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Abstract – In evolutionary game theory, pair interactions are usually defined through so-called
payoff matrices, which can be decomposed as linear combinations of basis matrices that represent
just four different orthogonal interaction types. In this paper, we take the first steps in exploring
the utility of this decomposition in ecology. We introduce the componental cosines of the irrelevant,
external, coordination, and conflict components of matrices to measure the relative weight of
the different interaction types, and use them to analyse the composition of 33 experimentally
obtained interspecific interaction matrices compiled from the literature, which reveals statistically
significant correlations both between different components and some components and community
productivity and biodiversity.

Copyright c© 2021 EPLA

Understanding the relationships between species inter-
actions, biodiversity, and how ecosystems function is one
of the main problems of ecology [1,2]. What factors gov-
ern species relative abundances in a community [3] and
what determines species diversity [4] are among the re-
lated long-standing open questions. Apart from their fun-
damental scientific interest, these questions are of vital
importance in assessing how human activities threatening
biodiversity, such as changes in land use, overexploitation
of biological resources, pollution, and climate change [5],
impact food and water security.

Organisms in ecological communities compete for re-
sources, eat each other, and engage in mutually beneficial
relationships. There has been recent progress in linking
species abundances and species diversity with measur-
able parameters, such as pairwise interaction coefficients,
in real communities where, for instance, interactions are
dominantly competitive [6] or restricted to being either
purely predator-prey [7] or purely mutualistic in charac-
ter [8]. Establishing such a connection, however, remains a
pending issue in the general case of many species interact-
ing simultaneously through more than one of the above-
mentioned interaction types. Filling this gap will require a
major interdisciplinary effort combining the development
of new theories with experimental work and comparative
analyses [7].

(a)E-mail: kiralyb@mfa.kfki.hu (corresponding author)

It was recently shown in the realm of evolutionary
games that square payoff matrices can be decomposed as
linear combinations of elementary matrices of just four
orthogonal classes, each representing fundamental interac-
tion types [9,10]. This approach provides a framework for
a systematic investigation of any system involving interac-
tion matrices, such as Lotka-Volterra models and random
matrix models. By the same token, any S × S inter-
action matrix tabulating the interaction coefficients of a
community of S coexisting species can also be submitted
to this decomposition analysis and subsequently charac-
terised based on its composition.

In the research reported in this paper, we employed
the decomposition method to analyse the structure of the
interaction matrices of real ecological communities. We
identified characteristic statistical patterns in the rela-
tive weights of the four elementary interaction types as
measured by the componental cosines of the interaction
matrices onto the subspaces of the elementary interaction
types. We also found apparent correlations between some
of the componental cosines and a pair of community ob-
servables commonly used in ecology to characterise the
relative species abundances and species diversities.

The decomposition method. – In game theory, pair
interactions are usually defined through so-called payoff
matrices, which tabulate the possible winnings or losses
of a player by arranging them into rows and columns
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according to the player’s and her opponent’s choice of
strategy [11,12]. Players are often assumed to be iden-
tical to each other in the sense that they choose from the
same set of strategies and derive the same payoff from
the same outcome, which allows establishing the rules of
the game using a single square payoff matrix. A recently
introduced technique [9,10] decomposes such payoff matri-
ces into linear combinations of elementary matrices that
describe just a few fundamental interaction situations.

One of the possible decomposition schemes identifies
the following four elementary interaction types: irrelevant
games, external benefit games, coordination-type games,
and zero-sum conflict games. In an irrelevant game, each
player always receives the same payoff regardless of her or
her opponent’s choice of strategy. In an elementary exter-
nal benefit game, a player’s payoff is proportional to the
number of players choosing a specific available strategy,
as if the players were rewarded as a group by an outside
actor for choosing that startegy. In an elementary coor-
dination game, the players both receive zero payoff unless
they both choose either one of two coordinated strategies:
if they pick matching coordinated strategies, they both
gain a unit of payoff, whereas if they choose opposing co-
ordinated strategies, they both lose the same amount. Fi-
nally, in an elementary conflict game, there is a winning
and a losing strategy: the winner gets to take a unit of
payoff away from the loser, while all other strategy pair-
ings yield zero payoff to both players.

