neighboring sites at its center, which we will denote by p2(i, j) following our earlier no-

tation. These probabilities should be consistent with the previous one-site probabilities.

When the original lattice system has rotational and translational symmetry, this means

satisfying
n∑
j=1

p2(i, j) =

n∑
j=1

p2(j, i) = p1(i) (3.18)

for each strategy i , as well as the normalization condition

n∑
i,j=1

p2(i, j) =

n∑
i=1

p1(i) = 1. (3.19)

At the pair approximation level the free energy of the system reads

Φ(2) =U (2) + TS(2) =
Nz

2

n∑
i,j=1

Vijp2(i, j)+

− 2NK
n∑

i,j=1

p2(i, j) ln p2(i, j) + (z − 1)NK
n∑
i=1

p1(i) ln p1(i).

(3.20)
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With the above in mind, both the direct numerical and the dynamical [108–110] solution

methods mentioned above can be developed for the pair approximation as well.

The pair approximation method can provide asymptotically exact results for an appro-

priate connectivity structure, namely, large randomly generated z-regular graphs, which

are locally tree-like and similar to the Bethe lattice [111, 112].

In the following chapters, we apply the above described methods to some simple combi-

nations of the elementary games introduced in Chapter 2 in order to study their basic

properties and critical behavior.



Chapter 4

Elementary coordination-type

games

In the traditional coordination game [26–28, 35, 113] two players each have to pick one

of two available strategies. If they both choose the same strategy, they both receive one

unit of payoff, regardless of which strategy they happen to coordinate on. Should they

fail to coordinate, they both lose the same amount. The corresponding payoff matrix is

d(1, 2; 2) =

(
1 −1

−1 1

)
. (4.1)

When this matrix defines nearest neighbor interactions in a multiagent game whose

strategy updates are governed by the logit rule, the game model is equivalent to the

zero-field Ising model [86, 114–116].

The general n-strategy elementary coordination game extends this with n − 2 further

available strategy choices which all provide zero payoff regardless of the opponent’s

strategy. In the following, we will call such strategies neutral, but they are also referred

to as invisible states in the statistical physics literature [117–125]. They are also similar

to the loner strategy in the voluntary prisoner’s dilemma (Section 2.4.2) and provide

the players with n−2 distinguishable ways to opt out of playing the coordination game.

Similarly, neutral strategies can be thought of as vacancies or inert, non-interacting states

in the physical interpretation. Without loss of generality, we may assign the coordinated

strategies to the first two and the neutral strategies to the last n− 2 strategy labels and

35



Chapter 4. Elementary coordination-type games 36

write the general elementary coordination game’s payoff matrix as

d(1, 2;n) =



1 −1 0 · · · 0

−1 1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


. (4.2)

Elementary coordination games are the simplest potential games that actually describe

proper player–player interactions and generate the space of games that describe pure

coordinations or anticoordinations. This chapter gives an overview of the basic macro-

scopic properties of the elementary coordination game when played on a square lattice

by multiple players whose strategy updates are governed by the logit rule using the

methods described in Chapter 3.

4.1 Mean-field approximation

In the mean-field approximation, as described in Section 3.2.2, the free energy density

of the elementary coordination game is given by

ϕ(1) =
1

N
Φ(1) =

z

2

n∑
i,j=1

p1(i)dij(1, 2;n)p1(j)−K
n∑
i=1

p1(i) ln p1(i) =

=
z

2
[p1(1)− p1(2)]2 −K

n∑
i=1

p1(i) ln p1(i)

(4.3)

as a function of the one-site probabilities of finding each strategy at a randomly chosen

site [112]. Solving Eqs. (3.15) numerically yields two kinds of competing states that

locally maximize free energy in the space of mean-field strategy distributions. Two sets

of representative solutions are plotted in Figures 4.1 and 4.2.

When the noise level is high, the system evolves into a disordered state in which all

strategies are chosen by equal shares of the population, so all ρi equal 1/n. As the

temperature K is lowered, this state eventually loses its stability at a strategy number–

dependent critical noise level K
(1)
c (n), and the system exhibits an order-disorder phase

transition. This is signaled by the spontaneous breaking of the Ising-type symmetry

of the two coordinated strategies in the equilibrium state. Below K
(1)
c (n), the share of

agents following one of the two coordinated Ising strategies increases as the temperature

decreases. From now on, we will assign label 1 to this majority strategy. The frequencies

of the remaining strategies all follow the opposite trend and diminish when the noise
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Figure 4.1. Strategy frequencies in the two competing metastable equilibrium states
as functions of noise-level in the elementary coordination game with a total of n = 4
strategies, as predicted by the mean-field approximation. The state with the highest

free energy is plotted with a thicker line.

level is lowered. The neutral strategies retain their symmetry and are chosen by more

players than the minority Ising strategy, strategy 2. In the low noise limit, as K goes

to 0, the Ising state becomes homogeneous and approaches the corresponding ground

state, in which ρ1 = 1.

As Figures 4.1, 4.2, and 4.3 suggest, it is not only the critical temperature K
(1)
c (n) that

depends on the number of neutral strategies but also the order of the phase transition.

As long as n is low enough, the transition remains continuous, just like in the Ising

model without any neutral strategies. This is illustrated by Figure 4.1, where n = 4,

and the difference in the frequencies of the coordinated strategies vanishes smoothly at

the critical point. In the n = 10 case shown in Figure 4.2, however, the equilibrium

strategy frequencies (plotted with thick lines) are discontinuous functions of K, so the

phase transition is of the first order.

The details of this change in the order of the phase transition can be explored analyti-

cally. Exploiting the symmetry and normalization properties of the numerical solutions,

we can reduce the number of independent variables in the variational free energy of

Eq. (4.3) to just two. If we choose them to be

a =
ρ1 − ρ2

2
and b =

n− 2

2

(
1

n
− ρ3

)
(4.4)



Chapter 4. Elementary coordination-type games 38

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1

st
ra

te
gy

 f
re

qu
en

cy

K

1

2

3−10

ISING

D
IS

O
R

D
E

R

Figure 4.2. Strategy frequencies in the mean-field approximated n = 10-strategy
elementary coordination game plotted against K. Thick lines correspond to the stable

equilibrium state.

in terms of the strategy frequencies, then the free energy density can be written as

ϕ(1) = 2za2 − (n− 2)
K

n

[
1− 2n

n− 2
b

]
ln

[
1− 2n

n− 2
b

]
+

− K

n
[1 + (a+ b)n] ln [1 + (a+ b)n]− K

n
[1 + (b− a)n] ln [1 + (b− a)n] ,

(4.5)

and equilibrium states satisfy ∂ϕ(1)/∂a = 0 and ∂ϕ(1)/∂b = 0 simultaneously. The

second equation can be rearranged to read

a2 =
n(n− 4)

(n− 2)2
b2 +

2

n− 2
b, (4.6)

which in turn can be plugged into the first equation, reducing it to a single variable,

b. aD = bD = 0 is a trivial solution that corresponds to the disordered state with

ρi = 1/n for all strategies. Further analysis reveals that this solution ceases to be a local

maximum location of the free energy when

K < K(1c)
c (n) =

2z

n
. (4.7)

Near this critical point, both a and b are small and positive when the phase transition

is continuous, which can be exploited to derive an approximate solution describing the



Chapter 4. Elementary coordination-type games 39

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5

st
ra

te
gy

 f
re

qu
en

cy

K

ISING

D
IS

O
R

D
E

R

Figure 4.3. Mean-field strategy frequencies for elementary coordination games with
n = 4, 5, 6, 7, 8, 10, 20, and 50 strategies (from right to left).

ordered phase close to K
(1c)
c (n). To leading order the solution is given by

aI ≈
√

2

n− 2
bI and bI ≈


3
2z
n−2
n−6

[
K −K(1c)

c (n)
]

for n 6= 6√
5
3z

[
K

(1c)
c (n)−K

]
for n = 6.

(4.8)

These results imply that for n ≤ n
(1)
th = 6 the mean-field approximated square-lattice

elementary coordination game undergoes a continuous phase transition at a critical tem-

perature K
(1)
c (n) = K

(1c)
c (n) = 2z/n, similar to the n = 4 case shown in Figure 4.1. The

quantities a and b are both order parameters for this transition, in the sense that their

value is non-zero in the ordered phase and vanishes in the disordered state. Eq. (4.8)

also predicts that their algebraic behavior in the vicinity of the transition point is char-

acterized by critical exponents β = 1/2 and β′ = 1 when n < 6, and β = 1/4 and

β′ = 1/2 when n = 6. The numerical results support all of these findings, as shown by

Figure 4.3.

In the opposite case, when n > n
(1)
th , the behavior of the solution changes, a and b only

provide sensible, real valued strategy frequencies above K
(1c)
c (n), not below it. This is

illustrated by the thin solid lines in Figure 4.2. The numerically obtained solutions of

the free energy maximization problem indicate that this behavior is accompanied by the

presence of a first-order phase transition. This ‘backward curving’ branch of the plot

describing the strategy frequencies does not play a role in the equilibrium behavior of

the system, because it never maximizes the free energy of the system. Consequently,
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Figure 4.4. Comparison of critical temperatures in the square-lattice elementary
coordination game obtained using different approximation methods and Monte Carlo

simulations.

first-order transitions occur above K
(1c)
c (n), that is, K

(1)
c (n) > K

(1c)
c (n) when n > n

(1)
th .

Furthermore, it also means that the approximate analytic solution does predict the pres-

ence of the first-order phase transition, but it does not describe the stable equilibrium

state of the system near the transition point. The existence of these metastable states

does, however, suggest the possibility of undercooling-related and hysteresis-related phe-

nomena in elementary coordination games.

The numerical analysis of the mean-field approximated model reveals that the critical

temperature of the phase transition is a monotonically decreasing function of the number

of neutral strategies. (It is plotted with crosses and plusses in Figure 4.4 for continuous

and first-order transitions, respectively.) Continuous transitions are correctly identified

and located by the analytical solution presented in the previous paragraphs, K
(1)
c (n) is

indeed given by K
(1c)
c (n) = 2z/n (the dotted line in Figure 4.4).

We can also derive an approximating analytic formula for the first-order transition tem-

peratures. The numerical results show that as n is increased, the critical temperature

decreases, while the share of the majority Ising strategy the transition leads to increases.

(Figure 4.3) So for large n, the transition occurs approximately between a completely

disordered phase with ρi = 1
n for all strategies and a completely ordered state with

ρ1 = 1 and ρi = 0 for the remaining n − 1 strategies. In the completely ordered state

U = 2N and the entropic term of the free energy vanishes, whereas in the completely

disordered phase U (1) = 0 and S(1) = N lnn in the mean-field approximation. The
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disordered phase gains stability when the entropic free energy of the disordered phase

exceeds the potential of the ordered phase, that is, when 2N < KN lnn. This places

the phase transition at approximately

K(1f)
c (n) =

2

lnn
. (4.9)

As expected, this approximation only proves to be effective for large n. This is confirmed

by Figure 4.4, where the solid line corresponds to K
(1f)
c (n), and first-order transition

temperatures for the mean-field approximated model are represented by plusses. We

find that K
(1f)
c (n) in general underestimates the mean-field first-order transition tem-

peratures.

The central idea of the above large-n approximation also provides a possible explanation

for the observed change in the order of the model’s phase transition. Adding more

and more neutral strategies to the system increases the free energy of the disordered

state at all temperatures through increasing its dominant entropic component. On the

other hand, the presence of additional neutral strategies does not directly contribute

to the potential of the ordered phase, nor does it significantly increase its entropy at

low temperatures, due to the highly homogenized nature of the ordered state. As a

result, the increased entropy content extends the stability region of the disordered phase,

lowering the critical temperature of the phase transition. Eventually, the stabilizing

effect of the entropy puts the nearly completely ordered state in direct competition

with the disordered state, which leads to the emergence of a first-order transition in

the system. So-called high entropy alloys [126–128], materials composed of at least five

different principal metal elements in roughly equal proportions, seem to exhibit a similar

entropy-based stabilization of solid-solution phases, which potentially induce desirable

properties.

4.2 Pair approximation

The pair approximation improves on the mean-field approach by considering two-site

probabilities and taking nearest-neighbor correlations into account. The corresponding

expression for the free energy density reads

ϕ(2) =
1

N
Φ(2) =

z

2

n∑
i,j=1

dij(1, 2;n)p2(i, j)+

− 2K

n∑
i,j=1

p2(i, j) ln p2(i, j) + (z − 1)K

n∑
i=1

p1(i) ln p1(i),

(4.10)
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Figure 4.5. Strategy frequencies in the pair approximated n = 4 elementary coordi-
nation game.

where the one-site probabilities p1(i) are normalized and consistent with the two-site

probabilities through the compatibility conditions in Eqs. (3.18) and (3.19) due to the

translational and rotational symmetry of the system.

Again, just like in the mean-field approximation, we can derive equations for the equi-

librium states that can be solved numerically. This approach again yields two types of

solutions, one ordered and stable in a low-temperature regime, and another with roughly

equal strategy frequencies that characterizes the system at higher temperatures. The

ordered phase breaks the symmetry of the coordinated strategies, and may be formed

by either of the two degenerate ordered equilibrium states. For the sake of simplicity,

we will assign strategy label 1 to the majority strategy in the ordered phase.

The results of this pair approximation approach are qualitatively quite similar to those

provided by the mean-field approximation method. For low enough n (e.g., n = 4

pictured in Figure 4.5), the transition between the ordered and disordered phases is

continuous, while high-n (e.g., n = 20 shown in Figure 4.6) versions of the model exhibit

a first-order phase transition.

