
1

Methods for studying spatial evolutionary games Lecture 11

1) Monte Carlo simulations

2) Methods of equilibrium statistical physics

3) Methods of non-equilibrium statistical physics

Comparison of results (PD game, square lattice, pairwise imitation, K=0.4)

Red: MF; dotted: pair (or 2-site); dashed: 4-site; solid: 9-site approximation

Squares: MC results

Approximative analytical treatments help us

- extract general statements

- identify universal features

- quickly derive initial results



2

Evaluation of cluster configuration probabilities

extension of mean-field and pair approximations

N players are located at the sites (x) of a lattice with PBCs.
Symmetries: translation, rotation, and reflection
Each player follows one of Q strategies:
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The probability of finding strategy s1 is identical at 
all the sites and it is denoted by
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(Time-dependence is not indicated.)
Configuration probabilities on two sites:
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Configuration probabilities on n-site clusters:
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Number of configurations: Qn.



Compatibity conditions

Normalization:
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The configuration probabilities are not independent of each other.

For example, if n=2, then

For arbitrary n:
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Dependence on the form of the cluster is not indicated in this notation.

Usually, compact clusters are used.



Consequences of compatibility conditions

Number of free parameters is reduced.
For example, for one- and two-site clusters and Q=2:
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Consequence:

The 6 configuration probabilities are defined by just 2 parameters.

Larger clusters can exhibit further symmetries.



Configuration probabilities can be built up using Bayesian approximation

Namely, the conditional probability of finding s2 at site x2 given that x1 follows strategy s1 is
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So for a three-site cluster using the conditional probability of finding s3 given s2:
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And by the same token for a (linear) four-site cluster:
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Generalization to linear n-site clusters:

This approximation preserves the compatibily conditions, if d=1,



Graphical representation of the products

Configuration probabilities can be represented by geometrical symbols 

multiplication (division) by p1(s1): solid (empty) circle at site x1

multiplication (division) by  p2(s1,s2): solid (dashed) line connecting x1 and x2
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Generalization for larger clusters:
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These graphs are useful when performing calculations.



Problem of enclosure

For triangular clusters we have different options:

For these three options:

rotational symmetry is broken,

compatibility conditions are broken, too

Suggested solutions: 

consider all with weight factor of 1/3,

or Kirkwood approximation:

or use three-site approximations

Similar difficulties can occur for all spatial systems.

an example with a possible solution 

These difficulties do not exist on 1D lattices

and loop-free structures (e.g., Bethe lattices) 
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Approximation of quantities using pair-configuration probabilities:

- Frequency of strategy s in spatial evolutionary games:
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- Probability of finding homogeneous linear domain of s with a length of n: 

si=s, i=1, …, n
ξ: correlation length or

typical domain size

- Average payoff for z neighbours:
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- Other quantities (e.g., total payoff or entropy) can also be evaluated.

- The method can be extended to larger clusters, too.



Cluster variation method at the level of pair-approximation:

The thermodynamic potential (average potential + K×entropy) can be given as a 
function of c and q (when Q=2) in the N→∞ limit as:
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According to the extremum principles the equilibrium state can be determined by 
solving the following equations: 

where U and S denote the specific potential and entropy.

The method can be extended to larger clusters, too.

For example, on the 1D lattice:
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Dynamical cluster method

Example: spreading of infection on a 1D lattice (Contact Process)
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The dynamics is controlled by repeating the following elementary processes at site x:

recovery:   sx=1→0   with a probability of 1/(1+λ) 

infection: sx=0→1   with a probability of λ/(1+λ) 

if its randomly selected neighbour is infected

Parametrization of configuration probabilities:
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Contributions of the elementary processes to the time derivatives of the 
configuration probabilities:

z=2 and the denominator is eliminated by choosing a suitable time scale:
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Contributions to the two-site configuration probabilities:
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The sum of the above contributions
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As we have only two parameters (c and q) we do not need to derive further equations of motion.

Notice: The above set of EoM is not closed/solvable due to the additional terms (e.g., p3(1,0,1)]. 