In linear algebraic terms, the above-described decom-
position scheme exploits the fact that any S × S square
matrix A —whose i-th row, j-th column element is de-
noted by Aij— can be expressed as a linear combination
of the following set of S × S matrices:

– the all-ones matrix m(S) with entries

mij(S) = 1, (1)

which represents the elemenetary irrelevant game;

– S matrices f(k;S) (k = 1, 2, . . . , S) with

fij(k;S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for i = k and j �= k,

1, for i �= k and j = k,

2, for i = k and j = k,

0, otherwise,

(2)

which correspond to elementary external benefit
games;

–
(
S
2

)
matrices d(k, l;S) (k, l = 1, 2, . . . , S; k < l) with

dij(k, l;S) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for i = j = k,

1, for i = j = l,

−1, for i = k and j = l,

−1, for i = l and j = k,

0, otherwise,

(3)

which define elementary coordination games;

–
(
S
2

)
matrices c(k, l;S) (k, l = 1, 2, . . . , S; k < l) with

cij(k, l;S) =

⎧⎪⎨
⎪⎩

1, for i = k and j = l.

−1, for i = l and j = k,

0, otherwise,
(4)

which describe elementary conflict games.

Formally, the decomposition reads

A = μm(S) +
∑

1≤k<l≤S

νkld(k, l;S)

+
S∑

k=1

ϕkf(k;S) +
∑

1≤k<l≤S

ψklc(k, l;S), (5)

where the greek letters denote the expansion coefficients
of the elementary games.

The matrix m(S) and the set of all f(k;S) are not lin-
early independent because

2m(S) =
S∑

k=1

f(k;S). (6)

As a result, the decomposition is not unique, but it can
be made so by fixing one of the expansion coefficients. An
appealing way to do this is to set the expansion coefficient
of m(S) as

μ =
1
S2

S∑
i,j=1

Aij , (7)

because μm(S) then becomes the average component
A(av) of the game, which invariably yields the payoff both
players should expect to win when they both choose their
strategy completely randomly, while

ϕk =
1
2S

S∑
j=1

(Akj +Ajk) − μ (8)

turns out to be the average payoff they can expect to gain
on top of μ when at least one of them chooses strategy
k. Notice that, in line with this interpretation, the ϕk

coefficients add up to 0. In the following, we will refer to
A(ex) =

∑
ϕkf(k;S) as the external benefit component

of the game A. In the remaining components, neither
player can unilaterally set the expectation value of the
sum of the players’ payoffs. The coordination component
A(co) =

∑
νkld(k, l;S) provides the same payoff to both

players, so individual and community interests coincide in
it, just as they do in the average and external benefit com-
ponents. The conflict component A(as) =

∑
ψklc(k, l;S),

on the other hand, does the opposite: it is a zero-sum
game, so it does not contribute to the total payoff of
the community, it only affects how the total payoff is
distributed among players following different strategies.
The expansion coefficients of elementary coordination and
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conflict games in a general matrix game can be derived
from the off-diagonal elements of the symmetric and anti-
symmetric parts of its payoff matrix as

νkl = μ+ ϕk + ϕl − Akl +Alk

2
, (9)

ψkl =
Akl −Alk

2
. (10)

To characterise the composition of payoff matrices, we in-
troduce the componental cosines of matrix components
modeled on the directional cosines of vectors as

P (i) =
A(i) · A

||A(i)|| ||A|| , (11)

where (i) stands for the label (av), (ex), (co), or (as) to in-
dicate the average, external benefit, coordination, or con-
flict components, respectively;

A · B =
S∑

i,j=1

AijBij (12)

is the Hilbert-Schmidt inner product of the two matrices,
and ||A|| =

√
A · A is the norm of A. Since the four

components are orthogonal to each other (A(i) · A(j) = 0
if (i) and (j) are different labels) and the Hilbert-Schmidt
inner product is distributive over the addition of matrices,
the expressions for the scalar products can be simplified
to read