However, we can see a marked difference from the mean-field solution in the structure of

the disordered phase. The disordered state is only completely disordered in the K →∞
limit. When K is finite, the two coordinated strategies are chosen more frequently than

the neutral ones, without breaking the symmetry of the payoff matrix. As K is lowered,

the gap between the frequencies of coordinated and neutral strategies increases, until

eventually the neutral strategies disappear in the K → 0 limit, though this happens
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Figure 4.6. First-order phase transition in the pair approximated elementary coordi-
nation game with n = 20 strategies.

deep in the ordered phase, where the disordered state is already unstable. This partial

ordering is a direct manifestation of the pair correlations introduced by the pair approx-

imation that do not simply prefer having more of one of the coordinated strategies as

the mean-field model, but actually rewards having matching coordinated strategies on

neighboring sites. Another resulting change in comparison with the mean-field approx-

imation is that in the close vicinity of continuous phase transitions the frequency of the

minority coordinated strategy can be higher than the frequency of neutral strategies

even in the ordered phase.

It is still true in the pair approximated model that the critical temperature is a mono-

tonically decreasing function of the number of neutral strategies. Numerically evaluated

critical temperatures are shown in Figure 4.4 for some values of n. The pair approx-

imated critical temperature K
(2)
c (n) is always lower than its mean-field approximated

counterpart K
(1)
c (n) for any fixed n, but they become very close to each other as soon as

the mean-field phase transition becomes discontinuous. The pair approximated model

requires a higher number of neutral strategies to possess a first-order transition, namely

more than n
(2)
th = 10.

4.3 Monte Carlo simulations

We also carried out Monte Carlo simulations in order to verify the qualitative predic-

tions of the mean-field and pair approximations and measure quantities like the critical
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Figure 4.7. Monte Carlo simulated strategy frequencies in the continuous phase
transition in the elementary coordination game with n = 4 strategies.

temperature and critical exponents in an experimental realization of the square-lattice

elementary game. To dampen finite-size effects, we imposed periodic boundary condi-

tions and the size of the simulated system and sampling and pre-thermalization times

were increased in the vicinity of the phase transition. The linear size varied from 300

to 1000 sites, while both the sampling and pre-thermalization times ranged from 104 to

105 Monte Carlo steps. Furthermore, to speed up the thermalization process, we started

the simulations in the ordered phase from a prepared, fully ordered initial state, while

simulation runs were started from a randomized initial state in the disordered phase.

The noise level dependence of the equilibrium strategy frequencies (shown in Figures 4.7

and 4.8 for n = 4 and 20) reveals that the matching qualitative predictions of the mean-

field and pair approximations for the system’s behavior are indeed correct. The Monte

Carlo simulation data confirm the presence of an order-disorder transition and the low-

temperature breaking of the symmetry of the two coordinated strategies. The critical

points of the transitions turn out to be lower than those predicted by the mean-field

and pair approximations. On the other hand, we also find that these estimates become

more and more accurate the larger n is, as demonstrated by Figure 4.4. The data also

corroborate the change in the order of the phase transition. If the number of available

strategies is at most the approximate threshold value of n
(MC)
th ≈ 27, the data indicate

(see Fig. 4.9) a continuous transition, while the transition seems to be of the first order

when the number of strategies is above it [112].

We find a similar change in the critical exponents of the transitions, as illustrated
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Figure 4.8. Strategy frequencies in the Monte Carlo simulated n = 50 elementary
coordination game.

by Figure 4.10. On the log-log plot of the Ising magnetization-like order parame-

ter ρ1 − ρ2 against the normalized distance of the noise level from the critical point

[Kc(n)−K] /Kc(n), simulation data for low enough n collapse onto the same straight

line in the vicinity of the critical point, which line coincides with Onsager’s exact so-

lution [129] to the two-dimensional square-lattice Ising model. This suggests that the

continuous transitions belong to the Ising universality class. However, we also find that

the higher n is the closer K has to be to the critical point for the Ising-type behavior to

manifest itself, making it more and more time-consuming to validate using Monte Carlo

simulations due to growing critical slowing down and finite-size effects. Nevertheless,

as Figure 4.10 shows, we still find that the order parameter seemingly follows algebraic

behavior near the critical point for higher strategy numbers and even above nth in our

simulation results, that is,

ρ1 − ρ2 ∝ [Kc(n)−K]β , (4.11)

but the exponent β is no longer equal to 1/8 that characterizes the Ising model, but

it seems to decrease with n when n is large enough. Such a variation in β with the

model’s defining parameter could, on one hand, be an essential feature of the model,

like it is of the Potts [130] and Ashkin–Teller [86] models. On the other hand, it could

also be explained by the enhancement of the entropy effect of the neutral strategies

as their number increases, which—just like finite-size effects—decreases the correlation

length, and our simulation temperatures not being sufficiently close to the critical point.

Of course, these two possible explanations are not mutually exclusive, so the observed

n-dependence of β could be the result of a combination of both of them.
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Figure 4.9. Comparison of the phase transitions of the n = 24, 25, 26, 27, 28, and 30
(from right to left) elementary coordination games.

As we will later see in Chapter 5, elementary coordination games can be considered

as special cases of the Blume–Capel model. This analogy confirms the validity of our

findings, which are in excellent agreement with the existing literature. This includes

providing further evidence of the elementary coordination game having a continuous

phase transition that belongs to the Ising universality class when n ≤ nth = 27 and

a first-order transition otherwise. This also suggests that the slight variation of β in

our simulation data is caused by the entropy effect, at least when the transitions are

continuous.

The other potential order parameter suggested by the mean-field analysis, the quantity

b in Eq. (4.4), turns out to not be an order parameter for the unapproximated system,

as both the pair approximation and simulation results show that it does not vanish in

the disordered phase. This is a direct consequence of the asymmetry between coordi-

nated and neutral strategies and a manifestation of the game’s preference for having

matching coordinated strategy pairs on neighboring sites. In the disordered phase, the

increase in the system’s potential that could be realized by breaking the symmetry of

the coordinated strategies is evidently not high enough to offset the loss this process

would cause in the entropic term of the free energy, but having a slightly, symmetrically

higher amount of both coordinated strategies than neutral strategies still produces a

net gain in the free energy over the completely disordered phase. The gap between the

frequencies of the coordinated and neutral strategies is a decreasing function of K and

vanishes as K →∞, because the entropic term of the free energy is proportional to the

system’s temperature, unlike the potential term that does not directly depend on K.
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Figure 4.10. Log-log plots of the order parameter of different elementary coordination
games. The squares, circles, diamonds, downward and upward pointing triangles, and
pentagons correspond to Monte Carlo simulation data for games with n = 4, 6, 10, 20,
25, and 50 strategies respectively. The solid line shows Onsager’s exact result [129] for

the two-dimensional square-lattice Ising model.

4.4 Microscopic behavior

The Monte Carlo simulation method also allows us to examine the microscopic details

of the dynamics. A strategy configuration of the system can be easily visualized by

assigning different colors to different strategies and coloring a square lattice—whose sites

represent the players—accordingly. The movies generated by the dynamics reveal the

mechanics of ordering and some interesting pattern formation in the spatial distribution

of the strategies. Furthermore, we will see that observing the time evolution of the

system can also help develop an approximation method for the critical temperature

based on the invasion velocities along interfaces separating domains.

As we have seen earlier in this chapter, the system evolves toward an ordered state if

the noise level is below the critical point. If we start the system from a randomized

initial state (Figure 4.11a), we can see all important stages of how such an ordered state

is formed. At first, the system is obviously disordered, with at most a few neighboring

sites occupied by players playing the same coordinated strategy, and these islands are

surrounded by a sea of neutral strategies, especially if n is high. Because of the positive

payoff provided by coordination, these islands are more likely to grow than shrink, and

through this domain-growing process larger domains of both coordinated strategies are
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a) b) c)

d) e)

f) g)

Figure 4.11. Snapshots of the domain growth process described on page 47, in the

n = 50 elementary coordination game [K
(if)
c (50) ≈ 0.517] at K = 0.3. Black and

white sites are occupied by players following the two coordinated strategies and players
at orange (gray) sites play one of the neutral strategies. Panels a) through c) show
the emergence of the domain structure. In panels d) and e), the black coordinated
domain percolates in both directions of the square lattice and eventually takes over the
whole system. In another simulation run, however,—pictured in panels f) and g)—there
are two opposing coordinated domains that both percolate in only one direction and

eventually evolve into a striped structure.
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a) b)

Figure 4.12. Two snapshots of Monte Carlo simulated n = 50 elementary coor-
dination games taken at a) K = 0.3 and b) K = 0.2. Neutral separating monolayers
between different coordinated domains recede to corners when the temperature is below

K(ml)(50) ≈ 0.258.

formed. The domains keep growing into the mixed sea of interchangeable neutral strate-

gies, which in turn becomes thinner and thinner (Figure 4.11b) between the domains,

until it eventually disappears (Figure 4.11c) as neighboring domains of the same coor-

dinated strategy merge or becomes a neutral monolayer wall that separates differently

coordinated domains. For lower temperatures, deep within the ordered phase, these

monolayers recede into corner-like interfaces, as pictured in Figure 4.12b. On the other

hand, the separating neutral monolayers remain present between opposing domains if

the temperature is higher, like in Figure 4.12a. In either case, domains formed by the

same strategies keep merging, while the domain walls keep randomly moving, smooth-

ing and straigthening out the domain walls to decrease losses along interfaces, until

finally one of the domains percolates and engulfs all other domains (Figures 4.11d and

4.11e). Sometimes the system may get stuck for a long time in a striped or faceted

metastable configuration where two large opposing domains remain in the system, as

shown in Figures 4.11f and 4.11g. Similar phenomena can also be observed in Monte

Carlo simulations of the Ising model for single-spin-flip Glauber dynamics [131–133].

Due to the probabilistic nature of the logit strategy update rule, the domains are never

perfectly coordinated at any finite temperature, and point defects may appear with a

temperature-dependent probability. These point defects are responsible for the incom-

plete homogenization of the system at finite temperatures, but they also drive domain-

growing and domain-merging processes by initiating the invasion of one domain by an-

other. The increased rate of defect generation also prevents the nucleation process from

forming domains in the disordered phase. In the bulk, point defects are generally short-

lived at low temperatures because players can gain a relatively high increase in payoff if
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they return to coordination with four neighbors. At the edge of a domain, however, the

losses of defectors become smaller, so they are more likely to appear, shift the domain

wall, and thus make neighboring players more likely to defect. In fact, if one of the

players along a straight domain wall defects, then their two (now opposing) neighbors

along the edge will choose any strategy with the same probability—should they be given

the opportunity—because they have the same number of neighbors following opposing

coordinated strategies, so the defect will likely grow if the temperature and the number

of available neutral strategies is high. This is also why a neutral monolayer separating

two opposing coordinated domains can be relatively stable if the temperature is high

enough.

Based on the above observations, we can estimate the critical temperature of the system

and the temperature above which separating monolayers are present by calculating and

comparing certain domain growth probabilities. Moreover, the simulations suggest that

the most relevant changes occur at step-like vertical and horizontal interfaces, so we

can reasonably assume that simply comparing invasion velocities along such interfaces

is sufficient for obtaining good approximations. Below the critical temperature, when

the number of neutral strategies is high, coordinated domains first have to invade a

disordered domain mostly made up of interchangeable neutral strategies. Figure 4.13a

illustrates a horizontal step-like interface separating such coordinated and disordered

domains. At this step, the probability of the coordinated domain expanding to site x is

w(sx → sx,1) =
e2/K∑
ŝx

eux(ŝx)
, (4.12)

whereas the probability of the expansion of the neutral domain to site y is the probability

of the player at site y switching to any one of the n− 2 neutral strategies, which is

n∑
j=3

w(sy → sy,j) =
n− 2∑
ŝy

euy(ŝy)
. (4.13)

Notice that the denominators of the two expressions are equal, because site x and site

y are surrounded by the same set of neighboring strategies. If we neglect the possibility

of either the player at site x or the player at site y switching to the other coordinated

strategy—the lower the noise level and the higher n is, the lower the probability of these

transitions becomes—we may conclude that the ordered coordinated domain will expand

at the expense of the mixed neutral domain when

w(sx → sx,1) > (n− 2)w(sy → sy,3), (4.14)

that is, when e2/K > (n − 2), while the disordered phase prevails in the opposite case.
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Figure 4.13. Proposed interface types in the elementary coordination game for the
invasion-velocity-based estimation of the critical temperature of a) the order-disorder
phase transition and b) the stability of the neutral monolayers separating opposing
coordinated domains. White and black squares represent players following the two
coordinated strategies, while players at orange (gray) sites play one of the neutral

strategies.

At the critical point of the order-disorder phase transition neither growth direction is

preferred to the other by the system, so the two probabilities are equal to each other.

This yields the following approximate formula for the critical temperature:

K(if)
c (n) ' 2

ln (n− 2)
. (4.15)

Comparison with Monte Carlo simulation data reveals (see Figure 4.4) that this is indeed

an asymptotically good approximation of the critical temperature for large n.

