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ABSTRACT

We describe a computational method derived frorh el
ganizing mapping and multidimensional scaling athans
for automatic classification and visual clusteriofylarge
vector databases. Testing the method on a largeusaf
folksongs we have found that the performance ottassi-
fication and topological clustering was signifidgntm-

proved compared to current techniques. Applying thecalled K-means algorithm [8].

method to an analysis of the connections of 31 &ansand
North-American folk music cultures, a clearly imiestable
system of musical connections was revealed. Thaltses
show the relevance of the musical language groophe
oral tradition of the humanity.

1. INTRODUCTION

The comparative study of different folk music cultsi goes
back to the early 20th century [1-2]. Although ethmusi-

cologists seemed to gradually forget the conceptibthe

classical structural analysis and classificatitwe, develop-
ment of the computation tools led to a renaissafcthe

idea in recent years [3-4]. At the same time,rthmber of
representative national/regional digital folksongtabases
is also increasing rapidly. Therefore, a computetec
comparison of different musical cultures in ordenr¢veal

hidden contacts of different musical cultures bezarery

topical.

Current interdisciplinary research, based on thapeaation
of musicology, artificial intelligence research ashata min-
ing, focuses on automatic similarity measuremestren-
tation, contour analysis and classification usirffecent

statistical characteristics, e.g. pitch-intervalrbythm dis-

tribution. A very widely used kind of artificial neal net-

works, the self organising map (SOM) proved to beegy

versatile tool of computing musicology [5]. SOM-bds
systems have been elaborated for simultaneous sialfy
the contour as well as the pitch, interval and tiomadistri-

butions, based on the symbolic representation efmtlsic
[6]. A cross-cultural study of different musicallcwies was
also based on SOM technique [7].

The operation of a SOM can be summarised for ose ea
follows: Our input data to be classified are conteectors,

containing subsequent pitch values of melodies &dlla
song database. The main goal of self organisingpinggs
to characterise the multidimensional point systeom-c
structed by the set of these melody contour vediprs sig-
nificantly smaller set of “contour type vectors”sdebing
the average contours in the local condensatioriseoinput
contour vectors. Although the details of the catiohs are
different, this goal essentially corresponds td tifahe so-
However, the SOM -pro
duces something more: it assigns the resultingotwrtype
vectors to the lattice points of a grid topographic The
topographic structure of the resulting map is piedi by a
cooperative learning, modifying the contour typectoes
located in neighbouring lattice points in paralkss. a result
of this local cooperation, similar contour type tags are
located in neighbouring lattice points after leagni

Due to the topographic lattice, the SOM allows ailé-
scribe the inherent relations of a melody collettio two
levels. Similar melodies are classified as variafta com-
mon contour type in the first level, while the taas of the
classes represented by the contour types themsahees
mapped into the topographic lattice in the secamal o

The overall relations in a data set can be exdbjleapre-
sented on a SOM, providing that these relationsbeawell
approximated by a two-dimensional structure. Howeve
stretching a more complicated structure into anplattice
results in a significant loss of the accuracy &f thassifica-
tion on one hand, and a non-perspicuous map owottre
hand. In principle, it is possible to extend thepnaimen-
sion, but the resulting exponential increase inrhber of
lattice points dramatically increases the computimg and
the memory demand. Therefore, we need some athbr t
nique to increase the degree of freedom of thetpdainthe
map.

Therefore, we elaborated a system combining the SOM

technique with a special version of the multidimenal
scaling (MDS) algorithm [9]. In MDS technique, tmgput
data to be visualised are presented in a quadnagiTix
containing some distance-like or similarity-likelwas be-
tween some objects. (For instance, the matrix carain
geographical distances between towns, or dissiityileat-
ings of melodies, etc.) The aim of the algorithntoisepre-
sent the objects (towns or melodies) in a low disiamal



space (often in a plane) with the requirement thatdis-
tances of the low dimensional points must optimatiyre-
spond to the input values.