P (i) =
||A(i)||
||A|| . (13)

The norms satisfy a Pythagorean theorem, namely

||A(av)||2+ ||A(ex)||2+ ||A(co)||2+ ||A(as)||2 = ||A||2, (14)

which, after division by ||A||2, can be rewritten in terms
of the componental cosines as

[P (av)]2 + [P (ex)]2 + [P (co)]2 + [P (as)]2 = 1. (15)

Unlike the usual directional cosines, these componental
cosines do not measure the structure of a matrix with re-
spect to fixed single-dimensional directions in the param-
eter space, but they compare its multidimensional projec-
tions to the matrix instead. As a result, the geometric
meaning of directional cosines and componental cosines
are somewhat different.

Results and discussion. – We analyse here a dataset
of 33 multispecies experiments, which was recently com-
piled in ref. [13] from the literature [14–24]. Although
this dataset covers several taxonomic groups, none of the
experiments involved species from multiple trophic levels.
For each experiment, both the yields Yi of all S species
forming the community in question and all their pairwise
interaction coefficients αij (i, j = 1 . . . S) were reported.
In general, the α interaction matrices included both neg-
ative and positive entries, the former indicating pairwise

competition, the latter indicating pairwise facilitation be-
tween the corresponding species. For more details about
the dataset, see ref. [13] and the Supplementary Material
(empirical.txt, empirical cosines mry h data.txt,
empirical cosines mry h corrs.txt, rawinteraction
data.txt, rnd -100 100.txt, rnd -200 200.txt, rnd
-1000 1000.txt, uniform4dsphere.txt, corrref.cpp,
interaction matrix.cpp, randgen.cpp, utils.cpp, in
teraction matrix.hpp, randgen.hpp, utils.h, fig1.
gp). Figure 1 shows the four componental cosines defined
in eq. (11), P (av), P (ex), P (co), and P (as), for each empir-
ical interaction matrix of the dataset. We also calculated
the Spearman correlation coefficients between the compo-
nental cosines. The results are shown in table 1. We found
the following patterns:

1) P (ex) is always smaller than P (co).

2) The smallest projection is either P (ex) or P (av).

3) The largest projection for the majority of these em-
pirical matrices is P (as) (20 times out of 33) followed
by P (av) (8) and P (co) (5). This is consistent with
P (as) having the largest mean value.

4) P (av) is strongly anticorrelated with all of the other
projections.

5) P (ex) is positively correlated with P (as).

In order to get an idea about which of these patterns are
specifically characteristic of empirical interaction matri-
ces, we compared our empirically obtained dataset to two
randomly generated reference datasets. The first dataset
consisted of the Cartesian coordinates of points selected
with a uniform distribution from the positive orthant of a
4-dimensional unit sphere [25], while the other dataset was
made up of the componental cosines of four-species inter-
action matrices with off-diagonal elements independently
and uniformly drawn from the closed interval [−1, 1]. In
both cases, we generated 33-data-point samples for direct
comparability with the data in fig. 1 and table 1, cal-
culated the same Spearman correlation coefficients and
p-values, the number of apparently significant (with a sig-
nificance level of 0.05) correlations, and how many times
each component was the largest and the smallest, and then
averaged them over 1000 iterations. The results are sum-
marised in tables 2 and 3.

The coordinates of random points on the positive or-
thant of the 4-dimensional sphere model componental
cosines that are as uncorrelated as possible, since these
points are uniformly distributed on the surface defined
by the two general properties of componental cosines,
their non-negativity and the Pythagorean property equa-
tion (15). This claim is supported by the results reported
in table 2. As expected, the four coordinates are statisti-
cally similar and they all turn out to be the largest or the
smallest with equal probability. The pairwise correlation
coefficients of the coordinates are also statistically similar
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Fig. 1: (a) Componental cosines of the interaction matrices, (b) mean relative yields (MRY ) and (c) Shannon equitabilities (H)
in the 33 multispecies experiments compiled in ref. [13].

