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Abstract Mandatory pension systems partially replace old-age income, therefore
the government matches additional life-cycle savings in a voluntary pension system.
Though the individual saving decisions are apparently independent, the earmarked
taxes (paid to finance the matching) connect them. Previous models either neglected
the endogenous tax expenditures (e.g. Choi et al., in:Wise (ed) Perspectives in the eco-
nomics of aging, University of Chicago Press, Chicago, pp 81–121, 2004) or assumed
very sophisticated saving strategies (e.g. Fehr et al. in FinanzArchiv Pub Finance Anal
64:171–198, 2008). We create twin models: myopic workers learn (i) from farsighted
workers using public information (analyticmodel) and (ii) also from each other (agent-
based model). These models provide more realistic results on saving behavior and the
impact of matching on the income redistribution than the earlier models.
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1 Introduction

All over the developed world, governments operate mandatory pension systems to
replace income and minimize old-age poverty. In general, the size of the mandatory
system is low enough to leave room to be filled by a voluntary pension system. As
a rule, participants of a voluntary system can only withdraw their voluntary savings
after retirement, and as a compensation their savings enjoy tax advantages ormatching.
While there is a general agreement that this separation of mandatory and voluntary
systems is socially advantageous, there are important debates about the qualitative as
well as quantitative design.

To explain our contributions in a nutshell, we introduce the following concepts. In
a complex economic system, the participants can use publicly available information
and can also learn from directly observing their neighborhood. Concerning lifecycle
saving, we may differentiate various degrees of shortsightedness: the less shortsighted
a worker, the more she saves for her retirement. In a voluntary pension system the
government matches the worker’s voluntary new savings proportionally to a matching
rate, at least up to a cap. To simplify the exposition we introduce a concept called
relative propensity to savewhich is the ratio of the actual to the estimated optimal vol-
untary saving of shortsighted workers. Because of some myopia and weak willpower,
this index is always less than or equal to 1.

Creating twin-models with public and local learning, our paper sheds new light on
the foregoing problems. Our analytical model with public information used by the
shortsighted workers gives relatively simple results, especially for the dependence of
the steady state on the matching rate and the relative propensity to save. Our agent-
based model incorporates more realistic, local learning, where the more shortsighted
workers also learn from less shortsighted ones.1

The proponents of voluntary systems justify the subsidies as follows: a mandatory
system does not and cannot ensure high enough pensions, and the mostly shortsighted
workers must be made interested in raising their old-age incomes through a voluntary
system (e.g. Poterba et al. 1996). The opponents are afraid that these subsidies are
poorly targeted, mostly subsidize the well-paid savers, while worsening the burden
of the others by generating tax expenditures (Engen et al. 1996; Duflo et al. 2007).
Hubbard and Skinner (1996) tried to synthesize both approaches, while OECD (2005)
and Hinz et al. (2013) summarized the practice of various countries. Up to now the
foregoing tax expenditures have generally been quite low though nonnegligible (about
0.7% of the GDP in the US), but in the case of a possible contraction of the mandatory
system they may become much higher.

SinceModigliani andBrumberg (1954) and Samuelson (1958), models of life-cycle
saving and of overlapping generations have been extensively studied, respectively. A
new era started with Auerbach and Kotlikoff (1987) which generalized the partial
equilibrium framework into a general equilibrium one: not only savings depend on the
interest rates but the interest rates also depend on savings through accumulated capital.

1 In a previous version, Király and Simonovits (2016) used the expression global learning for learning by
using public information.
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By replacing traditional life-cycle savings with mandatory and voluntary pensions,
these models have become more realistic.2

A common problem with these models, however, is that they assume that the indi-
viduals have an extraordinary sophistication to solve the corresponding parts of their
optimization problem and the willpower to achieve the results. It is widely docu-
mented, however, that a large share of the population have quite limited cognitive
abilities (for a survey, see Lusardi and Mitchell 2014), quite limited information (Barr
and Diamond 2008, Box 4.2) and weak willpower.

A class of very simple life-cycle models operate with given interest rates and wages
(small open economy). In such models, various workers’ ordinary life-cycle saving
processes are independent, but adding government matching via a voluntary pension
system introduces interdependence. Indeed, even if somebody does not participate
in the scheme, he pays taxes according to the same earmarked tax rate. This may
be the reason why in voluntary systems, individual optimization is mathematically
quite difficult (see Appendix B in Király and Simonovits 2016) even if in addition
to heterogeneously myopic workers, only two working age periods are distinguished.
Only by neglecting the difference between young and old workers was Simonovits
(2011) able to obtain analytical results on the impact of thematching rate and of the cap
on income redistribution in such a transfer system. A more realistic approach to life-
cycle savings is based on behavioral economics [started by Thaler and Benartzi (2004)
and crowned by a recent survey by Chetty (2015)] but they neglect tax expenditures.

We start the discussion of learning to save in an analytical model. For simplicity,
we assume a stationary population without growth, inflation and interest. To make
the impact of the individual decisions on the macro state negligible, we assume that
there are a continuum of workers. Following Feldstein (1985), we distinguish at least
farsighted and shortsighted workers. After the steady-state analysis, we assume that
the government unexpectedly introduces a matching scheme in period 0, and this
initiates a new behavior for both types. The appearance of government matching and
its tax financing make the shortsighted workers aware that the farsighted save for the
future and even its size can be guessed. The inadequacy of the shortsighted workers’
savings is measured by the standard deviation in their life-cycle consumption, while
the redistribution from the shortsighted to the farsighted workers is measured by the
standard deviation of the population lifetime average consumptions. For the sake
of brevity, the two standard deviations are distinguished by adjectives internal and
external.

