Linear combination method modeling Hg frequency distributions

Given the D dimensional (Hg distribution) vector 
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, and N pieces of D dimensional, not orthogonal central vectors (CVs) 
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, we want to determine the scalar weights
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, producing the best approximation of the linear combination of 
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where 
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 is the D dimensional error vector.

The requirement that the total error of the approximation H has to be minimized is formulated as
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where  
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are the coordinates of 
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 in the D dimensional (Hg) space.

 It follows from Eq. 1 that the kth coordinate of 
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  is:
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therefore H can also be formulated as a function of the weights 
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To accomplish a gradient search for the weights 
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 minimizing H, we have to determine the partial derivatives of H as a function of 
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. It follows from Eq. 2. that 
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so 
 
[image: image18.wmf]å

å

=

=

-

=

¶

¶

=

¶

¶

D

k

D

k

k

m

k

m

k

k

m

v

a

a

H

1

1

,

)

(

2

2

e

e

e

                                   6.
The algorithm based on Equations 1-6 calculates the gradient of H in the space of the weights 
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and modifies the solution by a small step in the opposite direction of the gradient in the following steps.
1. The weights
[image: image20.wmf]N

a

a

K

1

are initialized by positive random values.

2. The error vector components are calculated using Eq. 3.
3. The partial derivatives of H are determined by Eq. 6.

4. The weights 
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are modified in opposite direction of the gradient:
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where the scalar
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is a small number controlling the step sizes.                    
5. In order to avoid negative values of 
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, the weights are multiplied by a small negative constant immediately when they come into the negative domain. When applying this step, the algorithm searches for pseudo-optimal solution with the constraint that all of 
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should be not negative.
6. Steps 1-5 are repeated until the change of H reaches a critical minimum value.
There are no restrictions for weights 
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when 
[image: image28.wmf]x

 and 
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are arbitrary vectors with real components. However, when 
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 and 
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are distribution vectors and 
[image: image32.wmf]x

is an exact linear combination of 
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,  i.e.
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the algorithm approaches the solution fulfilling  
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. Nevertheless, this normality cannot be suspected when the linear combination is merely an approximation, i.e. 
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. Obviously, the conditions in Eq. 8 are not fulfilled in our study, therefore the sum of the weights are in the domain of (0.8-1.3) in most of our models, and weights exceeding 1 are also found in certain cases.  
Definitions and maximal values of parameters in the program:

Basis: the vectors 
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 in Equation 1. Maximal value of N: 1000

Vectors to be modeled:  the set of vectors 
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 in equation 1. Maximal number: 1000.

Separation of the vector elements needs space characters, the end of the vectors is indicated by “enter”.

Lin. Comb model weights: The set of N-dimensional vectors containing the model error in the first position and the weights 
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in positions 2,3, …, N+1.

Dimension: dimension of the vectors to be modelled and the basis vectors (D in Equation 2.).
Cycles: The number of cycles of iterations.

Accuracy parameter: The scalar paramter
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in Equation 7 controlling the sead and the accuracy of the iteration.

Illustration of the operation: 35 pieces of 74-dimensional basis vectors (CVs) and 179 74-dimensional vectors to be modelled (Hg distributions) are found in the directory „c:/lincomb.
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