The stability of separating monolayers between opposing coordinated domains can also

be analyzed in a similar way by checking whether a ‘half’ separating neutral layer

(Fig. 4.13b) is more likely to grow or shrink. The probability of the layer growing

by one site is again formally given by Eq. (4.13), though the terms in the denominator

are different due to the changed strategy configuration of the neighboring sites. The

probability of the layer receding is

w(sx → sx,1) =
e1/K∑
ŝx

eux(ŝx)
, (4.16)

and we again neglect the role of less probable transitions to the other coordinated strat-

egy. Comparing the two probabilities yields a strategy number dependent characteristic

temperature

K(ml)(n) ' 1

ln (n− 2)
=

1

2
K(if)

c (n). (4.17)

Above this temperature, separating neutral monolayers will expand and coat horizontal

and vertical domain walls in the ordered phase, while in the opposite case the monolayers

recede to the corners of the domains. This prediction is again confirmed by Monte Carlo

simulations of elementary coordination games with a large number of neutral strategies.
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4.5 Potts models with invisible states

Refs. [117–125] study a very similar model family called Potts models with invisible

states and report very similar results regarding a change in the order of the transi-

tion as the number of invisible states is increased. They take the usual q-state Potts

model [130, 134], whose payoff matrix in our game theoretic framework is the q × q

unit matrix, and extend it with r neutral strategies, the same way as the traditional

coordination game d(1, 2; 2) is extended to the n-strategy elementary coordination game

d(1, 2;n). For q = 2, the Potts model becomes equivalent to the Ising model defined by

d(1, 2; 2) up to a payoff-shifting irrelevant component. It turns out, however, that the

irrelevant component has a non-negligible role in this situation, as its extension with

neutral strategies significantly changes the elementary game content of the irrelevant

component. For example, when we add a single neutral strategy, the resulting payoff

matrix has more elementary coordination components than just one, and the original

coordination’s strength is changed as well:

P(q = 2, r = 0) =

(
1 0

0 1

)
=

1

2
m(2) +

1

2
d(1, 2; 2), (4.18)

P(2, 1) =


1 0 0

0 1 0

0 0 0

 =
4

9
m(3)− 1

3
f(3; 3) +

4

9
d(1, 2; 3) +

1

9
[d(1, 3; 3) + d(2, 3; 3)] .

Consequently, elementary coordination games and the two-state Potts model with addi-

tional invisible states are not equivalent to each other, even though they can be obtained

by extending equivalent models with neutral strategies.

In light of this, it may seem somewhat surprising how similar their properties turn out

to be. The q = 2 Potts model with invisible states also changes the order of its phase

transition as the number of invisible states increases [117–119] (Refs. [120, 121] pro-

vide a rigorous proof), its critical temperature is a monotonically decreasing function of

the number of available states and also vanishes asymptotically as 2
ln (q+r) [124]. Even

the threshold number of states separating continuous and first-order transitions is very

similar: in the mean-field approximation r
(1)
th = 3 [117] (or more precisely, after general-

ization to non-integer strategy numbers r
(1)
th ≈ 3.65 [123, 124]), while on a Bethe lattice

with z = 4 neighbors r
(2)
th = 9 [123], which both translate to total strategy numbers

very close to their elementary coordination game counterparts n
(1)
th = 6 and n

(2)
th = 10.

All these similarities hint at the robustness of the entropy effect of introducing neutral

strategies that extends the disordered phase’s region of stability.
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Interplay of elementary

coordination and self-dependent

components

Some of the simplest complex matrix games in terms of elementary game content are

the combinations of the elementary coordination game of Chapter 4 and self-dependent

games that retain the interchangeability of the coordination component’s n− 2 neutral

strategies. The two simplest ways such a self-dependent component can be introduced

are defined in relation to the symmetry of the coordinated strategies: the introduced

self-dependent component may either break or respect that symmetry [135]. The corre-

sponding payoff matrices are of the form

A′ = d(1, 2;n) + h′e(1;n), (5.1)

A′′ = d(1, 2;n) + h′′ [e(1;n) + e(2;n)] , (5.2)

where h′ and h′′ are the strengths of the symmetry-breaking and symmetry-retaining

self-dependent components, respectively. These are both potential games, and their

potential matrices are

V′ = d(1, 2;n) + h′f(1;n), (5.3)

V′′ = d(1, 2;n) + h′′ [f(1;n) + f(2;n)] , (5.4)

using the notations introduced in Chapter 2. As we have seen in Chapter 3, it is a game’s

potential that determines its equilibrium state and properties when strategy updates are

governed by the logit rule, so any other games with the same potential will behave in

essentially the same way while potentially providing different payoffs.

53
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In this chapter, we discuss the macroscopic properties of the two composite games men-

tioned above, played on a square lattice and governed by the logit strategy update rule.

First, however, let us take a look at purely self-dependent games which, together with

the results reported in Chapter 4, will allow us to identify interplay effects between the

self-dependent and the coordination-type components.

5.1 Self-dependent games

A purely self-dependent game with n available strategies has a payoff matrix of the

general form

A(sd) =
n∑
k=1

εke(k;n), (5.5)

that is, it has the same entries in each of its rows. The elements of the corresponding

potential matrix are given by

V
(sd)
ij = εi + εj . (5.6)

We call these games self-dependent precisely because the payoffs of the players are not

affected by the strategy choices of their opponents. Consequently, the logit strategy

update rates do not depend on the actual configuration of the system either, they are

constant, and directly give the equilibrium one-site probabilties ρi of finding strategy i

at any site. On a regular network with coordination number z, these probabilities read

ρi =
ezεi/K∑
k ezεk/K

. (5.7)

As we have seen earlier in Secion 3.1.1, this tends to the uniform distribution over all n

strategies as K goes to infinity and to another uniform distribution over strategies with

maximal εi strength in the opposite low-temperature limit of K → 0. Moreover, ρi is

a monotonically decreasing function for strategies with maximal εi as a function of K,

but it monotonically increases for all other strategies.

Specifically, these probabilities for the self-dependent games that are of interest in this

chapter are

ρ1 =
ezh
′/K

ezh′/K + (n− 1)
and ρi =

1

ezh′/K + (n− 1)
for i > 1 (5.8)

in the game h′e(1;n) and

ρ1 = ρ2 =
ezh
′′/K

2ezh′′/K + (n− 2)
and ρi =

1

2ezh′′/K + (n− 2)
for i > 2 (5.9)
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when the payoff matrix is h′′ [e(1;n) + e(2;n)] [135].

5.2 The symmetry-breaking game

Adding a self-dependent component to the elementary coordination game in the way

prescribed by Eq. (5.1) has somewhat different effects on the system and its phase

transition depending on the number of available strategies and the sign and strength of

the self-dependent game component [135].

In the mean-field approximation, the free energy density of the game system is given by

ϕ(1) =
z

2
[p1(1)− p1(2)]2 + zh′p1(1)−K

n∑
i=1

p1(i) ln p1(i) (5.10)

from which we can derive a set of equations for an approximation of the equilibrium one-

site probabilities of finding players following each strategy. Their numerical solutions

predict the following changes in the system’s behavior with respect to the elementary

coordination game considered in Chapter 4.

When n ≤ n
(1)
th and the elementary coordination game undergoes a continuous phase

transition, its extension with a symmetry-breaking self-dependent component abolishes

the phase transition (see Figure 5.1a). It still remains true that the system is ho-

mogeneously ordered in the low-temperature limit and completely disordered in the

high-temperature limit, but the transition becomes smooth.

If h′ > 0, strategy 1 is the most and strategy 2 is the least frequent, and neutral strategies

are followed by equal shares of the population at all finite noise levels. Notice that in the

pure elementary coordination game either strategy 1 or strategy 2 could form the thus

twice degenerate ordered phase, which is not the case when h′ 6= 0. The frequency of

strategy 1 monotonically decreases from 1 to 1/n as the temperature is increased from 0

to infinity, while the frequencies of the remaining strategies monotonically increase from

0 and tend to 1/n from below.

On the other hand, setting h′ < 0 reverses the order of the strategy frequencies, because

in this case strategy 2 offers the highest average payoff. As a result, the frequency of

strategy 2 is a monotonically decreasing function of the temperature that goes to 1 in the

low-temperature limit, while this time strategy one has the lowest frequency that mono-

tonically increases with temperature. The frequency of the neutral strategies remains

between the frequencies of the coordinated strategies, but it ceases to be a monotonic

function of the noise level, because it surpasses its asymptotic K →∞ limit of 1/n at a

finite noise level. This is explained by the fact that the self-dependent component of the
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Figure 5.1. Strategy frequencies in the mean-field approximated n = 5 elementary
coordination game with a symmetry-breaking self-dependent component. Different col-
ors correspond to different values of the h′ strength parameter; solid, dashed, and
dash-dotted lines represent the frequencies of strategy 1, strategy 2, and the neutral

strategies, respectively. Stable states are drawn with thick lines.

game only penalizes the choice of the first strategy when h′ is negative. This means that

in the high-temperature limit, when the effects of spontaneous coordination are sup-

pressed, the self-dependent component of the game should determine the asymptotics,

which would suggest that strategies with maximal εi (in the present case all strategies

except strategy 1) have frequencies that tend to 1/n from above, while remaining fre-

quencies approach 1/n from below. The actual asymptotics of the game are of course

also affected by the interplay between the self-dependent and coordination components:

The increase in the number of 2-strategists induced by the self-dependent component

also increases their payoff through the coordination component which further boosts the

number of 2-strategists and discourages choosing strategy 1.

In the n > n
(1)
th case, the first-order phase transition exhibited by the elementary coordi-

nation game is not necessarily abolished by the introduction of the symmetry-breaking

self-dependent component, as can be seen in Figure 5.1b. In fact, the transition only

vanishes when h′ is above a positive critical value h′c. In the low-temperature limit the

system is homogeneously ordered and players coordinate on strategy 1. As the tem-

perature is increased, the share of 1-strategists decreases, while the number of players

following the other strategies increases, and again ρ1 > ρi = ρj > ρ2 holds at all tem-

peratures for all i, j > 2; the strategy frequencies are again smooth, monotonical, and

tend to 1/n in the K →∞ limit, like in the previously discussed lower n case.

Most of the above-mentioned properties remain true for 0 < h′ < h′c except for the

smoothness of the strategy frequencies: The system still undergoes a first-order phase

transition if the self-dependent component is not strong enough, though some of its

characteristics do change. In this case, the transition occurs between two branches of

the same locally smooth multivalued function, as opposed to the h′ = 0 elementary
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Figure 5.2. Pair approximated strategy frequencies in the n = 20 game defined by
the payoff matrix A′ in Eq. (5.1). For an explanation of what the lines represent, see

the caption to Figure 5.1.

coordination game, whose transition happens between two states that are not analyti-

cally connected. The presence of the self-dependent component also changes the critical

temperature of the transition, which becomes higher as h′ is increased.

The h′ < 0 game is similar to the previous 0 < h′ < h′c system in that it possesses

a similar first-order transition. The chief difference, just like in the n < n
(1)
th case, is

that due to the punishment meted out through the self-dependent component to players

following strategy 1, the numerical order of the strategy frequencies is inverted, and

strategy 2 is chosen most frequently at all temperatures. The non-monotonicity of the

frequency of neutral strategies can be observed in this case as well. In this regime, the

critical temperature only changes very slightly, it increases if the magnitude of h′ < 0 is

increased.

As the data plotted in Figure 5.2 illustrate, the pair approximation analysis of the game

defined by the payoff matrix A′ also results in the same qualitative findings as those

obtained using the mean-field approach above.

5.3 The symmetry-retaining game

The symmetry-retaining version of the game defined by the payoff matrix A′′ in Eq. (5.2)

deviates from its constituent elementary game in a more uniform way than its symmetry-

breaking counterpart A′. It turns out that tuning h′′ can change the order of the

phase transition or even abolish it completely, regardless of the number of available

strategies [135]. This section discusses the macroscopic equilibrium properties of this

game based on results obtained within the framework of the mean-field approximation

method. Figure 5.3a shows the mean-field approximated equilibrium strategy frequencies

for the n = 5-strategy version of the game. For different n, we find qualitatively similar
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Figure 5.3. Strategy frequencies in a) the mean-field approximated and b) pair ap-
proximated n = 5 elementary coordination game with an added self-dependent compo-
nent that retains the symmetry of the coordinated strategies, whose payoff matrix is
given by Eq. (5.2). Line types and colors were chosen the same way as in Figure 5.1.

solutions. Furthermore, these findings are also supported by the pair approximation

method, as suggested by Figure 5.3b.

When h′′ is above a threshold value h′′c , the system possesses a continuous phase transi-

tion. Above a critical temperature, the system is in a disordered state, in which the two

coordinated strategies are followed by equal shares of the population. In the mean-field

approximation, the disordered phase is accurately described by the equilibrium state

of the self-dependent component of the game, whose strategy frequencies are given by

Eq. (5.9). Accordingly, this disordered state tends to a uniform distribution of strategies

as K goes to infinity, while either the coordinated or neutral strategies vanish in the

opposite K → 0 limit, depending on the sign of h′′. As the temperature of the system is

lowered below the critical temperature, however, the disordered phase loses its stability,

the symmetry of the two coordinated strategies is spontaneously broken in a continuous

manner, and an ordered phase is formed. As before, we will again use strategy label

1 for the majority and 2 for the minority coordinated strategy in the ordered phase,

without any loss of generality. The frequency of the majority coordinated strategy goes

to 1 in the low noise limit, while the remaining strategies vanish. In essence, the system

is very similar to the n < nth elementary coordination game, even if n is actually higher

than nth. Consequently, the lower bound of this parameter regime, h′′c is determined by

n, and we find that the higher n is, the higher h′′c becomes. The critical temperature of

the phase transition is also an increasing function of h′′, as can be seen in Figure 5.4.

As a generalization of the case of the elementary coordination game and Eq. (4.7), the

stability analysis of the disordered state in the mean-field approximation leads to a

formula for the critical temperature of the system’s continuous phase transitions in the
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Figure 5.4. Critical temperatures in the game defined by the payoff matrix A′′ in
Eq. (5.2) as a function of the strength h′′ of the self-dependent component for n = 5
and 20 available strategies, mean-field (pair) approximation results are represented by
boxes (diamonds) and upward (downward) pointing triangles, respectively. Continuous
transitions are indicated by filled symbols. Solutions of the implicit formula Eq. (5.11)
for the critical temperature of the continuous transition are drawn with dotted and
dash-dotted lines. The solid and dashed lines correspond to the results of the invasion

front velocity method [Eq. (5.12)].

following implicit form:

K(1c)
c (h′′, n) = 2zρ1[K(1c)

c (h′′, n)] = 2z
ezh
′′/K

(1c)
c (h′′,n)

2ezh′′/K
(1c)
c (h′′,n) + (n− 2)

. (5.11)

When the strength of the self-dependent component is set below h′′c but still exceeds

another critical value h′′f , the system’s behavior resembles that observed in the n > nth

elementary coordination game. An order-disorder phase transition can still be observed,

but it is of the first order instead of being continuous. Otherwise, most macroscopic

properties of the phases are carried over from the h′′ > h′′c game to this parameter

region. For example, the numerical order and the asymptotics of the equilibrium strategy

frequencies in both the high- and low-temperature limit remain the same, and increasing

h′′ is still accompanied by an increase in the critical temperature of the phase transition.