In the present work, firstly we describe a methaoh-c
structed by two independent stages correspondintheo
above-mentioned two-level characterisation of mgloalr-
pora. The first stage is a simplified, non-coogeeat and
therefore non-topographic - version of SOM learningthe
second stage, the topographic low-dimensional nmagppf
the resulting contour type vectors is accomplisthgda
variant of the MDS algorithm. This allows us to jed the
spatial regularities of the multidimensional inpattor sys-
tem to a continuous low-dimensional space withbet re-
strictions of the planar grid structure of the SQKl.order
to express the contact to the original SOM prireighd to
emphasize the increased degree of freedom of thedlo
mensional mapping, we call this technique “selfamiging
cloud” (SOC).

As a generalisation of the original SOM principlee also
present the cooperative version of the above legrays-
tem, where the topographic arrangement is imprdwec
feedback between the multidimensional learning &l
low dimensional mapping functions.

We describe the results of a cross-cultural studylorep-
resentative Eurasian and North-American folksonliece
tions, based on the modelling by “self organisihgud”
techniqgue. The studied cultures are as follows:n&deg,
Mongolian, Kyrgyz, Mari-Chuvash-Tatar-Votiac (Volga
Region), Sicilian, Bulgarian, Azeri, Anatolian, Keahay,
Hungarian, Slovak, Moravian, Romanian,
(North-Poland), Warmian (East-Poland),
(Southern-Central Poland), Finnish, Norwegian, Garm
Luxembourgish, French, Dutch, Irish-Scottish-Erglis

Cassubian
Great-Polish
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Figure 1. The generation of the melody contour vectirs

One can see in the figure that the duration oftémeporal
intervals of the pitch-time function is determinbg the
rhythmic value of the corresponding note. Thus, rien
rhythmic information is also encoded. For samplitg, to-
tal length of the pitch-time function was divideatd D
portions. Then, the “melody vector”

Xk :[Xlk,xz’k...XD,k]T was constructed from the se-

quence of the pitch-time samples of ti¢h melody (See
Figure 1.).

Since D was uniform for the whole set, melodies could be
compared to each other using a distance functifinedkein

the D -dimensional melody space, independently of their
individual length. Due to this normalisation, mefocon-
tours can be compared independently of their measur
tempo and syllabic structure. We studied the meloely
tors of the entire songs in the analysis, and we Hiaund
that a choice oD = 64 resulted in an appropriate accu-
racy for each melody.

3. DETERMINATION OF THE CONTOUR TYPE
VECTORS

(mainly Appalachian), Spanish, Dakota, Komi, Chanty In the first phase of the process, we determiNeD=64

Serbian-Croatian (Balkan), Kurd, Russian (Pskowr @a-
tabase contains digital notations of nearly 3208K $ongs
arising from different written sources. All of tleesources
apply the Western notation, thus, the microtonanamena
of the different cultures were eliminated by thethaus
themselves. The time duration and musical struabdirthe
melodies is very variable, therefore we normalized
length of the melody contours as follows.

2. THE MELODY CONTOUR VECTORS

The generation of vectors from melodies is sumradris
Figure 1, showing the first section of a Hungarfi@lksong
as an example. The continuous pitch-time functierived
from the score is represented by the thick linEigure 1.

There, the pitch is characterised by integer numbier
creasing 1 step by one semitone, with the zerd lefvehe
pitch corresponding to the C tone. (In order tauessini-
form conditions, each melody was transposed tofitied
tone G.)

dimensional “contour type” vectorg;, characterising the
most important melody forms in a database contgiMn
melodies. In a training step, the distances betwaeean-
domly selected melody contouty and the contour type
vectors are determined, and the contour type ofinmaih
distanceC; is considered as the “winner”. The winner con-
tour type is moved closer to the melody contour.

In the initial state, the vectoiG; were filled by randomly
selected melodies of the database. The size ofdhtour
type sets varied between 400 and 576. The algorithim
sists of the following steps.

1. A melody of the database was selected randondyita
melody vectorXy was compared to the contour type vec-

tors C; using the Euclidean distance metric.