To simplify the calculations, we assume that the farsighted workers try to smooth
their consumption paths without any intertemporal substitutability. Our analytical
results on life-cycle saving are as follows: (a) By saving in a tax-favored system,
the farsighted workers simply exploit the shortsighted ones. (b) We assume a special
and admittedly artificial form of learning from public information: the active short-
sighted workers guess the amount of their farsighted counterparts’ saving as the ratio

2 For example, in a calibrated general equilibriummodel of the German economy, Fehr et al. (2008) showed
that if the voluntary pillar is extended, then existing generations lose and future generations gain. In addition,
the assumption of rational expectations makes the foregoing models extremely complex (for an alternative
with naive expectations, see Molnár and Simonovits 1998).
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of the tax rate and the matching rate provided by government statistics, and due to
shortsightedness (and weak willpower), they save only a given share of this estima-
tion: the share to be called relative propensity to save [see (6) below for its definition].
Note that if the share of the farsighted workers is very low, then they only play the
role of the catalyzer but without them the model ceases to work. The process con-
verges from the old to a new steady state (at least for moderate matching rates) and
the degree of exploitation is significantly reduced. (c) We can simply disaggregate the
aggregate behavior of shortsighted workers according to their different relative saving
propensities and obtain subtypes.

In the second model, we assume that these shortsighted subtypes also learn locally
from each other. By adding local learning to using public information, we study an
agent-based model (for short, ABM). These models generally enhance the realism of
economic modeling (see e.g. Tesfatsion 2006). The main innovation of ABMs is that
by sacrificing the ability to derive analytical results, they are able to describe more
realistically the behavior of interacting heterogeneous agents. This methodology has
been successfully used in several fields of economics. For example, the topic of tax
evasion, related to our problem, was investigated—among others—in Méder et al.
(2012), Pickhard and Prinz (2013) and Bertotti and Modanese (2016).

Quite recently, Varga and Vincze (2017) used an ABM to analyze a very abstract
model of ordinary saving. They assumed a very long (practically infinite) horizon
and excluded mandatory as well as voluntary pensions. They distinguished three
types of agents: buffer-stock savers (who follow the prescriptions of the life-cycle
model, smooth their consumption path by saving), permanent income savers (for-
ward looking individuals without prudence) and myopic savers (who spend most of
their disposable income on current consumption). The main message of that paper is
that notwithstanding permanent learning, different types can coexist for a very long
time.

Applying the ABM approach to life-cycle savings, especially to voluntary pension
looks promising. Already Duflo and Saez (2003) emphasized the influence of col-
leagues’ choices on participation in voluntary pension plans. Here we try to explain
an empirically verified fact: though the share and the extent of participation in tax
favored systems are increasing functions of the wages; even controlling for wages,
both indicators are heterogeneous (Baily and Kirkegaard 2009, Table 8.1, p. 456).
We take homogeneous wages, neglect the cap on the voluntary contributions, thereby
eliminate unmatched savings above the matched savings.

We highlight the following ABM-results: (i) in the basic run, some heterogeneity
in savings of the shortsighted workers remains; (ii) increasing the spread between the
propensities diminishes both standard deviations; (iii) the increase in the number of
types diminishes the external standard deviation but increases the internal standard
deviation; (iv) randomly perturbing the network may homogenize the shortsighted
workers’ savings; (v) the rise in the number of acquaintances does not reduce the
standard deviations; (vi) diminishing the density of the connections by a factor of
4, the convergence is much slower; (vii) even if the workers revise their strategy
annually rather than per decade, the welfare is not raised; and (viii) raising the relative
propensities, the savings increase. In summary: the behavior of the complex system
(ABM) cannot be fully understood from its simplified version (analytical model).
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Table 1 Certain properties of selected models

Models Dynamic saving Tax expenditure Simple rules Local learning

Choi et al. (2004) + – + –

Fehr et al. (2008) + + – –

Simonovits (2011) – + – –

Analytical model + + + –

ABM + + + +

Table 2 Features of pension systems of selected countries

Country Mandatory Voluntary

Progressive Size Progressive Size

United States Medium Medium No Medium

Germany Weak Large Medium Small

Netherlands Strong Large No Medium

Czech Republic Strong Large Strong Small

Hungary Weak Large No Large

Twin-models No Medium No Large

Further work is needed to check the robustness of these results especially the details
of local learning.

To place the current paper in the related literature, Table 1 compares the presence
of the following properties of five selected models of voluntary pension systems:
dynamic saving, tax expenditure, simple saving rules and local learning (+ means yes,
– means no). The selected models are Choi et al. (2004), Fehr et al. (2008), Simonovits
(2011) and the twin-models of the current paper: analytical versus ABM. [Note that
Simonovits (2011) is also an analytical model with such a simple structure that has no
room for learning.] The analytical model has three and the ABM has four +s, while
Simonovits (2011) has only one.

Table 2 shows how the core of our twin-models is related to five selected countries’
pension systems according to the strengthof progressivity and the size of themandatory
(public+private) and of the voluntary systems, respectively. We see that our twin-
models go even beyond the German and the Hungarian systems in eliminating any
redistribution in the mandatory system, and it copies the US system’s medium size.
Concerning the voluntary system, our models are similar to the US, the Dutch and the
Hungarian systems having no progressivity. It is not shown in the table, but our twin-
models resemble the German voluntary system in havingmandatory life annuities, and
approximates the Hungarian system with its very high cap on the voluntary savings.
In summary, we have copied various features of various countries arbitrarily, just to
make the twin-models as simple as possible, to focus on the learning dimension.

Though our model family admittedly lies quite far from any real voluntary pension
system, we formulate some policy suggestions. (i) Models of voluntary pension sys-
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tems should take into account the tax expenditure of operating the voluntary pension
system. (ii) The design of the voluntary system should be in harmony with that of
the mandatory system: probably a progressive voluntary system fits a proportional
mandatory one and a proportional voluntary system fits a progressive mandatory one.
(iii) If the government wants to strengthen the voluntary savings of the shortsighted,
it should increase the matching rate and decrease the cap (not discussed here).

The structure of the remainder of the present paper is as follows: Sect. 2 discusses an
analytical model of life-cycle saving, where the shortsighted workers learn only from
public information. Section 3 studies the corresponding ABM. Section 4 concludes.