Exploiting the similarity of the symmetry-retaining game to the elementary coordination

game, the critical temperature of first-order transitions can again be estimated using

the invasion front method introduced in Section 4.4. Comparing invasion velocities for

the step-like neutral-coordinated interface pictured in Figure 4.13 yields the following
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approximation:

K(if)
c (h′′, n) ' 2 + 4h′′

ln (n− 2)
, (5.12)

which is analogous to and generalizes the result in Eq. (4.15). As Figure 5.4 shows,

this approximation again proves better the deeper the system is inside the first-order

transition regime, that is, the higher n and the lower h′′ is.

For h′′ below h′′f , the coordinated ordered phase loses its stability at all temperatures to

the disordered phase (described by Eq. (5.9) in the mean-field approximation), which

in turn abolishes the phase transition. With this in mind, h′′f is the strength of the

self-dependent component for which the potential of the ordered and disordered phases

is equal in the low-temperature K → 0 limit. In the ordered phase this means uniform

coordination with an average potential of U/N = z/2 + zh′′. The low-temperature limit

of the disordered phase depends on the sign of h′′. When it is positive, the disordered

state is dominated by coordinated strategies, and the potential goes to U/N = zh′′,

which is clearly lower than its counterpart in the ordered phase. Conversely, there are

only neutral strategies in the disordered state, so the average potential is U/N = 0.

Comparison with the ordered state yields h′′f = −1/2, regardless of n or z, and valid for

the system without using any kind of approximation.

5.4 Bunching of neutral strategies

The results presented in the previous section show remarkable similarity to those ob-

tained in the elementary coordination game of Chapter 4, with the opposite of the self-

dependent component’s strength −h′′ seemingly playing a similar role to the number of

available strategies n.

To shed light on the precise nature of this similarity, let us first bunch together the n−2

interchangeable neutral strategies of the payoff matrix A′′ [for a definition see Eq. (5.2)]

and determine the payoff matrix of the corresponding three-strategy game Ã′′n−2. We

can write the logit strategy update rates [Eq. (3.2)] for A′′ in the following way:

w(sx → s′x) =
e[dx(s′x,s−x)+zh′′]/K(δ1,s′x + δ2,s′x) + (1− δ1,s′x − δ2,s′x)

e[dx(1,s−x)+zh′′]/K + e[dx(2,s−x)+zh′′]/K + (n− 2)
, (5.13)

where δi,j denotes Kronecker’s delta, dx (s′x, s−x) is the total payoff of player x in the

elementary coordination game d(1, 2;n) when playing strategy s′x in surrounding strat-

egy environment s−x, and we exploited the linearity of combining payoff components,

the self-dependent property of h′′[e(1;n) + e(2;n)], and the neutrality of strategies 3

through n. Bunching the neutral strategies together involves replacing the n−2 neutral



Chapter 5. Interplay of elementary coordination and self-dependent components 61

strategies with a single strategy 3̃ whose logit rate is equal to the total rate of choos-

ing any one of the original neutral strategies, while keeping the coordinated strategies,

their payoffs, and switching rates the same. Because of the neutrality of the replaced

strategies, the latter condition can easily be satisfied by simply truncating the payoff

components that contribute to the subgame defined by the coordinated strategies, that

is, replacing d(1, 2;n) and h′′[e(1;n) + e(2;n)] with d(1, 2; 3) and h′′[e(1; 3) + e(2; 3)]

respectively. This leaves

w̃(s̃x → 3̃) =
n∑

sx=3

w(sx → s′x) =
n− 2

e[d̃x(1,̃s−x)+zh′′]/K + e[d̃x(2,̃s−x)+zh′′]/K + (n− 2)
(5.14)

to be satisfied, which boils down to the condition

eũx(3̃,̃s−x)/K = n− 2 = eln (n−2) (5.15)

that prescribes a self-dependent component paying K ln (n− 2)/z to 3̃-strategists. Here

ũx and d̃x are the payoff functions of Ã′′n−2 and the three-strategy elementary coordina-

tion game. Of course, we may also shift the payoffs of the game by adding an arbitrary

irrelevant component, for instance −[K ln (n− 2)/z]i(3), which leads to the bunched

three-strategy equivalent payoff matrix

Ã′′n−2 = d(1, 2; 3) +

[
h′′ − ln (n− 2)

z
K

]
[e(1; 3) + e(2; 3)] . (5.16)

This is also an elementary coordination game with a symmetry-retaining self-dependent

component in the mold of A′′ with just a single available neutral strategy and a self-

dependent component whose strength depends on the temperature K of the system. In

fact, it is exactly the temperature-dependent part (and that alone) that emulates the

presence of n − 2 neutral strategies by bunching them together. In other words, the

extension of any n-strategy game by k neutral strategies that is played on a z-regular

network can be reduced to the truncated (n + 1)-strategy version of the game with an

additional temperature-dependent self-dependent component h̃′′ke(n+ 1;n+ 1), where

h̃′′k =
ln k

z
K. (5.17)

5.5 Equivalence to the Blume–Capel model

Bunching the neutral strategies in the symmetry-retaining game A′′ allows us to directly

connect it to an established model of statistical physics, the zero-field Blume-Capel

model.
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The zero-field Blume–Capel model [136–139] is defined [140] by the spin-1 Hamiltonian

H = −
∑
〈ij〉

σiσj + ∆
∑
i

σ2
i , (5.18)

where the spin variables σi take on one of the values +1, −1, or 0, the parameter ∆ is

called crystal-field coupling, and 〈ij〉 indicates summation over nearest neighbor pairs

of sites. This model translates to the game theoretic model defined by the payoff matrix

A(BC) =


1− 2∆

z −1− 2∆
z −∆

z

−1− 2∆
z 1− 2∆

z −∆
z

−∆
z −∆

z 0

 (5.19)

if spin states +1, −1, and 0 are mapped onto strategies 1, 2, and 3, respectively. This

game is potential-equivalent to

Ã(BC) = d(1, 2; 3)− ∆

z
[e(1; 3) + e(2; 3)] , (5.20)

which has the same structure as the bunched payoff matrix Ã′′n−2. As a result, any

elementary coordination game with a symmetry-retaining self-dependent component can

be mapped onto the Blume–Capel model by setting

∆ = K ln (n− 2)− zh′′. (5.21)

The bunching mechanism also allows us to actually realize elementary coordination

games with non-integer strategy numbers. Our previously presented results can also be

extended to these games by simply considering n as a continuous variable and assuming

analyticity in n.

The Blume–Capel model hosts two stable phases, as shown by its phase diagram in

Figure 5.5. One of them is a ferromagnetic, ordered phase characterized by the alignment

of either +1 or −1 spin states, which corresponds to coordination on either of the first

two strategies of the corresponding game Ã(BC). The other, paramagnetic phase is

either completely disordered at high temperatures or dominated by the 0 spin state

at low temperatures and high crystal fields. The transition between the two phases is

continuous and belongs to the Ising universality class in the former case, but it is of the

first order in the latter case [136–140].

The parametrization Eq. 5.21 of the bunched game Ã′′n−2 traces a straight line in the

two-dimensional parameter space of the Blume–Capel model for any fixed n and h′′

as the system’s temperature K is changed, and the model’s phase transitions occur

when the line intersects the Blume–Capel phase boundary (see Figure 5.5 for examples).
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Figure 5.5. Comparison of the Ã′′n−2 bunched elementary coordination game to the
phase diagram of the Blume–Capel model on the square lattice. The black lines indicate
the phase boundary of the Blume–Capel model between its Ising-ordered and disordered
phase, transitions across the solid part of the curve are continuous and belong to the
Ising universality class, while transitions across the dotted line are of the first-order.
The colored lines trace ∆ as a function of the temperature K for different Ã′′n−2 models.
Different line types and line colors correspond to different value of n and h′′, respectively.
The data used to draw the phase boundary were taken from Ref. [140], which compiles

results from Refs [140–144].

Comparison with the phase diagram reveals that increasing the number of strategies n

decreases the slope of the line, which generally drives the system towards the first-order

transition regime and decreases the critical temperature. Conversely, the strength of

the self-dependent component h′′ determines the intersect of the parameter line, which

means that for high h′′ the phase transition is continuous and expected to belong to

the Ising universality class. For lower h′′, the transition may be of the first order, and

for sufficiently low h′′ (h′′ < −1/2) the line does not intersect the phase boundary for

any positive K, which means that the system exhibits no phase transition. All of these

qualitative findings are in excellent agreement with those reported in Chapters 4 and 5

and Refs. [112, 135].

The value of nth, the highest number of strategies for which the elementary coordination

game still possesses a continuous phase transition, can also be estimated by exploiting the

equivalence of the bunched elementary coordination game to the Blume–Capel model. In

the Blume–Capel model, the continuous and first-order segments of the phase boundary

are separated by a tricritical point, which is approximately located at ∆t = 1.966,

Kt = 0.608 [140]. Since elementary coordination games are represented by straight

lines that go through the origin of the Blume–Capel model’s parameter space, the line
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separating n ≤ nth and n > nth elementary coordination games has to pass through both

the origin and the tricritical point. Thus, after plugging h′′ = 0 and the coordinates of

the tricritical point into Eq. (5.21), we get

nth =
⌊
e∆t/Kt + 2

⌋
= 27. (5.22)

The invisible states of the extended Potts model from Section 4.5 can also be bunched

together in a similar way. For the q = 2 Ising version of the model, this also leads to

an established model of statistical physics, the Blume–Emery–Griffiths model [117, 123,

124, 145, 146].



Chapter 6

Maximally nonoverlapping

coordination games

In Chapters 4 and 5 games with a single elementary coordination component were dis-

cussed. An obvious next step in a systematic investigation of the interplay between

different game components is the examination of games composed of multiple elemen-

tary coordinations. Of course, there are numerous different ways to combine coordina-

tion games when the number of available strategies is high. In this chapter, we study

a highly specific set of games we call maximally nonoverlapping coordination games.

These games have an even n = 2m number of strategies and are made up of m elemen-

tary coordinations whose coordinated strategies do not overlap, that is, each strategy is

involved in only one of the constituent elementary coordinations. The choice of these

models is motivated by two considerations. First, we may reasonably expect the in-

terplay between nonoverlapping components to have a more comprehensible effect than

games with more complex structures. For example, we will see that at the mean-field

approximation level a composite game essentially boils down to a competition between

its nonoverlapping components, and deviations from this predicted behavior in simula-

tion results may indicate more subtle interplay effects. Second, we can also expect that

the presence of neutral strategies in a general game has a very similar entropic effect

to the one observed in the elementary coordination game and otherwise only obfuscates

other interplay effects; in “maximal” games without neutral strategies, however, these

effects should be much more prominent and easier to identify.

The payoff matrix of a general maximally nonoverlapping coordination game [147] made

up of m elementary coordinations can be written as

A(m) =

m∑
i=1

d(2i− 1, 2i; 2m) (6.1)

65
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after an appropriate relabeling of the strategies. Since it is a purely coordination-type

game, its potential and payoff matrices are identical.

In this chapter, we first analyze the properties of maximally nonoverlapping coordination

games at the mean-field approximation level. The rest of the chapter concentrates

on analytic and Monte Carlo simulation results for the four-strategy or two-Ising-pair

version of the game, its connection to established models of statistical physics, and its

critical properties, and then moves on to comparatively discuss the six-strategy version

of the game.

6.1 Mean-field approximation

The mean-field approximated free energy of the general m-Ising-pair maximally coordi-

nated nonoverlapping coordinated game is given by

ϕ(1) =
z

2

m∑
i=1

[p1(2i− 1)− p1(2i)]2 −K
2m∑
j=1

p1(j) ln p1(j). (6.2)

Under the normalization constraint, the possible competing equilibrium states of the

system satisfy the stationary point equations Eq. (3.15), which can be solved numerically.

Figure 6.1a shows solutions found for the m = 4-Ising-pair, eight-strategy game.

When the temperature is high, we find only one solution, the totally disordered state,

in which players choose their strategy according to the uniform distribution, that is, the

one-site probabilities p1(i) are all equal to 1/n for all strategies. As a result, both the

expected average payoff and the potential vanish in the disordered state.

At lower temperatures, m other types of solutions emerge. (See Figure 6.1.) In contrast

to the disordered state, these all break some of the symmetries of the strategies. More

precisely, they each break the symmetry of a different number of the m coordinated

strategy pairs while keeping the pairs themselves interchangeable. So in the 2k
(
m
k

)
-

times degenerate state that breaks the symmetry of k pairs, for example, k of the 2m

strategies that belong to different elementary coordination components are present in

the system with equal and higher frequencies than they are in the disordered state,

while the ratios of players following their coordinated counterparts are also equal to

each other but fall below 1/n. The frequencies of the remaining 2(m− k) strategies also

drop equally, albeit to a smaller extent than the frequencies of the minority strategies.