2. The contour type vector of the minimal distagewas ~ May not be important in certain cases. Thus, thghweal-
determined as the “winner” and it was modified gsin ues can be defined as functions of the input distaq ;. )

The minimum of the stress function is searched byaali-

- ent algorithm. For sake of simplicity, we considlee case
Ci =G +/](l(k _Qi) , 1) when the low dimensional space is a plane, buté¢kalts
can be easily generalised to higher dimensionghétbe-

where A is a scalar factor controlling the rate of conver- ginning, theN points are randomly located in the plane with
the coordmates(v Vv where m denotes the serial

gence and the accuracy. m,1 m2) J
The above technique can be considered as a K-nadgms  number of the points. The gradient components efthess
rithm [8], or equivalently, as a SOM with a leamiradius function in the A dimensional space of the point co-
of zero. This fact results in a remarkable simgdifion of ordinates are the partial derivatives

the SOM algorithm and a significant improvementtiod

classification as we will illustrate it below. Hower, these

advantages imply the disadvantage that the topbgrag- 0S _ N ) ( q )ad
rangement of the contour types — being a naturakeo ov _Z ZWJ i G 6V
guence of the original SOM process - requires &rrttom- mk =g

putation. The algorithm producing a more compreivens

and adequate spatial arrangement of the contoer \rgp- k=12 m=1.N. )(4
tors is a version of the multidimensional scalieghnique,

and is described below.

Let the “distance” of théth andjth points in the plane be

4. LOW DIMENSIONAL MAPPING OF THE defined as
CONTOUR TYPE VECTORS

The basic idea of the multidimensional scaling atgm
can be formulated for our problem as follows: Weeha
set of N pieces ofD=64 dimensional contour type vectors

Ci, and we can calculate thi¢*N dimensional quadratic,

I\)\H
HMN
/-\
v

) ) o ] ) k=12 i=1.N, j=1.N . (5)
symmetric matrlxg containing the squared Euclidean dis-
tances( ; of them. (The advantage of squaring will be ex- ad
plained below.) We want to represent thecontour types  This definition yields a very simple expression fer—
by N vectorsV; of a low dimensional point system, so that Vink

the distanced, ; between these points converge to the best@nd the gradient components of the stress funatidéqua-
) ] tion (4) become finally:
Iow-dlmenS|onaI approximations of the

D N
G =D (Cix —Cu)° ) = Zzwi,m(vm,k ~Vik )(dm,i +di =0y — qi,m)
p= Y i=1
k=12m=21..N (6)
values in the sense of
N N According to the gradient search principle, the resti-
S= zz [ (di,j —q )2 =min, (3) mates of the optimal point co-ordinates are detsethias
i=1 j=1
. 0S
where S is the stress function to be minimised, and Vink = 'UTV 0

W, =W, are weights expressing the importance of the

distance of the corresponding points in the stfesstion. where the small scalar valpe determines the rate and the

(For instance, the exact distance of very dissimitctors accuracy of the convergence.
In the subsequent steps of the algorithm, the gradiom-

ponents of the stress function are re-calculatethénnew



point locations using Equations (5) and (6), arel pbints
are replaced using Equation (7) again. The algoritn be
easily generalised to 3 or more dimensional poistesns.

Comparing the above algorithm to the self orgagisimap
(SOM), an important difference lies in the factttttee low

dimensional vectory/; are not fixed to lattice points, so

they are allowed to roam in the low dimensionalcgpan
search of their own optimal position. In order xpeess this
free roaming of the point system during learning] & dis-
tinguish between the original SOM and the aboverilesd
algorithm, we call it “self organising cloud” (SOC)

This non-cooperative form of the SOC algorithm aweco
plishes a two-level systematisation of melody atits. In

the first step, the contour type vect@sare determined,

representing the centres of local clusters of teéody con-
tour vectors in the D=64 dimensional melody spdduis,
the first level of the systematisation is assigning melo-
dies to the most similar contour type vectors. Hgvac-
complished this classification process, the cornoestof
the melodies can be described, the higher-levehections
of the resulting melody classes, however, remaire-un
vealed. These latter relations are described bypingphe
D=64 dimensional contour type vectors to a low dime
sional space. Thus, the second level of the sysigatian
is the low dimensional representation and visutdinaof
the relations between the melody classes having bee
termined in the first level.