2 An analytical model

In this section we study an analytical model with learning from public information.
As a starter, Sect. 2.1 assumes passive myopic workers who do not learn and do not
save at all. Section 2.2 activates them by introducing the relative propensity to save
but the model is kept static. Section 2.3 introduces dynamics into the saving model.

2.1 Passive shortsighted workers

We shall consider a simple model of mandatory and voluntary pensions. To simplify
exposition, we consider a stationary population, with overlapping cohorts. Every time
period, D cohorts live together and at the end of the period (not modeled until the
next subsection), every cohort becomes older by one period except for the oldest,
which dies and the youngest, which just enters the labor market. There are R > 0
working cohorts and D− R > 0 retired cohorts, where R and D are positive integers.
The workers earn unitary wages, pay τ > 0 as a mandatory pension contribution.
The retired cohorts receive universal pension benefits b. Introducing notations for the
ratios of working span to total adult life span and that of working span to retirement
span,

ρ = R

D
< 1 and β = ρ

1 − ρ
,

the benefit is

b = Rτ

D − R
= ρτ

1 − ρ
= βτ. (1)

It is easy to see that the net wage 1−τ and the pension benefit b are equal (consumption
smoothing) if the contribution rate is equal to

τ̄ = 1 − ρ.

If the contribution rate is high, then workers restrain their labor supply and unreport
a large part of their wage. Therefore the government keeps the contribution rate well
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below thismaximal value: τ < τ̄ and encourages private savings in a voluntary pension
system: the per-period saving is denoted by s ≥ 0. To promote participation, every
euro paid into the voluntary system is matched by α > 0 euros by the government. In
contrast to the bulk of the literature, we explicitly model the earmarked tax needed to
finance such matching from wage taxes with a flat rate θ . There is no other tax in our
models. A basic observation is that different types of workers—even with identical
earnings—save different amounts in voluntary systems. We could generate such a
behavior by assuming heterogeneous discount factors (cf. Simonovits 2011) but we
rely on simpler methods.

Until the end of this Subsection, we shall assume that there are only two (ageless)
types: shortsighted (L, he) and farsighted (H, she), with shares fL , fH > 0 and
fL + fH = 1. In this Subsection, the shortsighted worker is passive, does not save
at all: sL = 0 and the farsighted worker saves sH to smooth her consumption path.
Denoting worker i’s and pensioner i’s (i = L , H ) age-invariant consumption per
period by c1,i and cD,i (alluding to the start of the working stage, 1 and the end of the
retirement stage, D), respectively, we have the following tax equation:

θ = α fH s
H (2)

and consumption equations:

c1,L = 1 − τ − θ, cD,L = b (3-L)

and

c1,H = 1 − τ − θ − sH , cD,H = β[τ + (1 + α)sH ]. (3-H )

We assume that H saves as much as needed to smooth out her projected consumption
path:

c1,H = cD,H = cH , i.e. 1 − τ − θ − sH = β[τ + (1 + α)sH ].

We have then

sH = χ − θ

1 + β(1 + α)
, where χ = 1 − (1 + β)τ > 0. (4)

We display the special value of sH at α = 0, the second part of the equation shows
how mandatory pension contributions crowd out savings:

sH (0) = χ

1 + β
= 1

1 + β
− τ. (4′)

Substituting (4) into (2) yields an implicit equation for the balanced tax rate:

θ = α fH
χ − θ

1 + β(1 + α)
.
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Hence follows

Theorem 1 In the two-type analytical model with passive shortsighted workers, the
government sets the balanced tax rate

θo = α fHχ

1 + β(1 + α) + α fH
> 0. (5)

Then every farsighted worker chooses her saving sH = θo/(α fH ) and every short-
sighted worker saves nothing.

Remark 1. In this model, the introduction of voluntary pension saving simply redis-
tributes from the shortsighted to the farsighted workers. The higher the matching
rate, the stronger the redistribution.

2. In such a zero-sum game, the use of voluntary pensions is only justifiable if there
is wage heterogeneity (wL < wH ) and the mandatory (public) pension is progres-
sive: bi = β0 + βwi , with β0 > 0 and β > 0, but this is beyond the scope of this
paper.

To display perverse redistribution, we also determine the shortsighted workers’
lifetime average consumption cL = ρcL1 + (1−ρ)cLD . As the matching rate increases,
so decreases L’s lifetime average consumption. Using the obvious formula for the
expected average consumption: c = fLcL + fH cH = ρ, the simplest measure of
perverse redistribution is the external standard deviation of the lifetime average con-
sumptions of the whole population:

εE =
[
fL(cL − ρ)2 + fH (cH − ρ)2

]1/2
.

In addition, to measure the internal standard deviation, we also introduce

εI =
[
fLρ(cL1 − cL)2 + fL(1 − ρ)(cLD − cL)2

]1/2
.

To help understanding, we shall numerically illustrate our results. Let us calculate in
decades (bold symbols refer to decades rather than years):R = 4,D = 6, ρ = 2/3 and
choose a contribution rate τ = 0.2 far below the maximum: τ̄ = 1/3. Table 3 displays
the two types’ characteristics for three matching rates: α = 0, 0.5, 1; for population
shares fL = 3/4 and fH = 1/4. As the matching rate increases, so decreases L’s
lifetime average consumption: at α = 1, the earmarked tax rate is equal to 0.019 and
the average consumption of the shortsighted type drops from 0.667 to 0.654. As the
matching rate grows, the internal standard deviation diminishes from 0.163 to 0.156,
while the external standard deviation grows from zero to 0.022. To relate these values
to the extreme standard deviations where everybody is shortsighted and there is no
mandatory pension, we give the corresponding maximum andminimum, respectively:
ε̄I = 0.47 and ε̄E = 0.
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Table 3 Worker and pensioner consumption: passive L, varying matching

Matching rate Tax rate Consumption of SD

H-type L- worker L-pensioner L-average Internal External
α θ cH cL1 cLD cL εI εE

0.0 0 0.667 0.800 0.4 0.667 0.163 0

0.5 0.012 0.691 0.788 0.4 0.659 0.159 0.014

1.0 0.019 0.705 0.781 0.4 0.654 0.156 0.022

SD standard deviation

2.2 Active workers: steady state

In Sect. 2.1, we assumed that shortsighted workers are passive, they do not understand
anything from the logic of the system, they simply pay their dues without having
any return. From now on we assume that these workers are active, they understand
something and react to exploitation by saving. In Sect. 2.2 we rely on steady state
analysis, and in Sect. 2.3 we turn to the dynamics.

