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SI.1

Lemma 1. (Condition for symmetric ESP) Let (p∗1, 1− p∗1) = p∗ be an ESS with
respect to the payoff matrix A defined in Eq. (2) of the main text. If

∂1a(m
∗,m∗) = ∂2a(m

∗,m∗) = 0

and
∂11a(m

∗,m∗) < 0, ∂22a(m
∗,m∗) > 0,

then (p∗,m∗) is an ESP with respect to the hawk–dove game defined by the payoff
function a(m1,m2).

Proof. Using notation introduced in the main text, (p∗,m∗) is an ESP if there exist
an ε0 > 0 and a δ > 0 such that Eq. (3), that is

(1− ε)p∗Ap∗ + εp∗Bq > (1− ε)qCp∗ + εqDq,

holds whenever q ̸= p∗, |m−m∗| < δ and 0 < ε < ε0.
Since p∗ is an ESS with respect to A, there is an ε∗ such that

(1− ε)p∗Ap∗ + εp∗Aq > (1− ε)qAp∗ + εqAq

is true for every q ̸= p∗ and 0 < ε < ε∗ [cf. 1]. Therefore, if

(1− ε)p∗Ap∗ + εp∗Bq ≥ (1− ε)p∗Ap∗ + εp∗Aq, (SI.1)

and
(1− ε)qAp∗ + εqAq ≥ (1− ε)qCp∗ + εqDq (SI.2)

hold for any 0 < ε < ε0 with some appropriate ε0 ∈ (0, ε∗] in a neighbourhood of m∗,
we are done.

Since ε is positive, inequality (SI.1) is equivalent to

p∗Bq ≥ p∗Aq,

which is satisfied if a(m∗,m) has a local minimum at m = m∗. This occurs if

∂2a(m
∗,m∗) = 0 and ∂22a(m

∗,m∗) > 0.

Inequality (SI.2) can be rearranged as follows:

(1− ε)q[A−C]p∗ + εq[A−D]q ≥ 0.

1



Performing the multiplications yields

(1− ε)q1p
∗
1[a(m

∗,m∗)− a(m,m∗)] + εq21 [a(m
∗,m∗)− a(m,m)] ≥ 0,

where (q1, 1 − q1) = q. This inequality is true if q1 = 0 or the left-hand side has a
strict minimum at m = m∗. The latter holds if q1 ̸= 0 and its first-order derivative
with respect to m is 0 and its second order derivative with respect to m is positive at
m = m∗, that is, if

−(1− ε)p∗1∂1a(m
∗,m∗)− εq1[∂1a(m

∗,m∗) + ∂2a(m
∗,m∗)] = 0

and

−(1− ε)p∗1∂11a(m
∗,m∗)− εq1[∂11a(m

∗,m∗) + 2∂12a(m
∗,m∗) + ∂22a(m

∗,m∗)] > 0.

The first condition is fulfilled if ∂1a(m
∗,m∗) = ∂2a(m

∗,m∗) = 0, while the inequality
is equivalent to

∂11a(m
∗,m∗) <

−εq1
(1− ε)p∗1

[∂11a(m
∗,m∗) + 2∂12a(m

∗,m∗) + ∂22a(m
∗,m∗)].

Since the right-hand side tends to 0 as ε → 0, the inequality holds if ∂11a(m
∗,m∗) < 0

and 0 < ε < ε0 for a small enough ε0.
□

SI.2

Lemma 2. (Invasibility) If a(m,m∗) has a strict local maximum at m = m∗, in
particular, if

∂1a(m
∗,m∗) = 0 and ∂11a(m

∗,m∗) < 0, then (SI.3)

p∗Ap∗ > qCp∗ for any q distinct from e2 = (0, 1) and m ̸= m∗ close enough to m∗.

Proof. Assume that m ̸= m∗. We first show that

p∗Ap∗ > e1Cp∗. (SI.4)

Performing the multiplications, the inequality takes the following shape

1

2

(
2a(m∗,m∗)(p∗1)

2 + v − (p∗1)
2v
)
> a(m,m∗)p∗1 + (1− p∗1)v.

Since p∗1 = v/
(
v − 2a(m∗,m∗)

)
(see Eq. (4) in the main text), the left-hand side is

v

2

−2a(m∗,m∗)

v − 2a(m∗,m∗)
,

2



and the right-hand side is

v
a(m,m∗)− 2a(m∗,m∗)

v − 2a(m∗,m∗)
.