As their symmetry remains unbroken, these (m−k) coordinated pairs do not contribute

to the potential term of the free energy, so they effectively become neutral. In the low-

temperature K → 0 limit, the one-site probability distribution p1(i) tends to a uniform
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Figure 6.1. Competing equilibrium states in the mean-field approximated eight-
strategy maximally nonoverlapping coordination game. Panel a) and panel b) show
their strategy frequencies and free energy, the five different colors correspond to the
five competing states: the black, blue, green, and yellow (progressively lighter) curves
belong to the states that break the symmetry of one, two, three, and four of the co-
ordinated pairs, respectively, while the orange (lightest) lines stand for the disordered
state. In panel a), the frequencies of majority, neutral, and minority strategies are rep-
resented by different line types. Thick lines highlight the stable state with the highest

free energy.

distribution over the k majority strategies, and consequently the state’s average free

energy goes to z
2k , so the less pair symmetries the state breaks, the higher its limiting

free energy becomes.

It turns out that the order of the free energies of the different symmetry-breaking states

remains the same in the whole low-temperature regime (see Figure 6.1), and the stable

equilibrium state breaks the symmetry of only one of the coordinated strategy pairs.

Consequently, the frequencies of the remaining 2m − 2 strategies are all equal, which

reduces the free energy expression in Eq. (6.2) to the one in Eq. (4.3) that is the mean-

field approximated free energy of the d(1, 2; 2m) elementary coordination game. Ac-

cordingly, the state itself is also identical to the mean-field approximated ordered state

of d(1, 2; 2m). In a nutshell, the two models are mean-field equivalent, and the results

and predictions regarding the general behavior and the phase trasitions of the model

reported in Section 4.1 also apply to maximally nonoverlapping coordination games.

In the following, we will show, through the examples of the two- and three-Ising-pair

games, that this equivalence does not extend to the experimental Monte Carlo realiza-

tions of these systems and highlight some of their differences, mostly focusing on their

critical properties.
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6.2 The two-Ising-pair game

The four strategy maximally nonoverlapping game is a combination of two elementary,

Ising-type coordination games that do not share any of their coordinated strategies and

reward coordination equally [147]. This description applies to three different-looking

payoff matrices:

A(2) = d(1, 2; 4) + d(3, 4; 4) =


1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

 , (6.3)

d(1, 3; 4) + d(2, 4; 4) =


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 , (6.4)

d(1, 4; 4) + d(2, 3; 4) =


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 . (6.5)

The first of these in Eq. (6.3) is of course the “canonical” maximally nonoverlapping

payoff matrix defined by Eq. (6.1). The other two payoff matrices can easily be trans-

formed into the first one by simply exchanging the labels of strategies 2 and 3 in Eq. (6.4)

and 2 and 4 in Eq. (6.5), so the games defined by the three payoff matrices are clearly

equivalent to each other.

Both of the “noncanonical” payoff matrices are used in the literature of statistical physics

to introduce the model called the four-state clock model [134, 148, 149], which uses

equidistantly spaced angles θ = 2πi
n (i = 1, 2, 3, or n = 4) to characterize possi-

ble spin orientations and derives from them the nearest neighbor interaction energy

− cos (θx − θy).

Importantly, the four-strategy clock model is equivalent to a system made up of two

identical independent uncoupled Ising models with dimensionless coupling coefficients of

1/2 [148]. In fact, this equivalence relation is a special case of a more general connection

involving the so-called Ashkin–Teller model and a coupled double Ising-type model.
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The Ashkin–Teller model [150] is defined by the payoff matrix

A(AT) =


ε ε′ ε′′ ε′′′

ε′ ε ε′′′ ε′′

ε′′ ε′′′ ε ε′

ε′′′ ε′′ ε′ ε

 . (6.6)

In terms of elementary games, it can also be written as

A(AT) = (ε− ε′)[d(1, 2; 4) + d(3, 4; 4)] + (ε− ε′′)[d(1, 3; 4) + d(2, 4; 4)]+

+ (ε− ε′′′)[d(1, 4; 4) + d(2, 3; 4)] + εm(4),
(6.7)

a linear combination of the three forms of the four-strategy maximally nonoverlapping

coordination game and the irrelevant game, where we introduced the shorthand notation

ε =
ε+ ε′ + ε′′ + ε′′′

4
(6.8)

for the mean of the four defining parameters of the Ashkin–Teller payoff matrix.

Alternatively, the configurations of the Ashkin–Teller model can be represented by in-

troducing two independent Ising spins (Tx, Sx = ±1) at each site and mapping the

two-spin states (+,+), (+,−), (−,+), and (−,−) to strategies 1, 2, 3 and 4, respec-

tively [86, 148, 151, 152]. In this representation, the potential of the pair interaction

between players x and y is given by

Uxy = J0 + J ′SxSy + J ′′TxTy + J4SxSyTxTy, (6.9)

where J0 = ε simply shifts the potential of all configurations, J ′ = (ε+ ε′ − ε′′ − ε′′′)/4
and J ′′ = (ε − ε′ + ε′′ − ε′′′)/4 are Ising coupling coefficients in the two spin sectors,

and the fourth term couples these Ising models via a four-spin interaction of strength

J4 = (ε−ε′−ε′′+ε′′′)/4. It may not seem evident in this two-layer Ising spin formulation

of the model, but the permutation symmetry of the parameters in the Ashkin–Teller form

Eq. (A.2) also implies that the model is invariable under permutations of the parameters

J ′, J ′′, and J4 [153]. For a maximally nonoverlapping coordination game, two of the

parameters ε′, ε′′, and ε′′′ are equal to each other and ε, which results in one of the J

parameters vanishing that—by the symmetry mentioned above—means that the four-

spin interaction term is missing and the two Ising spin sectors are decoupled. The general

Ashkin–Teller model is expected to have two phase transitions that coalesce into a single

transition when the middle two of the model’s defining ε parameters are equal [153–155],

which implies that the two-Ising-pair model has only one phase transition.
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In Ref. [150] Ashkin and Teller develop a self-duality relation for the model defined by

the payoff matrix A(AT) that then they apply to the special case ε′ = ε′′ = ε′′′ equivalent

to the four-state Potts model [130, 134] to determine its critical temperature. The

very same method can also be used to calculate the critical temperature of the four-

strategy maximally nonoverlapping coordination game. In Appendix A, we summarize

the relevant results of Ashkin and Teller and rederive a duality relation for the two-

Ising-pair coordination game A(2) already mentioned in Refs. [134, 152]. This relation

combined with Kramers and Wannier’s argument presented in Refs. [156, 157] gives the

critical temperature

Kc(2) =
1

ln(
√

2 + 1)
≈ 1.1346. (6.10)

This result coincides with the critical temperature of the two-Ising-pair coordination

game’s constituent 1/2-strength Ising models [134, 152]. Moreover, it also concurs with

the critical temperature reported for the four-state clock model in Ref. [158], which is

the product of a different duality-based approach.

By changing the signs of all payoffs, we get an anticoordination version of the game.

In this case the above-mentioned duality argument breaks down. On bipartite lattices,

however, like the square lattice in question, this anticoordinated system can easily be

mapped onto its coordinated counterpart, by exchanging the labels of the anticoordi-

nated strategy pairs on one of the sublattices. This means that two-Ising-pair antico-

ordinated systems, too, undergo the same type of phase transition, and form sublattice

ordered structures under Kc(2). In fact, we can further generalize this result using essen-

tially the same argument: all games made up solely of m non-overlapping, same-strength

(either coordinated or anticoordinated) n = 2m-strategy elementary coordination games

are equivalent to their all-coordinated m-Ising-pair coordination game counterparts on

any bipartite lattice.

The existence of the single continuous transition and the value of the critical tempera-

ture Kc(2) as derived from the Ashkin–Teller duality relation are also corroborated by

our Monte Carlo simulation data [147] presented in Fig 6.2 that place the transition

at K
(MC)
c (2) = 1.135(1). The temperature dependence of the strategy frequencies is

qualitatively similar to the prediction provided by the mean-field approximation. Below

the critical temperature the system spontaneously breaks the symmetry of just one of

the two coordinated strategy pairs. The lower the temperature is, the more players

follow the majority strategy, and in the low-temperature K → 0 limit the system be-

comes homogeneous, completely ordered. Unlike the mean-field equivalent elementary

coordination game (see Fig. 4.7), the two-Ising pair game is completely disordered at all

temperatures above the critical temperature, not just in the K →∞ limit, owing to the

higher symmetry of its payoff matrix.
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Figure 6.2. Continuous phase transition in the two-Ising-pair game, Monte Carlo
simulated strategy frequencies.

We extracted critical exponents from the Monte Carlo data to characterize the critical

behavior of the phase transition. The results are summarized by Fig. 6.3. Based on

the mean-field analysis in Sec. 4.1, we looked at the temperature dependence of the

following two order parameters, which are both naturally generalized to arbitrary m-

Ising-pair games:

M1(m) = ρ1 − ρ2, (6.11a)

M2(m) = 1− 2mρ3 = 1− 2mρj for j > 3. (6.11b)

The reciprocal relations that give the strategy frequencies as functions of these order

parameters are

ρ1 =
1

2m
[1 + (m− 1)M2(m) +mM1(m)] , (6.12a)

ρ2 =
1

2m
[1 + (m− 1)M2(m)−mM1(m)] , (6.12b)

ρj =
1

2m
[1−M2(m)] for j ≥ 3. (6.12c)

The first order parameter, M1(m), is the usual Ising or elementary coordination-type

order parameter, while the other, M2(m), is related to the remaining strategies that are

present in the system with equal frequencies. In these definitions, we tacitly assumed

strategy 1 to be the majority strategy in the ordered phase and strategy 2 to be its

coordinated pair. Both order parameters vanish in the disordered phase and go to 1 as
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Figure 6.3. Log-log plots of the order parameters [panel a)] and fluctuations [panel b)]
in the square-lattice two-Ising-pair game. M1(2) and χ1(2) are represented by circles,

squares correspond to M2(2) and χ2(2), and filled diamonds stand for χ′(2).

K → 0 and the system becomes homogeneously ordered. They both exhibit power-law-

type behavior close to the critical temperature, that is,

Mj(m) ∝ [Kc(m)−K]βj(m) . (6.13)

The existence of two independent order parameters for the system’s phase transition

is not unexpected considering that general Ashkin–Teller models can have two phase

transitions [153–155].

As Fig. 6.3a demonstrates, we find that the order parameter M1(2) coincides with On-

sager’s exact results [129] for the Ising model’s order parameter M1(1) as an algebraic

function of the normalized relative noise level [Kc(m)−K] /Kc(m) in the ordered phase.

As a result, the critical exponent of M1(2) equals the corresponding exponent of the Ising

universality class, that is, β1(2) = β1(1) = 1/8, in accordance with the analytical results

presented in Ref. [148]. The second order parameter’s critical exponent turns out to be

higher, approximately β
(MC)
2 (2) ' 1/4. Interestingly, this reproduces the prediction of

the mean-field approximation insofar as estimating β2(2)/β1(2) = 2, which was definitely

not the case in the mean-field equivalent elementary coordination game, as there M2(m)

is neither an order parameter, since it does not vanish in the disordered phase, nor does

it follow a power law close to criticality. Fitting the 13 data points closest to the critical

point in Fig. 6.3a yields the estimates β
(f)
1 (2) = 0.124(1) and β

(f)
2 (2) = 0.247(2).

To further explore the critical properties of the two-Ising-pair game, we also measured

the fluctuations of the order parameters that are expected to increase following a power

law as the temperature approaches its critical value. We evaluated three such quantities,
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which for the general m-Ising-pair game are defined by

χ1(m) = N
{〈

[ρ1(t)− ρ2(t)]2
〉
− [ρ1 − ρ2]2

}
, (6.14a)

χ2(m) =
N

2m− 2

n∑
i>2

〈
[ρi(t)− ρi]2

〉
, (6.14b)

χ′(m) =
N

2m

2m∑
i=1

〈[
ρi(t)−

1

n

]2
〉
, (6.14c)

where the angled braces denote time-averaging and ρi = 〈ρi(t)〉 are the estimates of the

equilibrium strategy frequencies. χ1(m) and χ2(m) measure the fluctuations of the two

order parameters below the critical temperature, while χ′(m) quantifies the fluctuations

in the disordered phase. The averaging over strategies with equal equilibrium strategy

frequencies was introduced in χ2(m) and χ′(m) to improve statistical accuracy. The

three quantities diverge following power laws of the form

χi ∝ |K −Kc(m)|−γi(m) (6.15)

as the temperature approaches its critical value.

In the two-Ising-pair game, specifically, we find that γ
(f)
1 (2) = 1.85(4), γ

(f)
2 (2) = 1.69(2),

and γ′(f)(2) = 1.68(3) after fitting the 13 data points that are closest to the critical point

in Figure 6.3b for each susceptibility χi. These values are remarkably close to each other

and γ = 7/4 that is characteristic of the Ising universality class, especially considering

the statistical and systemic errors of our Monte Carlo method.

The estimated values of β1(2) and γ1(2) suggest that the correspondence of the two-

Ising-pair game and its constituent half-strength Ising models goes beyond the simple

coincidence of their critical temperatures and extends to the coincidence of the uni-

versality classes of their phase transitions. In the following section, we show that this

robustness of Ising-type behavior does not extend to the three-Ising-pair version of the

game.

6.3 The three-Ising-pair game

The three-Ising-pair, six-strategy maximally nonoverlapping game’s payoff matrix can

always be written as

A(3) = d(1, 2; 6) + d(3, 4; 6) + d(5, 6; 6) (6.16)

after appropriately relabeling the strategies and rescaling the payoffs.



Chapter 6. Maximally nonoverlapping coordination games 74

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8 1.0

st
ra

te
gy

 f
re

qu
en

cy

K

1

2

3−6

ISING

D
IS

O
R

D
E

R

Figure 6.4. Monte Carlo simulated strategy frequencies of the three-Ising-pair game.