Every worker of type L presumes that all the other workers (including Ls) are type
H and knowing the tax rate θ and the matching rate α, relying on (2), he naively
underestimates their per-capita saving to be equal to θ/α. Due to his myopia and weak
willpower, he is ready to save only γ times this quantity, (0 < γ ≤ 1), therefore

sL = γ θ

α
, α > 0. (6)

We shall refer to γ as relative propensity to save. Retaining (4), the modified tax
balance equation (2) becomes

θ = γ fLθ + α fH
χ − θ

1 + β(1 + α)
. (2′)

With a simple calculation, we have obtained the government tax rate and the two
types’ saving rates.

Theorem 2 The steady state with active shortsighted workers is characterized by

θoγ = α fHχ

ν
, sH = (1 − γ fL)χ

ν
≥ sL = γ fHχ

ν
, (7)

where

ν = (1 − γ fL)[1 + β(1 + α)] + α fH > 0.

Remark 1. Looking at the steady state balanced tax rate (7) with active workers, note
that the higher the relative propensity to save γ , the higher the balanced tax rate,
and the lower the redistribution. For γ = 1, the shortsighted become farsighted
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Table 4 Worker and pensioner consumption: active L, varying propensities

Relative propensity to save Tax rate Consumption of SD

H-type L-worker L-pensioner L-average Internal External
γ θ cH cL1 cLD cL εI εE

0.00 0.019 0.705 0.781 0.400 0.654 0.156 0.022

0.25 0.023 0.701 0.771 0.423 0.655 0.142 0.020

0.50 0.030 0.696 0.756 0.459 0.657 0.121 0.017

0.75 0.041 0.687 0.728 0.523 0.660 0.084 0.012

1.00 0.067 0.667 0.667 0.667 0.667 0 0

SD standard deviation, α = 1

and exploitation disappears. Note that the tax rate with passive workers is just the
product of the share of farsighted workers and the tax rate with maximal γ = 1:
θo0 = fH θo1 .

2. Disaggregating the shortsighted workers into n − 1 > 1 types with different γi s,
we can open the door to multitype models (to be studied in Sect. 3). Indeed, let
f1, f2, . . . , fn−1 be the population share of the shortsighted workers with relative
saving propensities γ1 < γ2 < · · · < γn−1 ≤ 1, respectively. Then the disaggre-
gated model can be aggregated as

fL =
n−1∑
i=1

fi < 1 and γ =
∑n−1

i=1 fiγi
fL

< 1.

Then sL in Theorem 2 can also be disaggregated:

si = γi fHχ

ν
, i = 1, . . . , n − 1. (7M)

Returning to the two-typemodel, Table 4 displays the impact of the relative propen-
sity to save γ with α = 1. The first row replicates the third row of Table 3. As γ

increases from 0 to 1, the earmarked tax rate rises from 0.019 to 0.067, and even the
shortsighted type’s consumption path becomes smooth, i.e. age-invariant. Eventually
both the internal and the external standard deviations drop to zero.

2.3 Dynamic analytical model

In a standard overlapping generations model, the agents differ not only in age but
also in the time they start working. In our dynamic analytical model, we shall denote
the age of workers by a = 1, 2, . . . , R and of pensioners by a = R + 1, . . . , D.
Every period t , D adult cohorts overlap: those entering the labor market in period
t, t − 1, . . . , t − D + 1, respectively. For technical reasons we assume that the new
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cohort entered the labor market in period t + 1 rather than t . The subindex triple
(a, i, t + a) refers to type i of age a in period t + a. To have a recursive model, we
assume that in every period t ≥ 0, the government determines and announces the actual
matching rate α > 0, the appropriate tax rate θt and then the various types calculate
the corresponding age-dependent savings. First we determine the longitudinal saving
paths and then transform them into cross-sectional saving profiles.

Longitudinal equations
For each pair (a, i), the end-of-period financial assets (accumulated savings includ-

ing matching) satisfy a dynamic relation:

Sa,i,t+a = Sa−1,i,t+a−1 + (1 + α)sa,i,t+a, t = 0, 1, 2, . . . , (8)

where the initial conditions are given:

Sa−1,i,−1, a = 2, . . . , R and i = L , H.

It is logical but not necessary to assume that these initial states are consistent with
optimal savings without matching.

Let Et be the tax expenditure in period t per capita. We have the following identity:

Et = α

H∑
i=L

fi

R∑
a=1

sa,i,t . (9)

If the government were supposed to cover these expenditures every period from its
revenue θt R, then it should solve a complex fixed-point problem because through
sa,i,t s, Et depends on θt . Instead, we relax the previous tax equation (2′) and allow the
government to run temporary surpluses and deficits, financed by the external world,
resulting in the per-capita stock of government debt at the end of period t :

Dt = Dt−1 + Et − Rθt , t = 0, 1, 2, . . . , D−1 = 0. (10)

Using a trial-and-error method, at the beginning of period t > 0 the government
chooses and announces the tax rate which would have covered the expenditures in the
previous period:

θt = Et−1

R
. (11)

Note that this leads to Dt = Dt−1 + Et − Et−1 = Et . (At the end of this Subsection,
(11) is replaced by (11′) which stabilizes the debt at zero.)

