
Repeated PD game with stochastic reactive strategies Lecture 4

Nowak and Sigmund, Acta Appl. Math. 20 (1990) 247; Nature 355 (1992) 250.

Like Axelrod’s tournament, but with a set of stochastic reactive strategies.

Payoff matrix:
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Stochastic reactive strategies:

stochastic decisions that depend on the previous step of the coplayer 

similar to TFT strategies:

1,,0,),,(  yqpyqps

p: probability to choose C, if the partner used C in the previous step (otherwise D)

q: probability to choose C, if the partner used D in the previous step (otherwise D)

y: probability to choose C in the first step



Strategy space

Deterministic strategies: p, q, y = 0 or 1

In iterated games, y becomes irrelevant in the long run and

0< p, q <1           become relevant in the presence of noise.

Each point (p,q) represents a stochastic reactive strategy

p=q=0: AllD

p=q=1: AllC

p=q: independent of the previous step

p=q=1/2: coin toss

p=1,  q=0: TFT (if y=1)

p=1,  q>0: generous TFT

p=1:  nice (friendly) strategies

p=0, q=1: contrarian



Strategy s(p,q,y) plays against s(p´,q´,y´): 

In step n (n=1,2,…) the probability of choosing C is: 
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The n→∞ stationary solution becomes independent of ys if |p–q|, |p´–q´|<1 
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Solution:
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Average payoff of strategy s against s´:
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In this latter case: 
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Non-analytic behaviour at TFT!



Evolution of the population of stochastic reactive strategies

Repeated competition between N stochastic reactive strategies at times t=0,1,2, …

ρi portion of players follow strategy si=s(pi,qi) (i=1, …, N)

Initially: ρi(t=0)=1/N

Payoff of strategy si (or strategy i):
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At time t+1 the players can change their strategies:

Successful populations expand at the expense of the others (Nowak & Sigmund 1992).
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 the new size of population i is proportional to 

its share of the total income (Ui>0 !)

This rule preserves the normalization

Nowak and Sigmund chose N=100 strategies with random (pi,qi) pairs
and investigated the model numerically.
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Numerical solution

i=1, …, N=15×15=225 (with an equidistantly sampled strategy distribution)

Initially the strategies are present with a frequency of ρi(t=0)=1/N.

Time-dependence of ρi(t) [only if ρi(t)>ρi(0)] movie



Time-dependence of  ρi(t) for some relevant strategies:

AllD:  (solid line) after its initial success, AllD fails

AllC:  (dashed line) becomes extinct due to its exploitation by AllD 

TFT:  (dotted line) rises after a transient time, when AllD runs out of exploitees

GTFT: variants with higher and higher q (generosity) successively replace each other



Successive evolution stops at a particular 
value of q. Why?

Analytical calculations

1.) AllD conquers a homogeneous population of 
(p,q) strategy within the grey area. 

(Home assignment 4.1.)

2.) Assume weak mutations are possible in the 
form of slow variations from p→p+∆p and 
q→q+∆q (∆p and ∆q →0+) in a homogeneous 
population if the mutants receive a higher payoff. 
The direction of this evolution via weak mutation 
is given by the following partial derivatives:
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Optimal value of forgiveness (generosity)

TFT strategies punish each other in the presence of noise.

The optimal value of q is determined by the p→1 limit:

(Home assignment 4.2.)
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The previous dynamical rule drives the system towards p=1 and qopt ,
where the average payoff is maximal.

The Old Testament favours TFT, while the New Testament favours AllC.

Evolutionary game theory suggests using gTFT with qopt.

The outcome of evolution depends on the payoffs and the available strategy set.

(1, qopt) or the closest available strategy might be inside AllD’s domain, which allows 
AllD to rise again, only to again be replaced by TFT, which is in turn replaced by its 
more generous variants, and this cycle keeps repeating.

Result with three strategies (AllC, AllD, TFT) for weak noise limit: movie



Further connections to ancient philosophy

- I Ching (Book of Changes) (~1000 BC): ”Here the climax of the darkening is 
reached. The dark power at first held so high a place that it could wound all who 
were on the side of good and of the light. But in the end it perishes of its own 
darkness, for evil must itself fall at the very moment when it has wholly 
overcome the good, and thus consumed the energy to which it owed its duration.”

- The parable of long chopsticks (or spoons): ” In each location, the inhabitants 
are given access to food, but the utensils are too unwieldy to serve oneself with. 
In hell, the people cannot cooperate, and consequently starve. In heaven, the 
diners feed one another across the table and are sated.”



Complex behaviour when varying payoffs and the number of (p,q) strategies

To avoid numerical difficulties, we introduce a weak mutation, that is,
after each step strategies that go extinct are allowed to replenish via a weak 
mutation (with a small probability μ).

Results: different outcomes.

E.g., coexistence of several strategies or TFT fails to repress AllD.

This analysis of these systems is far from complete.

Examples if μ=0.000001:

(T,R,P,S)=(5,3,1,0) Axelrod

(7,3,1,0)

(5,2,1,0)

(6,4,3,0)

5310

7310

5210

6430



Generalization of stochastic reactive strategies

Players (x and y) take into consideration both their own and their co-player’s decision in the nth 
step when deciding what to choose in the upcoming (n+1)th step.

In this case, the strategy of player x (and y) is determined by 4 parameters (if and after the first 
steps become irrelevant), namely,
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Accordingly, player x chooses 

C with prob. p1, or D with prob. (1–p1),  if the previous strategy profile was CC

C with prob. p2, or D with prob. (1–p2),  if the previous strategy profile was CD

C with prob. p3, or D with prob. (1–p3),  if the previous strategy profile was DC

C with prob. p4, or D with prob. (1–p4),  if the previous strategy profile was DD

The same rules are used by player y with probabilities q1, q2, q3, q4

(from her own point of view)



If the components of the 4-dimensional vector v(n) describe the probabilities of the
strategy profiles CC, CD, DC, and DD in the nth step, then v(n+1) can be described as:

when the players use the extended stochastic reactive strategies dx and dy. 

In the stationary state:
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Remark: Press and Dyson [PNAS 109 (2012) 10409] found that, under the right 
circumstances, the players can both unilaterally set a linear relation between their scores 
in this game with the help of so-called zero-determinant strategies. This means that the 
players can set their opponent’s score or demand an extortionate share of the payoffs, 
turning the iterated prisoner’s dilemma into a sort of ultimatum game. TFT is a fair 
”extortionate” zero-determinant strategy.



4.1. Determine the (p,q) strategies whose homogeneous population can be occupied 
by AllD! (The grey area on slide 8.)

4.2. Determine the boundary in the (p,q) strategy space where the evolution via 
weak mutations stops, that is, where the formulae on page 8 predict

Plot the results for the payoff parameters used by Axelrod (T=5, R=3, P=1, S=0)!

What is the optimal value of forgiveness (qopt) in the limit p →1?

4.3. Determine the matrix M from the previous slide and evaluate the stationary 
solution! 

Home assignments
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