5. COOPERATIVE LEARNING

Up to this point, we have emphasized the advantefydse
independence of the non-topographic learning- &wedtad-
pographic visualising parts of the SOC techniquewelver,
the system can easily be modified to learn thearoritypes
in a cooperative way. In this case, all of the oanttype
vectors located in the surroundings of the winmerraodi-
fied by the current training vector, and their new di-
mensional coordinates are re-calculated simultasigavith
the contour type learning steps, using Equatiohs(6 and

(7). Since the vector¥; can freely move in the low dimen-

sional space during the process, this cooperataening
approaches similar vectors to each other, resulirgmore
articulated system of the low dimensional clustétew-
ever, an uncontrolled cooperative process cantiead ac-
celerated approach of neighbouring vectors, regulith a
total collapse of the whole system into one paithtis prin-
cipal problem can be solved by the prohibitiontaf toop-
erative training within a critical radius arouncetiwinner.
Although this version produces a suboptimal contype
estimation - similarly to the SOM algorithm -, itam sig-
nificantly improve the visual representation of thasters.

6. CROSS-CULTURAL ANALYSIS OF 31 MUSICAL
CULTURES USING THE SOC ALGORITHM

As an application of the SOC algorithm, we sumneatie
procedure and the results of a cross-cultural stdid4 folk
music cultures in this chapter. The cultures wezpre-
sented by 31 databases containing 1000 — 2500 raslbgl
culture. The first step of the analysis was thesdeination
of the contour type collections of the 31 culturesing non-
cooperative SOC mapping of the databases one hylone
the second phase, we unified the resulting 31 contgpe
collections into one training set, and trained ao-tw
dimensional “common” SOC having 1000 contour type-v
tors. After training by the nearly 12000 contoypdyectors
arising from the 31 collections (400-500 vectors duy-
ture), the resulting 1000 common vectors repreenmost
characteristic melody contours appearing in thedfures.
Figure 2 shows the resulting common musical maperge
ated by non-cooperative, as well as cooperativiaitig of
the SOC. The figure verifies that the cooperatearing
yields a much more arranged “musical map”. The oalsi
meaning of the main areas of this map is demomstray
the contour type examples in Figure 3.
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Figure 2. Self organising clouds of the common contour
type collection using non-cooperative (a), and @vative
(b) learning.

At this point, we have to define the concept oftiation”
of the common contour type vectors as follows: ataor
type vector of the common SOC is “activated” byaning
vector when the distance between them is less than
threshold value (see Equation 2). For example,bibek
points in Figure 2 correspond to the contour typets/ated
by the Hungarian melody of Figure 4. The distribatiof
the points illustrates that the cooperative learninoves
similar contour types into a more compact clusixtend-
ing this concept to national/areal sets of trainiagtors, we
can say that the 31 contour type collections atikffer-
ent subsets of the 1000 common vectors.

Figure 3 shows the common SOC with 6 differentorei
activations and some contour type examples being ve
characteristic in the given cultures. Since thergement
of the SOC reflects purely musical conditions,sitniot a
trivial result that the different cultures are ltaxdhin more
or less continuous areas. This fact refers to iffemusical
styles dominating in different cultures. Some adsth very
characteristic melody forms are also indicatedigufe 3.



The sizes of the overlaps benchmarked against dta t
N = sizes of the activated area refer to the interdditthe rela-
e ik *\ tions of musical cultures [7]. We considered theslative
R 4 /,];/1 . overlap sizes as similarity ratings of musical utds, and
German =" gan% represented the resulting system of musical langgagups
[ / > using the MDS algorithm described above. The two-
’ dimensional MDS plot of the connections is showrFig-

/. e f ) \ ure 5. The edges indicate pairs of cultures with ltrgest
: ISE 5 //,,7,\3':.', - overlaps. We also indicated some sub-graphs whee t
3%\ /%Mu £ nodes mutually are in close musical contacts wilche
/ 1% Turkish other. The graph shows a very clear structure wséthen
o musically well interpretable clusters. The righamch of the
) / system contains the mutually very closely relat€ifiese
Hungarian - 2 getis — Volga — Mongolian}, {Hungarian — Slovak} and {Tkish
" Chinese — Karachay — Sicilian — Dakota} groups. The lefatch is

constructed by the {Finnish — Norwegian — ISE} and

Figure 3. Activated area of the common contour type cloud {German — Luxembourgian — French — Holland} cluster
by contour type collections of 6 different cultures whereas the {Bulgarian — Balkan - Kurdish — Azeai}d
{Russian — Komi - Warmian (East-Poland)} groups con