By definition, we have two classes of consumption equations.
Consumption at work:

ca,i,t+a = 1 − τ − θt+a − sa,i,t+a, a = 1, 2, . . . , R. (12a)
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Consumption at retirement:

ca,i,t+R+1 = · · · = ca,i,t+D = b + di,t+R, a = R + 1, . . . , D, (12b)

where the private life annuity is given by

di,t+R = ψSR,i,t+R, where ψ = 1

D − R
, i = L , H. (13)

Instead of the steady state estimation of sL [(7)], assume that the age- and time-
dependent saving varies with the time-variant tax rate θt+a :

sa,L ,t+a = γ θt+a

α
, a = 1, . . . , R. (14)

In our dynamic analytic model, even the farsightedworkers do not know their future
savings, they naively assume that they will save the same amount until retiring as they
save now. Otherwise, they would have to solve the whole model for themselves, which
would be an excessive requirement.
Projected private life-annuity at age a:

da,H,t+R = ψ[Sa−1,H,t+a−1 + (1 + α)(R − a + 1)sa,H,t+a]. (15)

Projected consumption at retirement:

c̃a,H,t+R+1 = · · · = c̃a,H,t+D = b + da,H,t+R . (16)

Whileworking, typeH always tries to smooth her future consumption path, ca,H,t+a =
c̃a,H,t+R+1, i.e. by (15)–(16):

1 − τ − θt+a − sa,H,t+a = b + ψSa−1,H,t+a−1 + ψ(R − a + 1)(1 + α)sa,H,t+a,

hence her ‘current’ age- and time-dependent saving is given by

sa,H,t+a = χ − ψSa−1,H,t+a−1 − θt+a

1 + ψ(R − a + 1)(1 + α)
= ϕa(χ − θt+a) − σa Sa−1,H,t+a−1, (17)

where

ϕa = 1

1 + ψ(R − a + 1)(1 + α)
and σa = ψϕa .

Cross-sectional equations
To use (9)–(11), we shall need the saving rules in t rather than in t + a, therefore

we shift (14), (17), (9) and (8) back by a.
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L-saving:

sa,L ,t = γ θt

α
, a = 1, . . . , R. (14′)

H-saving:

sa,H,t = ϕa(χ − θt ) − σa Sa−1,H,t−1, a = 1, . . . , R. (17′)

Tax expenditure:

Et−1 = α

H∑
i=L

fi

R∑
a=1

sa,i,t−1. (9′)

Type-specific financial assets:

Sa,i,t = Sa−1,i,t−1 + (1 + α)sa,i,t , a = 1, 2, . . . , R, i = L , H, (8′)

where the initial conditions are given:

θ−1 = 0, Sa−1,i,−1, a = 1, . . . , R, i = L , H.

Furthermore, the matching rate is zero before 0 and is a positive constant after –1.
To minimize the dimension of the system, we drop the debt dynamics as a reducible

component, and (Sa−1,L ,−1)
R
a=2 as reducible initial conditions. Substituting (14

′) into
(9′–11′) and repeating the remaining equations of the irreducible system, namely (17′)
and (8′) for t = 1, 2, . . . , and α �= 0:

θt = γ fLθt−1 + αR−1 fH

R∑
a=1

sa,H,t−1, (18)

sa,H,t = ϕaχ − ϕaγ fLθt−1 − ϕa R
−1α fH

R∑
x=1

sx,H,t−1 − σa Sa−1,H,t−1, (19)

and (8′). For example, during the transition, where 0 ≤ t < a − 1, a = 2, . . . , R, (8′)
takes the form

Sa,i,t = s1,i,t−a+1 + · · · + sa−t−1,i,−1 + (1 + α)(sa−t,i,0 + · · · + sa,i,t ), i = H, L .

System (18)–(19)–(8′H) is an inhomogeneous linear system of dimension m =
2R − 1.

Theorem 3 (a) In the two-type dynamic analytical model, the government sets the
tax rate θt according to (18), the farsighted and the active shortsighted workers
save according to (19) and (14′), respectively.
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(b) For any sufficiently low matching rate α, the system converges to the new steady
state of Theorem 2.

Remark 1. It is implicitly assumed that the initial values are equal or sufficiently close
to their old steady state values to generate viable paths, i.e. sa,i,t+a, ca,i,t+a ≥ 0
for all (a, i, t + a)s.

2. It is an open question how low thematching rate should be to guarantee the stability
of the new steady state in general, but Example 1 below provides a special answer.

3. The model can easily be generalized for heterogeneous shortsighted workers with
different γi s as in Theorem 2.

Proof (a) We have proved part (a) above.
(b) To prove stability, we can drop the constant terms from (19). Then we have a

simple solution for α = 0 = θt :

sa,H,t = −σa Sa−1,H,t−1. (19′)

Substituting (19′) into (8′) results in

Sa,H,t = (1 − σa)Sa−1,H,t−1 = (1 − σa) · · · (1 − σ1)S0,H,t−a = 0 (t ≥ a).

(20)

By continuity, stability survives for sufficiently low matching rates. ��
To obtain a clear picture of this complex dynamics, we consider the simplest case,

OLG 1-1.

Example 1 Let R = 1 and D = 2. In this case, neglecting the transition, S1,H,t =
(1 + α)s1,H,t :

θt = γ fLθt−1 + α fH s1,H,t−1 (18′′)

and

s1,H,t = χ − θt

2 + α
. (17′′)

Shifting (17′′) back by 1 period and inserting the shifted (17′′) into (18′′) yields

θt = α fH
χ

2 + α
+

[
γ fL − α fH

2 + α

]
θt−1.

The path generated by this first-order linear difference equation is obviously stable.