Table 1: Mean componental cosines and Spearman’s rank correlation coefficients of empirical interaction matrices.

Mean Standard deviation Times largest
(out of 33 data points)

Times smallest
(out of 33 data points)

P (av) 0.436 0.269 8 14
P (ex) 0.238 0.108 0 19
P (co) 0.525 0.144 5 0
P (as) 0.579 0.193 20 0

Spearman’s rank correlation p-value p < 0.05?
P (av)–P (ex) −0.705 5 · 10−6 YES
P (av)–P (co) −0.539 0.001 YES
P (av)–P (as) −0.703 5 · 10−6 YES
P (ex)–P (co) 0.168 0.349 NO
P (ex)–P (as) 0.592 3 · 10−4 YES
P (co)–P (as) −0.053 0.770 NO

Number of simultaneous p < 0.05 apparent correlations: 4

to each other. On average, they indicate weak anticorrela-
tions between the componental cosines; each coordination
seems significant about one out of three times, and the
mean value of the ratio of apparently significantly corre-
lated pairs is also about one-third. Taking larger samples
provides further evidence of the presence of these weak
correlations: the ratio of p < 0.05-significant correlations
rises to about 80% when the size of individual samples
is increased from 33 to 100, and it grows above 97% for

a sample size of 200, without any noteworthy changes in
the correlation coefficients but with a decrease in their
standard deviations. The mean ratio of simultaneously
detected significant correlations remains approximately
equal to the overall ratio of significant-looking correla-
tions in both cases, which suggests that the correlations
are identified as significant by Spearman’s method with
the same (sample-size–dependent) probability and idepen-
dently of each other.
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Table 2: Mean componental cosines and Spearman’s rank correlation coefficients when the componental cosines are randomly
picked from the positive orthant of the 4-dimensional unit sphere.

〈Mean〉 〈Standard deviation〉
〈

Times largest
(out of 33 data points)

〉 〈
Times smallest

(out of 33 data points)

〉

P (av) 0.426 ± 0.046 0.259 ± 0.023 8.31 ± 2.42 8.11 ± 2.51
P (ex) 0.425 ± 0.045 0.260 ± 0.023 8.29 ± 2.42 8.25 ± 2.51
P (co) 0.425 ± 0.045 0.260 ± 0.023 8.32 ± 2.40 8.29 ± 2.64
P (as) 0.422 ± 0.047 0.259 ± 0.024 8.08 ± 2.55 8.34 ± 2.49

〈Spearman’s rank correlation〉 〈p-value〉 Times p < 0.05
(out of 1000 samples)

P (av)–P (ex) −0.263 ± 0.163 0.236 ± 0.261 320
P (av)–P (co) −0.270 ± 0.166 0.232 ± 0.264 330
P (av)–P (as) −0.269 ± 0.163 0.236 ± 0.266 333
P (ex)–P (co) −0.269 ± 0.159 0.230 ± 0.261 339
P (ex)–P (as) −0.264 ± 0.164 0.233 ± 0.260 327
P (co)–P (as) −0.266 ± 0.166 0.232 ± 0.257 333

〈Number of simultaneous p < 0.05 apparent correlations〉: 1.98 ± 0.80

Table 3: Mean componental cosines and Spearman’s rank correlation coefficients of four-species interaction matrices with
random off-diagonal elements independently and uniformly drawn from [−1, 1].