For instance, contour example 1 shows that desegndi struct clearly separate clusters.
melodies with a high range are simultaneously daiirg The close contacts of the above discussed sevesicaiu

in the Chinese, Hungarian and Turkish activatiogaarin language groups” can be traced back to certain calsi
example for such melodies with Hungarian, Chindsato- styles being simultaneously present in more cutu@om-
lian and Dakota parallels is shown in Figure 4. paring Figure 5 to Figure 3, one can recognise tttsix
Hungarian Chinese a_ctlvator cultures of thg common musical map carm@m
L L o sidered as representatives of the above mentiomedital
5 B language groups”. Therefore, contour examples A-4big-
P ure 3 represent right the most characteristic commasi-

cal forms contacting the musical language groupsedls
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Figure 4. Melody examples of type 1 in Figure 3. A A
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Contour example 2 and 5, representing melodies leith R I

range demonstrate the musical background of thimitdef
overlap between Anatolian and Bulgarian cultures.

The Hungarian area shows a significant overlap \lith
Chinese and Anatolian ones, but contour examplds8@ a
demonstrates a significant common musical styldavhed
melody forms with the Irish-Scottish-English cuttur

At the same time, the Irish-Scottish-English corpas also 7. CONCLUSIONS

a significant overlap with the German one in theaaof as-

cending forms moving beyond the final tone (seet@man  \ve have described a technique which learns thepgavu

example 4). erages of the local condensations of multidimeraipoint
systems on the one hand and represents the styndaridi-

Figure 5. MDS plot of the connections of 31 folk music
cultures. Connecting lines indicate the mutualtgést rela-
tive overlaps.



tions of the learned average vectors in a low dsiweral
point system on the other hand. Basically, theritlym can
operate in two modes: In the non-cooperative madg o
one average vector is modified in one training ste@ the
state of the other vectors is independent of thislifica-
tion. In the cooperative mode the training is edtghto a
group of average vectors, and a feedback comesekifs
tence between the learning of the multidimensicanadr-
ages and the low dimensional arrangement.
The non-cooperative learning of the contour typetwes
permits the convergence to the exact centres ofcibe
condensations of the training vectors, therefore $OC
corresponds to the K-means algorithm in this c@ke. co-
operative learning realises a compromise betweermdtlou-
racy of the multidimensional learning and the loimeh-
sional representation, therefore the system coegeirgo a
sub-optimal state in this case. However, the caipemess
can be tuned by the learning radius parameters,tlaad
benefit of a well accomplished cooperative trainingy be
a more transparent low dimensional representatfothe
multidimensional clusters, whereas the accuracythef
learning also remains acceptable.
The low dimensional topographic representatiorhefdon-
tour type vectors is accomplished by a weighted Mi®-
rithm. This increases the degree of freedom ohtaeping,
because the locations of the low dimensional pangsnot
bounded to a lattice, and their dimensionality banopti-
mised without a significant increase in the commitime.
We applied the method to an analysis of the cctio s
of 31 Eurasian and North-American folk music cidtirWe
have found that the changeover to the continuowsdis
mensional space of the SOC from the plain latticecture
of the SOM yields a more articulated low dimenslareta
representation and a musically well interpretalyktesnati-
sation of the melody contours.
Using the SOC technique, we have determined a gatgu
musical map of the most important melody forms he t
studied cultures, and have found that the diffecedtures
occupy well defined continuous areas of this mape T
technigque allowed us to trace back this “musicalgga-
phy” to the dominance of certain well distinguisteamusi-
cal styles in different cultures. Exactly the claserelation
of different cultures with certain areas of the rakmap
calls the attention to the overlaps, referring ignigicant
interactions of the studied cultures. The analydishese
overlaps revealed a perspicuous system of crossrall
connections, which was represented by an MDS (it
probabilities of deterministic interactions. Thenuoon
musical forms standing in the background of the tnimos
portant cultural connections were also identifiednf the
overlap areas. We hope that these results demtmsha
timeliness of an extensive study of musical langugi@pups
and call the attention to the importance of thd orasical
tradition of the humanity.
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