For γ ∗ = α fH
(2 + α) fL

, the tax rate jumps to the steady state in t = 2. For 0 < γ < γ ∗,
the tax rate oscillates around the steady state, while for γ ∗ < γ ≤ 1, the tax rate
increasingly converges to the steady state. (Note that the second interval is empty, i.e.
γ ∗ > 1 if and only if (2 + α)/[2(1 + α)] < fH ≤ 1.)
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Table 5 H-saving profiles in overlapping generations

Period Debt Tax rate SD Saving of H-workers

Internal External Youngest Younger Older Oldests

t Dt θt εI,t εE,t s1,H,t s2,H,t s3,H,t s4,H,t

0 0.088 0.000 0.232 0.013 0.080 0.083 0.089 0.100

1 0.109 0.022 0.212 0.025 0.076 0.074 0.076 0.078

2 0.118 0.027 0.201 0.020 0.075 0.074 0.077 0.082

3 0.120 0.029 0.191 0.019 0.074 0.074 0.077 0.080

4 0.121 0.030 0.182 0.017 0.074 0.074 0.076 0.080

5 0.122 0.030 0.173 0.015 0.074 0.074 0.076 0.080

6 0.122 0.030 0.171 0.014 0.074 0.074 0.076 0.080

SD standard deviation

Finally, Tables 5, 6, 7 display the numerical illustrations for R = 4 and D = 6
(decades), matching rate α = 1 and the relative propensity to save γ = 1/2 (Table 4,
middle row). We expect that the process converges to the corresponding steady state.
Our expectations are correct, at least for the initial values θ0 = 0, D−1 = 0. Fur-
thermore we choose the initial values for L and H savings as 0 and sH (0) [see (4’)],
plus the accumulated savings, belonging to α = 0. (We have experimented with other
initial states and we obtained qualitatively the same results.)

Table 5 displays the paths of the debt, of the tax rate and of the H-saving. As
expected, the debt converges to 0.12 while the tax rate converges to the steady state
0.03. When the transfer system is unexpectedly introduced in period t = 0, the far-
sighted but still naive workers’ savings drop (and their consumption jumps), at least
temporarily. As the matching system builds up, the H-savings drop to the steady
state values of sH = 0.074, regardless of age. The internal and external standard
deviations converge to their respective steady state values. (We have repeated the
calculations for a number of other combinations of parameter values and obtained
stability.)

Table 6 presents the farsighted workers’ consumption paths. The lifetime average
consumption is also displayed though not for a longitudinal path but for a cross-section
profile: cit = D−1 ∑D

a=1 ca,i,t , i = H, L .
In the shortsighted workers’ consumption paths (Table 7), similar overconsumption

can be observedwhich stabilizes quite fast at 0.756,while the pensioners’ consumption
rises from 0.4 to 0.459. Comparing the two life-consumptions at t = 6, we see the
difference: cL6 = 0.656 < 0.689 = cH6 .

At the end of the Section, we make three short remarks.

1. Repeating the calculations for various matching rates (α), frequencies of myopes
( fL ) and relative propensities to save (γ ), the stability remains valid.

2. It is evident that calculating the tax rate, adding a given part of the past debt to the
past expenditure in (11), will asymptotically eliminate the debt. Formally,
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Table 6 H-consumption profiles in overlapping generations

Period Consumption of

H-workers H

Youngest Younger Older Oldest Pensioner Average

t c1,H,t c2,H,t c3,H,t c4,H,t c5,H,t cHt

0 0.720 0.717 0.711 0.700 0.667 0.697

1 0.702 0.703 0.702 0.700 0.700 0.701

2 0.698 0.698 0.696 0.691 0.678 0.690

3 0.696 0.697 0.694 0.691 0.682 0.690

4 0.696 0.696 0.693 0.690 0.680 0.689

5 0.696 0.696 0.693 0.690 0.680 0.689

6 0.696 0.696 0.693 0.690 0.680 0.689

c6,H,t = c5,H,t−1

Table 7 L-consumption profiles in overlapping generations

Period Consumption of

L-workers L

Youngest Younger Older Oldest Pensioner Average

t c1,L ,t c2,L ,t c3,L ,t c4,L ,t c5,L ,t cLt

0 0.800 0.800 0.800 0.800 0.400 0.667

1 0.767 0.767 0.767 0.767 0.400 0.645

2 0.759 0.759 0.759 0.759 0.411 0.643

3 0.756 0.756 0.756 0.756 0.425 0.645

4 0.755 0.755 0.755 0.755 0.439 0.650

5 0.755 0.755 0.755 0.755 0.454 0.654

6 0.754 0.754 0.754 0.754 0.459 0.656

c6,L ,t = c5,L ,t−1

θt = Et−1

R
+ ζDt−1, (11′)

where ζ > 0 is an adjustment coefficient, for example, ζ = 1/R. Then (18)
modifies to

θt = γ fLθt−1 + αR−1 fH

R∑
a=1

sa,H,t−1 + ζDt−1.

3. A referee noted that making γ age-dependent, furthermore, increasing with age
in (14), the model would be more realistic. For example, choosing an initial and
a final γ , γ1 ≥ 0 and γR ≤ 1, with γ1 < γR ; and connecting them with γa =
[(R−a+1)γ1+aγR]/R would do the job. But then (18) should also be modified.
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3 An agent-based model

In the previous model, even the active shortsighted workers learn relatively little.
An important feature of the ABM is that everybody learns from others, therefore we
shall apply ABM to make shortsighted workers learn to save in a voluntary pension
system not only by using public information but also local information. The basic
idea of local learning is as follows: every period, each shortsighted worker with a
given age and endogenously changing (and improving) type looks around among his
acquaintances (older by one period than he is) and chooses that type which promises
the highest lifetime utility. We shall first formulate the model, then present numerical
illustrations.

3.1 Theoretical analysis

We assume that there are n types, where n > 2 is a relatively small integer. Type i
is characterized by its relative propensity to save γi = i/n, i = 1, 2, . . . n − 1, with
population shares fi > 0,

∑n−1
i=1 fi = fL < 1 and average relative propensity to save

γ = f −1
L

∑n−1
i=1 fiγi . Type n with frequency fH = 1 − fL is farsighted. (Without

assuming the existence of farsighted agents, the steady state tax rate would remain zero
forever.) We assume that there are a finite but large number of workers (M = RN ).
Therefore, when they start to work, the number of type i workers aged 1 is N fi in
each cohort, indexed by k = Ni−1 + 1, . . . , Ni , where Ni+1 = Ni + N fi , N0 = 0.