〈Mean〉 〈Standard deviation〉
〈

Times largest
(out of 33 data points)

〉 〈
Times smallest

(out of 33 data points)

〉

P (av) 0.359 ± 0.030 0.167 ± 0.018 2.63 ± 1.54 8.71 ± 2.55
P (ex) 0.231 ± 0.015 0.087 ± 0.009 0 ± 0 22.72 ± 2.67
P (co) 0.724 ± 0.019 0.101 ± 0.012 28.01 ± 2.14 0 ± 0
P (as) 0.484 ± 0.021 0.107 ± 0.013 2.37 ± 1.54 1.57 ± 1.22

〈Spearman’s rank correlation〉 〈p-value〉 Times p < 0.05
(out of 1000 samples)

P (av)–P (ex) −0.034 ± 0.175 0.496 ± 0.289 63
P (av)–P (co) −0.785 ± 0.073 4 · 10−5 ± 4 · 10−4 1000
P (av)–P (as) −0.040 ± 0.176 0.498 ± 0.293 54
P (ex)–P (co) 0.104 ± 0.177 0.445 ± 0.297 95
P (ex)–P (as) −0.430 ± 0.152 0.067 ± 0.133 721
P (co)–P (as) −0.447 ± 0.151 0.057 ± 0.125 745

〈Number of simultaneous p < 0.05 apparent correlations〉: 2.68 ± 0.81

By convention, the diagonal entries of interaction ma-
trices are fixed at −1 [26]. This, of course, influences
the elementary game composition of interaction matri-
ces, namely it establishes a set of identities —one for each
k = 1, . . . , S— involving the expansion coefficients associ-
ated with elementary basis games, which can be written as

S∑
l=1
l �=k

νkl + 2ϕk + μ = −1, (16)

where νkl = νlk when l < k. These identities explicitly
state that the external benefit, coordination, and average

components of interaction matrices are not independent.
At the same time, this expression says nothing about the
expansion coefficients of the asymmetric conflict compo-
nent of the matrix, so it does not introduce any further cor-
relation between P (as) and the other componental cosines.

We tried to identify the impact of these relationships
on the componental cosines by studying a simple four-
species random interaction matrix model in which the off-
diagonal entries are independently and uniformly drawn
from the closed interval [−1, 1]. The results of our analysis
are summarised by table 3. The smallest componental
cosine turned out to be P (ex) most of the time, while P (co)
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Table 4: Spearman’s rank correlation coefficients between the componental cosines of empirical interaction matrices and the
global observables of the 33 multispecies experiments. Bold numbers highlight statistically significant (p < 0.05) correlations.

P (av) P (ex) P (co) P (as)

MRY
−0.1410
p = 0.4337

−0.2363
p = 0.1855

0.4121
p = 0.0172

−0.0899
p = 0.6188

H
0.2072

p = 0.2472
−0.5959
p = 0.0003

0.2009
p = 0.2623

−0.3556
p = 0.0423

was never the smallest. The opposite can be said about the
largest componental cosine: it is usually P (co) but never
P (ex). In fact, we found that P (co) was always larger than
P (ex). Notice that this is one of the characteristic patterns
of our empirical interaction matrices as well.

The other patterns we listed above are clearly not uni-
versal. In the random interaction matrix model, P (as) can
be the smallest componental cosine, albeit rarely when
the matrix entries are picked from [−1, 1], which does
not occur for any of our empirical interaction matrices.
Furthermore, the largest componental cosine in these ran-
dom matrices is usually P (co), not P (as), which is typi-
cally the largest in empirical matrices. The correlations
between the componental cosines also show marked differ-
ences. Whereas P (av) seems strongly anticorrelated with
all other componental cosines in empirical matrices, it only
has a significant, strong anticorrelation with P (co) in the
random matrix samples. There is a moderately strong
correlation between P (ex) and P (as) in both cases, but
it is positive for the empirical and negative for the ran-
dom matrices. In the latter case, our data indicate a
similarly strong anticorrelation between P (co) and P (as)

as well, which does not seem to be present in empirical
matrices.

Changing the interval from which the random off-
diagonal matrix elements are drawn leads to changes in
the expected structure of the generated matrices, as shown
by the results of our analyis for the intervals [−2, 2] and
[−10, 10]. The dissimilarities between the three cases in-
clude differences in the magnitudes and even rank orders
of both the componental cosines themselves and their cor-
relations. For example, P (ex) is much less likely and P (av)

is much more likely to be the smallest componental co-
sine when the off-diagonal matrix elements are picked from
[−2, 2] or [−10, 10] instead of [−1, 1]. As opposed to the
other two cases, the correlation between P (av) and P (co)

seems insignificant for [−10, 10].
In conclusion, our results indicate that empirical inter-

specific interaction matrices have a more specific structure
than having random off-diagonal entries independently
and uniformly drawn from the same zero-centered interval.