Consequently, we need further equations

or we need to use the Bayesian approximation formula for quantities like p3(s1,s2,s3). 



One-site (mean-field) approximation

The equations are simplified by        nnn spspspssp 121111 ,,  

Then:
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Two-site (pair) approximation
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The following two equations are to be solved:
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Plugging in the parametrization and the approximation, we get
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Trivial solution: 0and0  qc

Non-trivial solution:
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Stability analysis: The active (c>0) solution is stable if  λ>2.

The absorbing (trivial, c=0) solution is stable if  λ<2



The calculations can be performed when using larger clusters:

We can develop algorithms for the derivation of the EoM.

numerical solution use of  ”recipes” is suggested

Comparison of results (1-, 2-, and 3-site approximation and MC simulation) in 1D

Increasing n improves the 
accuracy.

Simulation:

Directed percolation (DP) type 
critical transition, that is,

correlation length, relaxation 
time, and fluctuations diverge 
when λ→λc.



Numerical solution of the EoM

)(xFx  Q variables and eqs.

In the stationary state: 0)(  xFx

1. Solution by iteration (Newton’s method): x0→x1→x2→ etc.
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Use software packages.
Use variables with the highest accuracy.
The iteration converges to the real solution if it is started from a suitable x0.

2. Numerical integration:

Repeat the following steps:
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This is the only possibility for limit cycles.
dt can be tuned during the iteration.



Contact process on d-dimensional lattices

Simulation results: 

d=1(●), 2(□), and 3(▲) 

1-site approximation: solid line, critical behaviour in the vicinity of λc 



Quantities

Order parameter: 

Fluctuation of order parameter

Correlation function:

Equal-time:

Equal-position:
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Time-dependent behaviour: spatial spreading of infection from a single site?

Survival of infection:

Average number of survivals:

Occupied area (R2): zttR

ttn

ttS





 

)(

)(

)(

2





exponents

General features of this critical transition from ρ=0 to the active (ρ>0) phase 

if N→∞.



Exponents for different ds (universal behaviour):

Exp. d=1 d=2 d=3 d=4

λc 3.29785(2) 1.6488(1) 1.3169(1)

β 0.27649(4) 0.583(4) 0.805(10) 1

γ 0.54386(7) 0.35(1) 0.19(1) 0

νp 1.73383(3) 1.295(6) 1.105(5) 1

νm 1.09684(6) 0.733(4) 0.581(5) ½

δ 0.15947(3) 0.4505(10) 0.730(4) 1

η 0.31386(3) 0.2295(10) 0.114(4) 0

z 1.26523(3) 1.1325(10) 1.052(3) 1

Mean-field type behavior occurs if d≥4.



Relations between the exponents can be derived from scaling hypotheses:
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These general features are characteristic of the DP (directed percolation) universality class.

(these phenomena were first observed there)

DP type critical transition is expected in a system (in the limit N→∞) if

- there is (at least one) absorbing state 

- it involves short range interactions

- MF approximation predicts a similar transition (e.g., for imitation)

(additional symmetries can result in different behaviour)

- the background is homogeneous

inhomogeneous systems can exhibit a Griffiths phase 

that leads to slow relaxation



Home assignments

11.1. On a one-dimensional lattice for Q=2, the three-site cluster configuration probabilities 
satisfy the following relations:        
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whereas for the four-site configuration probabilities 
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What is the common feature of configurations that can exhibit symmetry breaking 
for n>4?

11.2. Show that on a one-dimensional lattice for Q=3 the compatibility conditions allow 
the following relations:       
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What is the main feature of the patterns that can be described by the following 
configuration probabilities:
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11.3. Find a suitable parametrization for the cluster configuration probabilities on a 2×2 
cluster of sites on a square lattice for Q=2, if the system exhibits all the possible 
symmetries (reflection and rotation)! How many independent parameters does it have?

11.4. Determine the number of parameters we need to introduce at the level of triangular
cluster approximation on the kagome and triangular lattices for Q=2!

11.5. Evaluate the specific entropy 
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in a Q-state one-dimensional system in the N→∞ limit when 
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