First we modify the per-capita tax expenditure formula (9) as

Et = α

n∑
i=1

fi

Ni∑
k=Ni−1+1

R∑
a=1

sa,k,t , t = 0, 1, 2, . . . . (25)

Király and Simonovits (2016, pp. 18–19) also applied the lifetime utility function,
which is maximized in standard economics. In our context its use would contradict the
bounded rationality of the shortsighted workers. Rather we check a simpler indicator,
the lifetime average consumptionmentioned in Sect. 2. In our new setting, its projected
value at (a, k, t + a) is given by the weighted average cumulated consumption until
age a Ca−1,t+a−1 plus the current consumption ca,k,t+a and the projected future old-
age consumption c̃a,k,R+1:

cka,t+a = 1

D
[Ca−1,k,t+a−1 + (R − a + 1)ca,k,t+a + (D − R)c̃a,k,R+1], (26)

where

Ca,k,t+a =
a∑

x=1

cx,k,t+x = Ca−1,t+a−1 + ca,k,t+a .

Again, by (26), (12) and (15)–(16), in period t+a, cka,t+a is a simple linear function of
a single variable sa,k,t+a . Finally, at retirement, the projected value is crystallized into
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ckt = ckR,t+R . This indicator is far from ideal, because it does not reflect a main aim of
the pension system: consumption smoothing. Nevertheless, in the world of bounded
rationality, together with εI and εE [(27) below] it reflects the undersaving of L and
the exploitation of L by H studied in Sect. 2.

We generalize the standard deviations of the average consumption along the M
paths. Let the expected average consumption in period t be denoted by ct , therefore
the squared standard deviations are respectively

ε2t,E = 1

N

N∑
k=1

(ckt − ct )
2 and ε2t,I = 1

N R

N∑
k=1

D∑
a=1

(cka,t − ckt )
2. (27)

We assume that every shortsighted worker k knows a small number of other short-
sighted workers, indexed as l ∈ Lk .3 We also assume that no set of acquaintances
changes in time; the number of acquaintances is denoted by |Lk | > 0, k = 1, 2, . . . , N .
For simplicity, the acquaintances are just one period older than the foregoing worker.
Except forHs, every agent k at every age and time signals his current type i(a, k, t + a).

Having dropped the age index, as a starting point, we shall experiment with the
simplest network, described as follows. Let e be a positive integer, called radius,
0 < e 
 N :

Le
k = {l, |l − k| ≤ e},

where the N agents of the same cohort are allocated randomly on the circle with N
points, and artificial types N + 1, N + 2, etc. stand for types 1, 2, etc. For example,
the set of 1’s acquaintances is

Le
1 = {1, 2, 3, . . . , e, e + 1; N − e, N − e + 1, . . . , N − 1, N }.

We assume that worker (a, k) in period t + a adopts that type ia,k,t−1+a’s γ which
produced the highest average projected consumption among his acquaintances one
period earlier:

cla,k,t+a ≤ c
ia,k,t−1+a
a,k,t+a , l ∈ Lk . (28)

If there is more than one optimal decision, he will pick one with the minimal index i
or randomize.

To start the dynamic system at period 0, we have to define the initial conditions.
For comparability with Tables 5, 6, 7, we assume that all the previous shortsighted
savings were zero and those of the farsighted were sH (0) in (4′). Hoping that the
process converges fast enough, we observe the system for T = 10 time steps, which
represents ten decades, i.e. 100 years.

3 For the sake of simplicity,we forbid shortsightedworkers to learn from farsightedworkers but as suggested
personally by Botond Kőszegi, its inclusion would open the door to an alternative learning mechanism not
using government-made information like α and especially θ .
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Fig. 1 a Rise of savings in time.
b Rise of savings in
time—averaged over 100
simulations
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3.2 Numerical illustrations

We shall present eight illustrations.

3.2.1 Rise of savings in time

First the number of types is n = 4: with uniform frequencies f1 = f2 = f3 = f4 =
1/4 and with γ1 = 1/4 (LL), γ2 = 1/2 (LM) and γ3 = 3/4 (LH), and type 4 is H.
Note that the average relative saving propensity, γ = 0.5 is the same as in Table 5,
therefore the two cases are comparable. Adding debt servicing, we choose ζ = 1/R in
(11′). The number of workers at each cohort is N = 120 and e = 1, i.e. everybody has
3 acquaintances. The parameter values are D = 6 and R = 4, the available strategies
are LL, LM, LH, and H, and L types do not learn from H types.

Figure 1a shows the average saving paths of workers who are initially of the same
type. Note that on average, the middle shortsighted workers catch up with the higher
ones, but the lower ones lag behind. The H types create “walls” that separate different
types of behavior. Agents within such a domain can only become as smart as the
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Fig. 2 Wider spread, typically
smaller standard deviation of
lifetime average consumption:
n = 4
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initially smartest agent was inside the domain. Despite learning, the average L-saving
remains below 0.015, slightly less than previously.4

To check the robustness of our results, we repeated the simulation that lead to the
results reported in Fig. 1a for 99 further randomly generated initial strategy distribu-
tions. At each time step, we averaged the savings, consumptions and their internal and
external standard deviations over all 100 realisations. Figure 1b shows the average
saving paths of workers who initially followed the same strategies after this statis-
tical averaging. Corresponding standard deviations are all below 0.001, that is, they
are at least one order of magnitude smaller than the plotted averages. As the two
figures clearly show, the averaged results are very close to the data points produced
by the previously mentioned single run. This—together with the relative smallness
of deviations among different simulations—suggests that studying single simulation
runs (with randomly generated initial states) should suffice to correctly capture the
most important properties and describe the typical behaviour of our model system
despite the above-mentioned domain effect. In the following illustrations, we present
the results of single simulation runs.