We also analysed how the componental cosines are re-
lated to two different global community observables that
characterise species relative abundance. There are sev-
eral natural indices that quantify the intensity and various

effects of interspecies interactions [27]. Some of these in-
dices are expressed in terms of relative yields, that is, the
ratios of species yields in mixture to the same species
yields in monoculture Yi/Mi. Yi/Mi < 1 indicates that
species i performs worse in the community than in iso-
lation, which means that this species, on average, faces
stronger competition from the other species than its own
intraspecific competition. Similarly, Yi/Mi > 1 shows that
species i performs better in the community, because, on
balance, it is up against weaker than intraspecific com-
petition or might even be facilitated by the presence of
the other species. The simplest global community index is
the mean relative yield or mean competitive response [27]
defined as

MRY =
1
S

S∑
i=1

Yi

Mi
. (17)

The mean relative yield allows comparing community pro-
ductivity on a relative basis. An MRY < 1/S indi-
cates low productivity or underyielding [28] resulting from
strong interspecific competition while an MRY > 1/S
indicates overyielding, that is, the species, on average,
benefit from growing in the mixed community [28,29]. In
particular, MRY > 1 shows very high productivity and
implies that facilitation is the dominant form of interac-
tion in the community. As a result, MRY can be used
to assess the ability of ecosystems to provide ecological
services related to biomass production.

Biodiversity can also be measured by a variety of dif-
ferent indices [1]. We looked at perhaps the most popular
one, the Shannon equitability

H = − 1
ln(S)

S∑
i=1

pi ln(pi), (18)

where pi = Yi/
∑S

i=1 Yi. The more uniform the distribu-
tion of the yields is, the higher H becomes.

As table 4 shows, we found a positive correlation be-
tween the MRY and P (co), and negative correlations be-
tween H and both P (as) and P (ex), which indicates that
these componental cosines can be used as predictors for
MRY and H . These results are basically in line with the
properties of the corresponding elementary games. An el-
ementary coordination game equally encourages choosing
a pair of strategies, but it either promotes the coexistence
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(anticoordination) or the segregation and homogenisation
(coordination) of these strategies depending on the sign
of its interaction strength. The elementary conflict and
external benefit games, on the other hand, penalise choos-
ing certain strategies over others, decreasing their viability
and thus their prevalence.

Conclusions. – In conclusion, we have statistically
analysed the structure of a set of experimentally obtained
interspecific interaction matrices. We have found that
these empirical matrices have a non-trivial structure in
terms of game theory’s elementary game payoff matri-
ces. The componental cosines of their irrelevant, exter-
nal benefit, coordination-type, and conflict components
show further correlations beyond those introduced by the
mere definitions of these quantities, including a strong an-
ticorrelation between the irrelevant component’s compo-
nental cosine and those of the other components and a
positive correlation between the external benefit and con-
flict componental cosines. Moreover, our analysis has re-
vealed similar relationships between global observables of
whole communities and the structure of their interaction
matrices in the form of a positive correlation between the
mean relative yield and the componental cosine of the co-
ordination component and anticorrelations of the Shannon
equitability with both the external benefit and the conflict
componental cosines. These correlations reflect expecta-
tions based on the game theoretic interpretation of the
elementary interaction matrices.

Being able to predict outcomes, or at least trends, in dif-
ferent communities could prove useful in practical applica-
tions such as optimising the productivity of crop mixtures
in agriculture [30] or forecasting the impact of introducing
foreign species on the species relative abundance of natu-
ral communities, a fundamental problem in environmental
science [31,32]. Our findings are encouraging first steps in
developing a new tool for making such predictions.

Data availability statement : All data that support the
findings of this study are included within the article (and
any supplementary files).
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