As illustrated by Fig. 6.4, the temperature dependence of the three-Ising-pair game’s

strategy frequencies is qualitatively very similar to that found in the two-Ising-pair

case, in accordance with the predictions of the mean-field approximation. It exhibits a

continuous order-disorder phase transition, whereby a completely disordered phase loses

its stability as the temperature is lowered below K
(MC)
c (3) = 0.9084(1), accompanied

by the spontaneous breaking of the symmetry of just one of the constituent coordinated

strategy pairs. This also means that M1(3) and M2(3), as defined by Eq. (6.11a) and

Eq. (6.11b), are indeed two separate order parameters associated with the same, unique

phase transition, which both vanish algebraically as the temperature approaches its

critical value from below and go to 1 in the low temperature limit as the system becomes

homogeneously ordered.

On closer inspection of the system’s critical properties, however, quantitative differences

emerge. Fitting the 13 data points of Fig. 6.5 that lie closest to the critical points

yields the following estimates: β
(f)
1 (3) = 0.0745(5), β

(f)
2 (3) = 0.102(1), γ

(f)
1 (3) = 1.33(2),

γ
(f)
2 (3) = 1.08(2), and γ′(f)(3) = 0.93(2). These clearly place the transition outside of the

Ising universality class, which is a departure from the two-Ising pair game. Even certain

relations between the different exponents cease to hold. The ratio of β2(3) and β1(3)

does not match the mean-field prediction, and the three γ(3) exponents are definitely

not all equal to each other, γ1(3) being larger than the other two, which seem to remain

close to each other.

The chief reason that leads to these dissimilarities is probably the subtle difference

between the symmetries of the two-Ising-pair and three-Ising-pair payoff matrices. In the
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Figure 6.5. Critical behavior of the three-Ising-pair game. The notations are the
same as in Fig. 6.3.

two-Ising-pair game the two constituent elementary games, d(1, 2; 4) and d(3, 4; 4), have

the same two-element permutation symmetry between each other that connects their

coordinated strategy pairs and defines the Ising model. In the three-Ising-pair game,

however, the three constituent elementary games, d(1, 2; 6), d(3, 4; 6), and d(5, 6; 6), and

the whole game is invariant under their three-element permutations, which is the defining

symmetry of the three-state Potts model instead of the Ising model. As mentioned

earlier, the ordered phase explicitly breaks the symmetry of one of the Ising symmetric

strategy pairs, but also breaks the Potts symmetry of the pairs. Yet the measured critical

exponents match neither those of the Ising model nor those of the three-state Potts

model, so the transition’s universality class must be affected in a nontrivial way by the

composition and resulting interplay of the game’s elementary components. Nevertheless,

it may also be possible to construct further order parameters for the model in such a

way that they highlight these underlying symmetries.



Chapter 7

A game of competing Ising and

Potts components

This chapter deals with a seemingly more complex game, made up of more elementary

coordination components than those discussed previously. Still, we will see that its

properties are related to its constituent game components in a more tangible way than

what we found in the three-Ising-pair game, for example.

The game’s payoff matrix can be described as follows [159]. The first two of its five

available strategies define an elementary coordination subgame with the symmetry of

the Ising model, whereas the subgame of the remaining three strategies is a pure

coordination-type game equivalent to the three-state Potts model, and these two sets of

strategies are neutral to each other. The Ising and the Potts subgames are not necessar-

ily of the same strength. We fix the unit of payoffs to be the reward for coordination in

the Ising subgame, while α will denote the corresponding Potts payoff. This description

is formalized by the payoff matrix

A(IP)(α) =



1 −1 0 0 0

−1 1 0 0 0

0 0 α −α
2 −α

2

0 0 −α
2 α −α

2

0 0 −α
2 −α

2 α


(7.1)

that can alternatively be written as

A(IP)(α) = d(1, 2; 5) +
α

2
[d(3, 4; 5) + d(3, 5; 5) + d(4, 5; 5)] (7.2)

in terms of elementary game components.

76
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Figure 7.1. Strategy frequencies in the mean-field approximated A(IP)(α) game for
different values of α. Solid, dashed, and dash-dotted lines correspond to the Ising-type,
the Potts-type, and the disordered states, respectively. Thicker lines indicate the stable

equilibrium state with the highest free energy.

The game’s preferred Nash equilibria are all players uniformly choosing one of the first

two Ising strategies when α < 1, one of the three Potts strategies when α > 1, and any

one of the five strategies when α = 1.

7.1 Cluster variation analyses

First, let us briefly survey the most important macroscopic properties of the model at the

mean-field approximation level [159]. As we have seen earlier, noninteracting subgame

components contribute to separate terms of the mean-field approximated potential, and

as a result the fixed point equations Eq. (3.15) of their strategies are only coupled via the

normalization constraint. Consequently, after numerically solving the equations, we find

that the system’s behavior can be effectively described as a direct competition between

its constituent Ising and Potts components.

The competing states are shown in Fig. 7.1. As usual, it turns out that the system

is completely disordered in the high temperature limit, and order emerges only below

a critical point. This time, however, there are two types of ordered states that can



Chapter 7. A game of competing Ising and Potts components 78

0.9

1.0

1.1

1.2

1.0 1.2 1.4 1.6

α

K

ISING

POTTS

D
IS

O
R

D
E

R
E

D

Figure 7.2. Mean-field phase diagram of the game of competing Ising and Potts com-
ponents given by the payoff matrix A(IP)(α). Solid and dashed lines indicate continuous

and first-order phase transitions, respectively.

gain stability. The first of them is the ordered state of the five-strategy elementary

coordination game introduced in Sec. 4.1, which we will refer to as the Ising-type state

of A(IP), because it breaks the Ising symmetry of the first two strategies. Conversely,

the other ordered state retains this symmetry and breaks the Potts symmetry of the

last three strategies instead. The two ordered states are of course twice and three times

degenerate. In the following, we will assign strategy labels 1 and 3 to the majority

strategies of the Ising- and the Potts-type states, respectively.

At α = 1, when the two subgames reward coordination equally, the Ising-type state forms

continuously below K
(mf)
I = 2z/n, where z is the coordination number of the model and

n = 5 denotes the number of available strategies. In the following, we will assume z = 4

to be compatible with an underlying square lattice, which leads to K
(mf)
I = 1.6. The

Potts-type state, on the other hand, appears in a discontinuous manner, as a metastable

state of the system, below another critical temperature, K
(mf)
P (α = 1) ' 1.413(5). Since

α is the strength of the Potts component, the critical temperature of the Potts-type

state scales proportionally with α as K
(mf)
P (α) = αK

(mf)
P (α = 1).

Comparing the free energies of the two competing ordered states, we find that the stable

equilibrium state of the system may show one of three kinds of temperature dependences

for different values of α. The phase diagram in Fig. 7.2 gives an overview. When α ≤ 1,

the Potts-type state cannot gain stability over its Ising-type counterpart, and thus the

system becomes equivalent to the five-strategy elementary coordination game. Raising α
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Figure 7.3. Competing states in the pair approximated AIP(α) game, using the same
notations as in Fig. 7.1.

above 1, so that the Potts component provides higher payoffs than the Ising component,

leads to the stabilization of the Potts phase in the low-temperature regime. As long

as α is lower than the critical value α
(mf)
c = 1.132(5), the system exhibits two phase

transitions: The continuous order-disorder transition already present for α ≤ 1 can still

be observed at K
(mf)
I , and the Ising phase and the low-temperature Potts phase are

separated by a first-order transition at K
(mf)
I−P (α) ≤ K(mf)

P (α), which is also an increasing

function of α. For α ≥ α
(mf)
c , K

(mf)
P (α) ≥ K

(mf)
I and the Potts-type state has higher

free energy for all K ≤ K
(mf)
I than the Ising-type state, so the Ising phase vanishes.

The Potts phase loses its stability to the disordered phase via a first-order transition at

K
(mf)
P (α). The system acts just like the three-state Potts model’s extension with two

neutral strategies.

The pair approximation approach [159] leads to qualitatively similar results, as illus-

trated by Fig. 7.3, with a few differences that are very similar to those found in the

elementary coordination game. On the quantitative side, the predicted critical tem-

peratures are lower in the higher-order pair approximation. Qualitatively, the most

significant change is in the structure of the disordered state. At the pair approximation

level, it is not completely disordered at finite temperatures, but it has an α-dependent

structure instead that still respects the symmetries of the payoff matrix. As long as the
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system’s order-disorder transition occurs between the Ising and the disordered phases

(Fig. 7.3a and 7.3b), the frequencies of the two Ising strategies are higher than the

frequencies of the other three strategies, and this gap opens up as the temperature is

lowered until eventually the Potts strategies vanish in the K → 0 limit. Conversely, the

disordered state is characterized by a majority of Potts states when α > α
(p)
c (Fig. 7.3c),

and the Ising states are squeezed out in the low temperature limit. Notice that this

also affects the unstable Ising state, since it changes the way it loses its metastability,

including the apparently still continuous transition’s now α-dependent location K
(p)
I (α).

7.2 Monte Carlo simulation results

We carried out Monte Carlo simulations in order to verify the predictions of the mean-

field and pair approximation methods. The simulations were performed on square lat-

tices of linear sizes varying from 400 to 3, 000 sites with thermalization and sampling

times ranging from 104 to 106 Monte Carlo steps. The larger system sizes and longer

run times were used closer to the phase transitions to counteract critical slowing down

caused by the divergence of fluctuations and relaxation times.

Simulation runs were started from homogeneously pre-ordered Ising-type and Potts-type

initial states to steer the system into their finite temperature partially ordered metastable

counterparts, which the system can get stuck in for long periods of time even if it is

not the stable equilibrium state of the system, allowing us to study both competing

phases. In addition to allowing access to metastable states, another advantange of

this method is that it significantly reduces the length of the transient domain growing

processes preceding the formation of the ordered states, thus increasing the efficiency of

the simulation. On the other hand, this exploitation of the metastability of states has a

serious drawback as well, as it prevents the identification of the stable equilibrium state.

So, in order to locate phase transitions, we also had to perform more time-consuming

simulations that were started from randomized initial states. Figure 7.4 shows the time

evolution of strategy frequencies in two such simulations for the same value of α but two

different temperatures. At first, the random distribution of strategies seems to favor the

two Ising strategies, because their frequencies rise while the number of players following

Potts strategies decreases in both cases during the initial nucleation of clusters of like

strategies and the subsequent emergence of a domain structure. Following this process,

the evolution of the system changes and becomes governed by the movement of these

domain walls. In the first case pictured in Figure 7.4a, the Potts domains invade the

Ising domain until one of them percolates and eventually engulfs the system. At a higher

temperature (Fig. 7.4b), however, the roles are switched, and one of the Ising states takes
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Figure 7.4. Time evolution of strategy frequencies in Monte Carlo simulation runs
started from random initial states. The simulations were performed on a square lattice
of linear size L = 1, 600. The measured data were smoothed for these graphs by taking
averages over time periods ranging from 0.95t to 1.05t for each time step t in order to

suppress fluctuations and get a clearer view of trends.

over the system in a similar fashion. These results concur with the predictions of mean-

field and pair approximations regarding the presence of a Potts order to Ising order

phase transition.

Results obtained by combining the random initial state and pre-ordered initial state

Monte Carlo methods are plotted in Figure 7.5. The qualitative predictions of the

mean-field and pair approximations are mostly borne out by the simulation data. For

α ≤ 1 only Ising-type ordering proves stable in the low temperature regime. Conversely,

above a critical value α
(MC)
c the system’s ordered phase is Potts ordered. Interestingly,

the simulation data and the predictions of the pair approximation are at odds in this

case: The Ising states can still be slightly more frequent than their Potts counterparts in

the disordered phase at finite temperatures according to the simulation data (Fig. 7.5c),

though for higher values of α (Fig. 7.5d) the pair approximation prediction is recovered.

This is especially interesting in conjunction with the fact that the square-lattice three-

state Potts model’s phase transition is also continuous [130]. More interestingly, the

data for α = 1.1 hint at the order-disorder transition becoming a continuous transition.

When 1 < α < αc, both ordered phases can be observed, the Ising phase below, and the

Potts phase above the first-order transition temperature K
(MC)
I−P (α). On the quantitative

side, we again find that the cluster variation methods overestimate critical temperatures,

more so when the transition in question is continuous. Moreover, this seems to result in

the apparent shrinking of the size of the α parameter region for which both phases may

be stable by about one order of magnitude compared to the prediction provided by the

mean-field approximation approach.