We easily infer that inequality (SI.4) holds if

a(m∗,m∗)− a(m,m∗) > 0,

which follows from condition (SI.3).
On the other hand, since p∗ is an ESS with respect to A, it follows that p∗Ap∗ =

e2Ap∗, and it is easy to check that e2Ap∗ = e2Cp∗. Therefore, p∗Ap∗ = e2Cp∗.
Hence, for q = q1e1 + q2e2 with q1 > 0, we immediately get

p∗Ap∗ = qAp∗ = q1e1Ap∗ + q2e2Ap∗ > q1e1Cp∗ + q2e2Cp∗ = qCp∗.

□

SI.3

An observation on the conservation of p∗1(m,m)c(m,m)
If the payoff matrix is (

a(m1,m2) v
0 v/2

)
,

then

a(m1,m2) = π(m1,m2)v −
(
1− π(m1,m2)

)π(m1,m2)v − a(m1,m2)

1− π(m1,m2)
.

Hence, following the structure of a(m1,m2) given in Eq. (1) of the main text, we can
express the cost function c(m1,m2) as

c(m1,m2) =
π(m1,m2)v − a(m1,m2)

1− π(m1,m2)
, (SI.5)

from which

c(m,m) =
π(m,m)v − a(m,m)

1− π(m,m)
=

1
2v − a(m,m)

1
2

= v − 2a(m,m).

Consequently, if ESS p∗ = p∗(m,m) = (p∗1, 1−p∗1) is the ESS for a trait value m, then

p∗1 = p∗1(m,m) =
v

v − 2a(m,m)
=

v

c(m,m)
,

and so the product p∗1(m,m)c(m,m), that is, the per game average of the maximal pos-
sible cost of playing hawk in a monomorphic ESS population is always v independently
of m.
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Examples of local extrema in c(m,m) at symmetric ESP
In our example in the main text, both c(m.m) and a(m,m) are constant. Here, we
show that this is not the general situation and a strict maximum or minimum can
occur at m = m∗. To find such a function, we rotate the graph of function a(m1,m2)
defined by Eq. (7) of the main text around (m∗,m∗). If

uφ(m1,m2) = m∗ + cos(φ)(m1 −m∗) + sin(φ)(m2 −m∗)

and
wφ(m1,m2) = m∗ − sin(φ)(m1 −m∗) + cos(φ)(m2 −m∗),

then the graph of

aφ(m1,m2) := a
(
uφ(m1,m2), wφ(m1,m2)

)
is the graph of a(m1,m2) after a rotation of angle φ around (m∗,m∗). Let us denote
the corresponding cost function calculated according to (SI.5) by cφ(m1,m2).

For example, if m∗ = 5/8 and

φ1 = 30◦, then uφ1
(m1,m2) =

√
3

2
m1 +

m2

2
+

5(1−
√
3)

16

and wφ1(m1,m2) = −m1

2
+

√
3

2
m2 +

5(3−
√
3)

16
,

and the cost cφ1
(m,m) is minimal, and so aφ1

(m,m) is maximal at m = m∗.
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Fig. SI.1 The graphs of cφ1 (m,m) and aφ1 (m,m)

While if

φ2 = −30◦, then uφ2
(m1,m2) =

√
3

2
m1 −

m2

2
+

5(3−
√
3)

16

and wφ2
(m1,m2) =

m1

2
+

√
3

2
m2 +

5(1−
√
3)

16
,

and the cost cφ2
(m,m) is maximal, and so aφ2

(m,m) is minimal at m = m∗.
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Fig. SI.2 The graphs of cφ2 (m,m) and aφ2 (m,m)

+30°–30°

Fig. SI.3 The figure in the middle is the graph of the a(m1,m2) defined by Eq. (7) of the main
text. The figures on the left and the right show the graphs of the functions derived from a(m1,m2)
by rotating its graph by −30◦ and 30◦ around the dashed black line, respectively. The dashed green
curves make up the level line corresponding to the value a(m∗,m∗), and their intersection is the point
on the graph corresponding to (m∗,m∗). When the graph of a(m1,m2) is rotated by −30◦ (+30◦),
then the blue (red) curve ends up above the points with (m,m) coordinates.
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