3.2.2 The impact of rising spread in saving propensities

Next we continuously change the half distance between the extreme γ s, that we call
the spread ξ , while fixing the middle at γ2 = 1/2: γ1 = 1/2 − ξ and γ3 = 1/2 + ξ ,
ξ ∈ (0, 1/2). Figure 2 (left-hand scale) shows the degree of perverse redistribution εE
as a function of ξ , for a fixed T = 10. We expected εE to decrease with ξ and Fig. 2
shows the extent of this tendency. Even in the case ξ = 0.5, the external standard
deviation εET cannot become zero, because of two reasons. Firstly, LL types do not
save in their first working period. Secondly, the domain structure can prevent some
LL type agents from becoming LH types. These reasons also lead to similar behavior
in the internal standard deviation (right scale).

Comparing Table 4 (middle row) with the zero-spread outcome in Fig. 2, we arrive
at the following observation: the introduction of local learning decreases the external

4 Note that even extending the rules to allow learning from farsighted workers would not significantly
improve learning. Upon request, we can send an unpublished document showing this.
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Fig. 3 More types, lower external standard deviation and higher internal standard deviation

standard deviation from 0.017 to 0.014, while it also increases the internal standard
deviation from 0.121 to 0.155.

3.2.3 The impact of the number of types

In the third round,we increase the number of types from n = 4 to 6, 8 and 10. Retaining
symmetry, we have n = 2m,

γi = i

2m
, i = 1, 2, . . . ,m, . . . , 2m − 1.

We again expect εE to decrease with m and Fig. 3 illustrates how our results match
these expectations: as the learning process eventually turns most L types into LH types
(with maximal γ ), which become more and more similar to H types asm is increased.
It is worth noting that the internal standard deviation (right scale) rises rather than
falls.

3.2.4 Random acquaintances

Next we return to simpler systems, with fewer strategies. Again there are n = 4
strategies (H, LL, LM and LH), but this time we change the network’s structure. We
experiment with a random graph (Erdős and Rényi 1959): we replace the original con-

nections with randomly chosen ones. Links were created with probability p = 2

119
,

to ensure that the expected value of connections remains invariant. As Fig. 4 shows,
the introduction of the random graph not only homogenizes the savings but also raises
their average with respect to the case depicted in Fig. 1a.

3.2.5 Less acquaintances, less saving

What happens if we drastically lower the density of the better configured previous
network by diminishing the probability of being connected from 2/119 to 1/238?
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Fig. 4 The impact of different
structure on the saving dynamics
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Fig. 5 The impact of less
connections on the saving
dynamics
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Figure 5 shows that this change leads to persistent heterogeneity and the stabilized
average savings are also diminished.

3.2.6 More acquaintances, more saving

We also change the characteristics of the simpler, “cylindrical network”, while fixing
m = 5, n = 10. We increase the radius e from 1 to 2, 3 and 4, and expect εE,T to
increase with radius e. The parameter e controls the domain structure of the system,
and therefore defines who can learn from whom. As e increases, more agents should
become able to learn from L types with higher γ values, but this also changes the tax
dynamics, so increasing e does not necessarily lead to a decrease in εE . Indeed, our
calculations (omitted) show practically constant external standard deviations.

3.2.7 Frequent revision does not increase saving

Until now we have fixed the length of a time step period at h = 10 years. Now
we change this important parameter as well. We expect that the shorter the length of
periods, the faster the shortsighted agentswill learn, diminishing both relative standard
deviations. (We turn to relative standard deviations to neutralize the impact of changing
time units.) Note, however, that our modifications change the debt dynamics as well,
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Table 8 Standard deviations
and length of period

Length of
period (year)

Internal standard
deviation

External standard
deviation

h εI (h) εE (h)

10 0.143 0.013

5 0.147 0.014

2 0.160 0.014

1 0.166 0.014

Fig. 6 Higher minimal
propensity, lower standard
deviation
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which may have unexpected repercussions. To check our conjecture we diminish
h = 10 first to 5 then to 2 and finally to 1. Table 8 displays the internal and external
standard deviations at T [1] = 100 to be denoted as εI (h) and εE (h). Contrary to our
conjecture, the speeding up of the learning process does not decrease the standard
deviations, moreover, the internal standard deviation slightly increases.

3.2.8 Higher propensities to save: more saving

Finally, we investigated the effects of raising the average value of γi for a relatively
high number of types. We fix the number of types at n = 10, and set the initial L-
types’ γ values to be equidistant above a minimal propensity γmin, (γi = γmin +
(i − 1) 1−γmin

n−1 , where i = 1, 2, . . . , n − 1). Figure 6 shows our findings. Raising the
minimal propensity to save leads to a decrease in the standard deviations.

4 Conclusions

We have studied a family of utterly simple life-cycle/overlapping generations mod-
els with mandatory and voluntary pensions. In the preliminary first model, (passive)
short- and farsighted workers lived together, and the former did not learn anything
from their exploitation. In its full variant, the (active) shortsighted workers learned
from public information how to participate in the voluntary pension system, and this
diminished exploitation. In the second model, we added local learning to the use of
public information: in the arising ABM,we studied a number of variants. For example,
we observed a plausible outcome: the more heterogeneous the relative propensities to
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save, i.e. the richer the set of possibilities to learn, the lower the standard deviation of
lifetime average consumptions, while increasing the number of acquaintances is indif-
ferent. On the other hand, we observed an implausible outcome as well: regardless of
the frequency of revision of individual strategies, the learning does not improve.

At the end we only allude to the shortcomings and simplifications present in our
models. If we were to relax any of the above-mentioned constraints, the quantitative
features would probably be changed. Though we have experimented with a number of
variants and have a solid theoretical foundation, we can only hope that our most impor-
tant qualitative result survives: local learning adds to using only public information.
To have any empirical relevance, the next model should introduce wage heterogeneity,
cap on matched savings and make farsightedness an increasing function of the wage.

Last but not least, the designers of voluntary pension systems should calculate with
the effects of tax expenditures on matching. They should also take into account that
the participation in such systems is difficult and the hindrances should be removed.
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