To characterize the order-disorder phase transitions of the system, we also studied the

critical behavior of the system’s ordered phases close to the corresponding transition



Chapter 7. A game of competing Ising and Potts components 82

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8 1.0 1.2

st
ra

te
gy

 f
re

qu
en

cy

K

1

2

a)

3,4,5

ISING

D
IS

O
R

D
E

R

α=1

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8 1.0 1.2

st
ra

te
gy

 f
re

qu
en

cy

K

1

2

3

4,5

IS
IN

G D
IS

O
R

D
E

R

POTTS

b)
α=1.01

0.0

0.2

0.4

0.6

0.8

1.0

0.7 0.9 1.1 1.3

st
ra

te
gy

 f
re

qu
en

cy

K

c)

1,2

3

4,5

D
IS

O
R

D
E

R

POTTS α=1.02

0.0

0.2

0.4

0.6

0.8

1.0

0.7 0.9 1.1 1.3

st
ra

te
gy

 f
re

qu
en

cy

K

d)

1,2

3

4,5

D
IS

O
R

D
E

R

POTTS α=1.10

Figure 7.5. Monte Carlo simulated strategy frequencies plotted against the system’s
temperature in the game of competing Ising and Potts components.

temperatures. Specifically, we were interested in two order parameters, one measuring

the degree of order for each ordered state. We chose the standard order parameters used

in the literature for the constituent subgame models, ρ1 − ρ2 for the Ising phase [129]

and ρ3− (ρ4 + ρ5)/2 for the Potts phase [130, 160]. As Figure 7.6 shows, the Ising order

parameter vanishes following a power law approaching the order to disorder transition

when α = 1 and 1.01, and the Potts order parameter does the same for α = 1.02

and 1.1. We estimated the critical exponents of the transitions by fitting algebraic

functions to the data points in Figure 7.6 that were closest to their respective transition

temperatures. The Ising order parameter’s critical exponent turned out to be β
(MC)
I (1) =

0.135(10) for α = 1 with K
(MC)
I (1) = 1.06665(10) and β

(MC)
I (1.01) = 0.131(10) for

α = 1.01 with K
(MC)
I (1) = 1.05373(10), which both are remarkably close to βI = 1/8

charateristic of the two-dimensional Ising model [129]. In the α = 1.1 case, performing

the same calculations for the Potts order parameter yielded K
(MC)
P (1.1) = 1.1777(10)

and β
(MC)
P (1.1) = 0.102(10), which is in close agreement with the corresponding critical

exponent βP = 1/9 of the square-lattice three-state Potts model [130]. The similar

Potts order to disorder transition observed at K
(MC)
P (1.02) = 1.0432(10) in the α =

1.02 version of the model, however, seems to be markedly different with β
(MC)
P (1.02) =

0.0754(10).
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In conclusion, our results suggest that the behavior of the AIP(α) game is dominated by

its Ising component for α ≤ 1 and its Potts component for α > αP. In both cases, the

system exhibits just a single order-disorder phase transition between an ordered phase

that spontaneously breaks the symmetry of the dominant component and a disordered

state that has a slight majority of the dominant component’s coordinated strategies.

Furthermore, the phase transition apparently belongs to the dominant subgame’s (i.e.,

the Ising or the three-state Potts model’s) universality class. When αc < α < αP, we

still observe only one order-disorder transition, this time between a Potts-type ordered

state and an Ising majority disordered state. It does not seem to belong to either the

Ising or the Potts universality class. Finally, for 1 < α < αc, both the Ising and the

Potts phases become stable, the Potts state below KI−P(α), the Ising state above it.

The order-disorder transition appears to be of the Ising universality class.

At first sight, the stable presence of the Ising phase for 1 < α < αc might seem somewhat

counterintuitive, since the Potts-type state provides a higher average payoff. The total

dominance of the Ising phase when α = 1 is similarly puzzling, because the Potts state

still leads to better payoffs (Fig. 7.7) for finite temperatures. (The ground state is

five-fold degenerate.) As Figure 7.7 illustrates, it is the entropic term KS of the free

energy that stabilizes the Ising-type state in spite of its lower average payoff. Both

ordered states have four minority strategies, but these are distributed differently. The

Potts-type state has two minority strategies with higher and two with lower frequencies,
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Figure 7.7. Comparison of the average payoffs and average entropies of the Ising-
and Potts-type states in the Monte Carlo simulated AIP(1) game. Filled symbols
indicate the stable equilibrium state. The entropies were estimated using the mean-
field approximation formula S/N = 1

K

∑
i ρi ln ρi. Plotted entropy data points are

connected by lines.

whereas the same ratio is three to one in the Ising-type state. As a result, the Ising-

type state is comparatively less ordered than the Potts-type state. Consequently, its

entropy is higher and grows faster as the temperature increases, which in turn means

that its free energy also increases faster and becomes higher than that of the Potts-type

state, thus becoming the stable equilibrium state. The higher-paying Potts phase not

being the stable equilibrium state can be thought of as an entropic social trap situation,

wherein the presence of a competing higher-entropy state prevents the community of

players from maximizing their total payoff.



Chapter 8

Conclusion

In this thesis, I have given an overview of my recent research into the properties of a hand-

ful of logit-rule-driven simple coordination-type games. I have used well-known meth-

ods of statistical physics to investigate both the microscopic and macroscopic behavior

of these systems ranging from analytical calculations through different approximation

methods to Monte Carlo computer simulation techniques. The overarching long-term

aim of this continued work is to learn more about the implications and potential utility

of the linear decomposition of games into elementary components representing different

interaction types, the characteristics of the individual elementary games, and the way

the interplay between combinations of multiple game components affect them.

In Chapter 2, I have introduced the game theoretic model family of (two-player, symmet-

ric) matrix games and the concept of their linear decomposition, along with a proposed

basis set of games that classifies game components based on their level and symmetry of

interactivity. The outcome of an irrelevant game is fixed regardless of the choice of either

player. In cross- and self-dependent games players can unilaterally set their opponent’s

and their own payoffs, respectively, but not the other way around. Coordination-type

and cyclic dominance games, on the other hand, define proper player–player interactions

wherein both players equally influence each other’s winnings, equally sharing in the for-

mer, one taking away from the other in the latter. Certain properties directly derive

from this decomposition. For example, the presence of a cyclic dominance component

precludes the game from having a potential, and social dilemmas are caused by the

game containing a strong enough antisymmetric (hierarchical) combination of the cross-

and self-dependent components. Moreover, decomposition can help reveal the inherent

symmetries between a game’s strategies and expose the differences and similarities be-

tween games defined by different payoff matrices by making permuting strategy labels

more tractable, which is closely related to both tasks: Two payoff matrices that can be
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mapped onto each other by such a permutation define the same game, and a symmetry of

the game is defined by its payoff matrix being self-equivalent under certain nonidentity

strategy label permutations.

Chapter 3 has dealt with the connection between potential games and statistical physics

and has briefly introduced some of the latter’s concepts and methods that were used in

the studies this thesis is based on. When multiple players, who are located at the sites

of a lattice or the nodes of a network structure, repeatedly play two-player symmetric

potential matrix games with their neighbors and they choose their strategies according

to the logit stochastic strategy update rule, the corresponding game theoretic model

becomes equivalent to a classical spin model. The players and their available strategies

act like spins and the states they can be in, the negative of the game’s potential plays

the role of the spin model’s Hamiltonian, and the noise level parameter of the logit

rule is analogous to the temperature of the statistical physical system. Similarly, we

can also define the game system’s free energy, and combine approximations and the

variational principle that this free energy is maximal in the system’s equilibrium steady

state to predict its properties. The accuracy of these results can be verified by computer

simulations—direct realizations of the model, which coincide with the so-called Monte

Carlo simulation technique in the spin model context. The original work presented in

this thesis concerns such multiplayer square-lattice potential games governed by the logit

rule.

Chapter 4 has discussed the simplest potential games describing proper player–player

interactions, elementary coordination games. In the general n-strategy version of the

game, two of the strategies are coordinated, which means that choosing either of them

yields 1 unit of payoff as long as the opponent picks the same strategy, but reduces

the players winnings by 1 should their opponent happen to play the other coordinated

strategy; the remaining n − 2 strategies are neutral, meaning that playing them and

playing against them both provide zero payoff. The mean-field and pair approxima-

tions both qualitatively agree with Monte Carlo simulation data on the most prominent

feature of the elementary coordination game: The system undergoes a phase transition

between an ordered phase that breaks the symmetry of the coordinated strategies and a

disordered phase, which gains stability above the critical temperature. The higher the

number of available strategies n is, the lower this critical temperature becomes, vanish-

ing in the n→∞ limit approximately as 2/ lnn. When n is increased above a threshold

value nth, the transition changes from being continuous to being of the first order, due

to the entropy-based stabilization of the disordered phase. The difference between the

frequencies of the two strategies is an order parameter for the transition, and follows a

power law as the temperature approaches its critical value from below, with a critical
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exponent of 1/8 characteristic of the square-lattice Ising model if the transition is con-

tinuous. The system’s time evolution from an initially disordered state in the ordered

phase generally involves the formation and growth of coordinated domains. Depending

on the temperature of the system, the neutral strategies may form a monolayer coating

between differently coordinated domains or recede from straight domain walls to domain

corners.

In Chapter 5, I have introduced two extensions of the elementary coordination game by

combining it with self-dependent components. The first of these models involves a single

elementary self-dependent game of strength h′ that benefits (or punishes) only one of

the two coordinated strategies, thus breaking their symmetry. When h′ 6= 0, contin-

uous transitions invariably vanish, and the system’s low-temperature ordered strategy

arrangements morph into a disordered state smoothly as the temperature increases.

First-order transitions prove more resilient and remain present for h′ below a positive

critical value.

The other extended model we have investigated has two self-dependent components—

one affecting each coordinated strategy—that are of equal strength h′′ so as to preserve

the symmetry of the coordinated strategies. Regardless of the number of a available

strategies, the model’s phase transition is continuous for high enough h′′, vanishes when

h′′ is below −1/2, and is of the first order otherwise. The transition temperature is a

decreasing function of n, but an increasing function of h′′. By bunching together the

interchangeable neutral strategies into a single strategy, the system can be transformed

into a zero-field Blume–Capel model with temperature-dependent crystal-field coupling.

The literature of the Blume–Capel model not only confirms and quantifies the above-

mentioned properties of our game model, which were chiefly based on the mean-field

and pair approximations, but also reveals that the continuous phase transitions indeed

belong to the Ising universality class, as indicated by our Monte Carlo simulation results

for the h′′ = 0, elementary coordination case.

Chapter 6 has concerned certain highly symmetric combinations of multiple elemen-

tary coordinations called maximally nonoverlapping coordination games or m-Ising-pair

games. The 2m-strategy version consists of m elementary coordinations in such a way

that none of them share any of their coordinated strategies. Althoughm-Ising pair games

are mean-field equivalent to their 2m-strategy elementary coordination game counter-

parts, there are some conspicuous differences between the two model families, especially

in their critical properties. The present work has highlighted some of them through the

examples of the m = 2 and m = 3 versions of the game. The two-Ising-pair game is

equivalent to the four-state clock model—a special case of the Ashkin–Teller model—of

statistical physics, which in turn is equivalent to a system made up of two identical
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independent uncoupled Ising models. The composite two-Ising-pair game inherits some

of its key properties from these constituent Ising models, as its order-disorder phase

transition that breaks the symmetry of one of its coordinated pairs occurs at the same

critical point, and the transition’s magnetization-like order parameter apparently be-

longs to the Ising universality class. We can derive another order parameter from the

other coordinated pair’s strategy frequencies that also follows a power law behavior

close to the same critical temperature, but has completely different critical exponents.

Of the above, the ordered phase’s breaking of the symmetry of one coordinated pair and

the coexistence of two order parameters for a single phase transition carry over to the

three-Ising-pair game, but neither order parameter seems to have Ising-type critical ex-

ponents. This is probably related to the fact that the three-Ising-pair game’s elementary

coordinations are related by Potts-type three-element permutation symmetry instead of

the Ising-type exchange symmetry of the two-Ising-pair game’s components, though the

critical exponents are apparently not of the Potts class either.

Finally, Chapter 7 has explored the features of a five-strategy purely coordination-type

game of competing Ising-type and Potts-type subgame components. The system’s be-

havior is controlled by its temperature and the ratio α of the Potts component’s reward

for coordination to that of the Ising subgame. When the Ising component is at least as

strong as the Potts component (i.e., α ≤ 1), the model exhibits a single continuous Ising-

class order-disorder transition between a low-temperature ordered phase that breaks the

symmetry of the Ising strategies and a high-temperature symmetry-retaining disordered

phase characterized by Ising strategies having higher frequencies than Potts strategies.

Conversely, for all α exceeding a threshold value αP, one of the Potts strategies becomes

dominant below a critical temperature, and Potts strategies are more frequent than their

Ising-type counterparts in the symmetric disordered state that becomes stable above it.

In other words, the model’s behavior is dominated by its Ising component when α is low

enough and by its Potts component when α is high enough. In between, we have found

that the system’s behavior is more Ising-like for higher and more Potts-like for lower

temperatures. Above a threshold value αc the model still only exhibits one phase tran-

sition as its temperature varies, but it seems to have nonuniversal critical exponents and

occurs between a Potts-like ordered and an Ising-majority disordered phase. Below αc

the Ising components influence extends even below the stability region of the disordered

state leading to the emergence of an Ising-ordered phase between the disordered and the

Potts-ordered phases. As a result, two phase transitions can be observed, a first-order

one between the two ordered states and one that is continuous and belongs to the Ising

universality class. These alterations of the phase diagram are explained by the higher

entropy content of the Ising-type (ordered and disordered) states that give them a com-

petitive edge over their Potts-type counterparts at higher temperatures. This is why the
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Ising phase can gain stability over the Potts phase even when it provides lower average

and individual payoffs in the 1 < α < αc driving the system into a state reminiscent of

a social trap.

For linear payoff matrix decomposition to be a truly useful tool in the analysis of games,

it should inform and help us predict a game’s behavior based on its payoff matrix in a

followable manner. To explore whether this is true, we should not simply look at our dif-

ferent models and what we have learned about them in isolation, but also examine their

shared features and how they differ from each other. The most striking commonality

between the models treated in this thesis is that under appropriate conditions they all

seem to possess an order-disorder phase transition that belongs to the Ising universality

class. Based on the evidence of the results reported in this thesis, we may conjecture

that the Ising-type critical behavior of the elementary coordination game is robust and

remains prominent in potential game models with composite nearest-neighbor interac-

tions as long as the following criteria are satisfied: i) At least one of the components has

to be an elementary coordination. ii) It should not be symmetry related to other ele-

mentary coordination components of the game, though interchangeability with a single

other elementary coordination may be allowed (cf. the Potts model or the m-Ising-pair

game). iii) The symmetry of its strategy pairs should not be broken by the game’s self-

dependent component. iv) It should have a high enough positive expansion coefficient,

though it does not necessarily have to be the strongest component. (See the game of

competing Ising and Potts components or the h′′-extended elementary coordination.) v)

The game should not have too many available strategies to avoid the excessive stabiliza-

tion of the disordered phase. This robustness conjecture could be tested, for example,

by conducting a thorough and extensive study of games defined by randomly generated

payoff matrices that satisfy or (selectively) break the criteria.

On bipartite networks, such as the square lattice, criterion iv) can be loosened to hav-

ing a large enough either positive or negative expansion coefficient. Since the nodes of

a bipartite network can by definition be divided into two subnetworks such that the

network’s edges only connect nodes that belong to different subnetworks, any elemen-

tary anticoordination can be uniformly transformed into a same strength elementary

coordination by simply switching the labels of its originally anitcoordinated strategies

on one of the subnetworks. By induction, it follows that games that only differ in the

signs of their elementary coordination coefficients are all equivalent to each other on

bipartite lattices. For instance, the square-lattice logit-rule-driven elementary antico-

ordination game, whose payoff matrix is the negative of the elementary coordination

game’s, is characterized by anticoordinated sublattice ordering in the low-temperature

regime, but the corresponding staggered order parameter exhibits the same continuous
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Ising-type phase transition at the same critical temperature as the elementary coordi-

nation game’s order parameter, imitating the correspondence of the ferromagnetic and

antiferromagnetic square-lattice Ising models.

Further research into the benefits of the game decomposition approach should, on the

one hand, aim to verify and improve our results using more sophisticated and accurate or

altogether different methods (e.g., finite-size scaling analysis and different Monte Carlo

techniques [100, 101, 140, 161], various renormalization group methods [162–164], high-

and low-temperature expansions [165], and ε-expansions [166]) and, on the other hand,

should also seek to complement them by studying more differently structured or more

complex games, as well as broaden our knowledge of the models treated in this thesis.

We have also mostly resticted ourselves to the investigation of models and phenomena

at the intersection of game theory and statistical physics, but linear decomposition can,

of course, also be employed whenever payoff matrices are involved, including matrix

game models that are governed by different dynamical rules or lack a potential [167].

For example, it could help predict the general features of phase portraits in replicator

population dynamics models [168]. The basis sets introduced in Chapter 2 may also prove

useful for applications beyond game theory, for instance, in the detection of hierarchical

and cyclic structures in directed graphs represented by adjacency matrices [44].

New scientific contributions

My main scientific contributions resulting from the research work reported in this thesis

can be summarized in the following thesis statements:

1. I have explored the properties of the square lattice, logit-rule-driven elementary

coordination game. I have established that as a result of changing the noise level

parameter, which is analogous to temperature, the system may undergo an order–

disorder phase transition whose order depends on the defining parameter of the

model, the number of available neutral strategies. As long as this number remains

below a threshold value, the transition is continuous and belongs to the universality

class of the two-dimensional Ising model; its is of the first order otherwise. I

have determined the threshold value and estimated the critical temperature of the

transition. These results were published in Ref. [112]:

G. Szabó and B. Király, “Extension of a spatial evolutionary coordination game

with neutral options,” Phys. Rev. E 93, 052108 (2016).
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2. I have extended the model mentioned in thesis statement 1 with a self-dependent

component that retains the symmetry of its coordinated strategies. I have estab-

lished that, in the resulting model, the critical point and the order of the original

phase transition may both be changed, or the transition may even be abolished

altogether depending on the strength of the self-dependent component. These re-

sults were published in Ref. [135]:

B. Király and G. Szabó, “Evolutionary games with coordination and self-dependent

interactions,” Phys. Rev. E 95, 012303 (2017).

3. By consistently bunching the neutral strategies, I have mapped the extended model

mentioned in thesis statement 2 onto the Blume–Capel model, thereby verifying

the accuracy of my findings on the properties of the model. I have shown that

the same mapping can also be used to replace an arbitrary number of neutral

strategies in games defined on regular graphs with a single neutral strategy and an

additional self-dependent component whose strength depends on the temperature.

4. I have introduced the concept of maximally nonoverlapping coordination games

as the family of games that have an even number of available strategies and are

made up of a maximal number of elementary coordinations that share none of their

coordinated strategies. I have explored the properties of these games in a square-

lattice, logit-rule-driven setup. At the mean-field approximation level, a general

maximally nonoverlapping coordination game is equivalent to the elementary co-

ordination game with the same number of available strategies, so its ordered phase

breaks the symmetry of just one of its coordinated pairs. I have demonstrated this

property for the four- and six-strategy versions of the game using Monte Carlo

simulations. I have assigned two independent order parameters to their phase

transitions and determined their critical exponents. While in the four-strategy

model one of the order parameters exhibits Ising-type critical behavior just like

the elementary coordination game, the six-strategy game is characterized by differ-

ent critical exponents because of the different permutation symmetry that connects

its coordinated pairs. I have identified the four-strategy model as a special case of

the Ashkin–Teller model, the clock model. This correspondence provides analyti-

cal underpinning for the model’s apparent Ising-type behavior, and it can be used

to exactly determine the critical temperature of the model’s phase transition via

a duality relation. These results were published in Ref. [147]:

B. Király and G. Szabó, “Evolutionary games combining two or three pair coor-

dinations on a square lattice,” Phys. Rev. E 96, 042101 (2017).
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5. I have studied a square-lattice, logit-rule-driven model of competing Ising- and

Potts-type subgame components. I have shown that even though the system gen-

erally exhibits a single order-disorder phase transition, in the vicinity of which the

system’s critical behavior corresponds to that of the subgame that provides higher

payoffs, Ising-type behavior can still be stabilized by entropy effects close to the

critical point when the Potts-type subgame is only slightly stronger. In this case

an additional, first-order transition can also be observed between the two compet-

ing ordered phases. These results were published in Ref. [159]:

B. Király and G. Szabó, “Entropy affects the competition of ordered phases,”

Entropy 20(2), 115 (2018).



Appendix A

Derivation of the two-Ising-pair

game’s critical temperature

In this appendix, an analytical formula for the critical temperature of the two-Ising-pair

game defined by the payoff matrix

A(2) = ∆ε


1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

 (A.1)

is derived following the method used in Ref. [150] for another special case of the Ashkin–

Teller model. First, we give a brief summary of the notations and general results of

Ref. [150], and then apply them to the two-Ising-pair game.

In the game theoretic framework used throughout this thesis, the general Ashkin–Teller

model is defined by the payoff matrix

A(AT) =


ε ε′ ε′′ ε′′′

ε′ ε ε′′′ ε′′

ε′′ ε′′′ ε ε′

ε′′′ ε′′ ε′ ε ,

 . (A.2)

and its partition function is given by

Z =
∑
{s}

∑
〈v,w〉

exp
(
sv ·A(AT)sw

)
, (A.3)
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where the first summation runs over all possible strategy configurations and the second

summation is taken over all distinct nearest neighbour pairs.

exp
( ε
K

)
= u+ x+ y + z (A.4a)

exp

(
ε′

K

)
= u− x+ y − z (A.4b)

exp

(
ε′′

K

)
= u− x− y + z (A.4c)

exp

(
ε′′′

K

)
= u+ x− y − z (A.4d)

By expanding the second summation and introducing a set of auxiliary functions through

Eqs. (A.4a)–(A.4d), we can rewrite the partition function as

Z =
∑
{s}

[∏
〈i,j〉

(u± x± y ± z)
]
, (A.5)

which can be further expanded and partially evaluated utilizing a graphical represen-

tation of the terms of the sum that involves the labeling of nearest neighbor bonds

according to the constitution of the term in question. With the help of this represen-

tation, the partition function can be reduced to a sum over so-called effective patterns

whose contributions do not vanish after carrying out the summation. On a square lattice

of N sites, we get

Z = 4N
∑

{eff. patt.}

u2N−(b+c+d)xbyczd., (A.6)

where b, c, and d denote the number of pairs labeled with x, y, and z in each effective

pattern.

Focusing on the domain structure of configurations leads to a different form of the parti-

tion function. Noticing that coordination provides the same payoff for all strategies, the

potential of a configuration can be determined relative to perfect coordination by adding

up losses along interfaces separating differently coordinated domains. With this in mind,

a dual graphical representation of the partition function’s terms can be constructed by

drawing perpendicular lines across bonds connecting players who follow different strate-

gies and labeling each line according to the payoff the two players receive instead of ε.
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Let us use the following exponential weights derived from the payoffs as these labels:

α = exp
( ε
K

)
, (A.7a)

β = exp

(
ε′

K

)
, (A.7b)

γ = exp

(
ε′′

K

)
, (A.7c)

δ = exp

(
ε′′′

K

)
. (A.7d)

It can be shown that the allowed βγδ patterns of this representation are geometrically

identical to the effective xyz-patterns of Eq. (A.6), provided that a large N number of

players is considered and edge effects are neglected. Consequently, the partition function

in this domain wall representation takes the form:

Z = 4
∑

{eff. patt.}

α2N−(b+c+d)βbγcδd, (A.8)

where b, c, and d are the total lengths of β, γ, and δ lines in a given effective pattern.

In the two-Ising-pair game defined by Eq. (A.1), ε+ε′ = 2ε = 2ε′′ = 2ε′′′ and ∆ε = ε−ε,
where ε is the mean of the four defining parameters of the Ashkin–Teller model. Plugging

these conditions into Eqs. (A.4a)-(A.4d) and Eqs. (A.7a)-(A.7d), comparing the results,

and introducing ϑ = exp (ε/K) lead to the following set of equalities:

u = y + 1 =
ϑ

2

(
cosh

(
∆ε

K

)
+ 1

)
, (A.9a)

x = z =
ϑ

2
sinh

(
∆ε

K

)
, (A.9b)

α =
ϑ2

β
= exp

( ε
K

)
= ϑ exp

(
∆ε

K

)
, (A.9c)

γ = δ = ϑ = exp

(
ε

K

)
. (A.9d)

With these in mind, we can further simplify both Eq. (A.6) and Eq. (A.8). The first

expression becomes

Z =4Nϑ2N

(
cosh

(
∆ε

2K

))4N ∑
{eff. patt.}

(
tanh

(
∆ε

2K

))2m+n+l

, (A.10)

while the second one at temperature K∗ can be written as

Z∗ =4(ϑ∗)2N

(
exp

(
∆ε

2K∗

))4N ∑
{eff. patt.}

(
exp

(
−∆ε

K∗

))2m+n+l

. (A.11)
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According to Ref. [150], the partiton functions of Eq. (A.10) and Eq. (A.11) are reci-

procity (or duality) related if i) there exists a K∗ = F(K) transformation that is an

involution [i.e., K = F(K∗)] and ii) there also exists a function G(K) with no singulari-

ties for real temperatures—with the possible exceptions of K = 0 and K =∞—and

G(K)Z(K) = G(K∗)Z∗(K∗). (A.12)

If these conditions are satisfied, then Z having a singularity at K implies Z∗ having a

corresponding singularity at K∗ = F(K).

In our case, the partition functions Eq. (A.10) and Eq. (A.11) are duality related through

the transformation implicitly defined by

tanh

(
∆ε

2K

)
= exp

(
−∆ε

K∗

)
. (A.13)

Using the definition Eq. (A.7a), we can rewrite Eq. (A.13) as

α− ϑ
α+ ϑ

=
ϑ∗

α∗
, (A.14)

and solving for ϑ/α we get
ϑ

α
=
α∗ − ϑ∗

α∗ + ϑ∗
, (A.15)

which means that the transformation satisfies condition i).

Comparing Eq. (A.10) and Eq. (A.11) and substituting Eq. (A.7a) and Eq. (A.13), we

arrive at

4N

(
(α+ ϑ)2

α

)−2N

Z =
1

4
(α∗)−2NZ∗. (A.16)

Still following Ref. [150], we introduce λ = Z1/N , the per capita average of the partition

function. In terms of this quantity the above equality becomes

4α2

(α+ ϑ)4λ = 4−1/N 1

(α∗)2
λ∗. (A.17)

Dividing both sides of the equation by (α2 + 1)2 and rearranging some terms gives

1

ϑ2

(
α

ϑ
+
ϑ

α

)−2

λ = 4−1/N 1

(ϑ∗)2

(
α∗

ϑ∗
+
ϑ∗

α∗

)−2

λ∗. (A.18)
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If it were not for the 4−1/N factor, this final equation would satisfy the second duality

relation condition. However, if N →∞ then 4−1/N tends to 1, and Eq. (A.18) becomes

1

ϑ2

(
α

ϑ
+
ϑ

α

)−2

λ =
1

(ϑ∗)2

(
α∗

ϑ∗
+
ϑ∗

α∗

)−2

λ∗, (A.19)

that clearly satisfies Eq. (A.12). Therefore the partition functions of Eq. (A.10) and

Eq. (A.11) are reciprocity related. We have to emphasize, however, that this only

holds in the N → ∞ thermodynamic limit where edge effects and the 4−1/N factor in

Eq. (A.18) can be neglected.

We can now determine the critical transition temperature of the two-Ising-pair coordina-

tion game in the thermodynamic limit using Kramers and Wannier’s argument presented

in Refs. [156, 157]. Due to the duality relation, Z and Z∗ have correspondig singular-

ites, and under the assumption that only one such singularity exists, it must occur at

K = K∗. Because ∆ε = 1 > 0, K∗ is a monotonically decreasing function of K, and K

and K∗ become equal at

Kc(2) =
∆ε

ln(
√

2 + 1)
≈ 1.1346∆ε. (A.20)

If ∆ε < 0, Eq. (A.13) has no real solutions, and the above established duality argument

breaks down. On bipartite lattices, however, this anticoordinated version of the system

can be mapped back onto its coordinated counterpart by simply exchanging the labels

of the anticoordinated strategy pairs on one of the sublattices, and thus the duality

argument can be recovered.



Bibliography

[1] P. Ball, Why Society is a Complex Matter: Meeting Twenty-first Century Chal-

lenges with a New Kind of Science (Springer, Heidelberg, Germany, 2012).

[2] L. Pásztor, Z. Botta-Dukát, G. Magyar, T. Czárán, and G. Meszéna, Theory-based
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